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1.0 INTRODUCTION

In the ever-changing world of technology, new ideas are born and legacy

technologies are left aside to be chronicled in the history books.  Although new

technologies become available, sometimes it is necessary to maintain older technology

when servicing electrical systems.  The U.S. military and other military units around the

world fight an ongoing battle against technology life cycles.  Program managers of radar

systems or fire control systems may or may not redesign a unit due to the advent of new

technology.  The lack of money usually prevents the redesign of systems.  Since some

systems cannot be replaced using new technology, technicians are challenged to maintain

electrical systems with parts that are not procurable by commercial buyers and or

government purchasers.

The work described within this thesis presents an engineering solution that stems

from the problem of parts obsolescence as it pertains to military systems.  Sarnoff

Corporation of Princeton NJ, has developed BiCMOS gate arrays that makes it possible

to emulate older technology with newer and faster technology, providing a pin for pin

replacement part.  For this thesis, the Intel 8031 microcontroller was chosen as a device

that would be modeled with VHDL so that a military grade device would be available if

need be in the future to help maintain electrical systems used by the U.S. military.

The design methodologies used to develop a Behavioral and Instruction Set (IS)

model for the Intel 8031 and the results of testing these models will be presented.  Very

High Speed Integrated Circuits Hardware Description Language (VHDL) was used to
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create the Behavioral model and the IS model for the Intel 8031 microcontroller.  VHDL

is a text based language that can capture the functionality of a digital device as simple as

a NAND gate to an advanced digital communications system.  The nature of this

research project does not allow for disclosure of intellectual property, hence the actual

VHDL text files will not be provided.  Certain aspects of the VHDL code developed will

be explained as needed.  To verify the Behavioral and IS model of the Intel 8031, it was

decided that a Hardware Modeler from Synopsys would be used.

This thesis was sponsored in part by the Sarnoff Corporation and the U.S.

government.  It is the intent of this research to develop a model for the Intel 8031

microcontroller.  This will allow for an understanding of how to best replace obsolete

parts with new components, especially complex parts.  The replacement of obsolete or

singled sourced parts by emulation of the existing chip or using remaining die at chip

supply houses usually yields a cost effective solution for the government and the tax

payer.  Sometimes board or system redesigns are necessary to eliminate a high

percentage of system or board level obsolete components.  This is often very expensive

and time consuming.

This thesis has been organized as follows.  In chapter 2, a brief description of

VHDL and the associated levels of modeling are given.  In chapter 3, an architecture

overview of the Intel 8031 is provided.  Next, in chapter 4, an approach to modeling

microcontrollers and similar devices is described.  The methods of testing and verifying

the models developed for this thesis are given in chapter 5.  Chapters 6 and 7 discuss the
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simulation results of the Behavior and the IS model respectively.  Finally, conclusions

and recommendations for continuance of this research are discussed in chapter 8.
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2.0 VHDL Modeling

The state-of-the-art of digital circuit design now provides for an efficient, CAD

oriented methodology for implementing digital designs, by using VHDL.  In the not so

distant past, design engineers were forced to develop logic functions using Karnaugh

maps putting together their designs logic gate by logic gate.

During the 60’s and the 70’s system level and microcomputer design entailed

building systems out of many individual logic gates manufactured on Integrated Circuits

(IC).  This design technique was very costly and time consuming.  As the technology

moved forward from medium-scale integration (MSI) to large-scale integration (LSI), to

very large-scale integration (VLSI), the need for new design tools became apparent.

With the ability to incorporate many functions on one IC, engineers needed a way to

quickly design a function and or circuit and test the design.  The standard known as

VHDL, was first created in 1987, [2]. VHDL allows for hardware description in a text-

based language.  VHDL is similar to Ada, a government standardized, portable, and

object oriented software language.  VHDL allows a design to model a digital system at

many levels of abstraction.  A description can be as simple as a 2-input logic circuit or

an entire digital system.

As devised by the DARPA/TRI-Service Rapid-prototyping of Application

Specific Signal Processors (RASSP) and some aerospace contractors, there exists

taxonomy for VHDL models [6].  There are five different levels of modeling:
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Performance modeling, Behavioral modeling, Instruction Set modeling, Register

Transfer Level (RTL) modeling, and Gate-Level modeling.

Performance modeling is used to specify the general make up of a complete

system.  Items that might be specified in performance modeling could include frames per

second for a video processor or number of instructions per second for a processor.

Behavioral modeling adds one level of detail.  A Behavioral model will include a

break down of the system into subcomponents and functional blocks.  There is little

detail to how the functions will be physically implemented.

The next level of detail is included in the Instruction Set model.  This level of

detail provides a model that can be used to simulate the instruction set of the

microcontroller, microprocessor, or DSP chip in question.  This thesis focuses on the

instruction set model level.

RTL modeling is a level of detail that specifies exactly how data will transfer

from register to register.  RTL is the most useful level of modeling to a designer who is

going to actually implement his or her design in an Application-Specific Integrated

Circuit (ASIC) or a Field Programmable Gate Array (FGPA).  There are many synthesis

tools that will “synthesize” or translate the RTL model into a netlist of primitive

technology cells for placement and routing.  There has been a great deal of focus in the

area of synthesis since this is where the designer can save many hours of work.  Instead

of drawing thousands upon thousands of gates in a schematic, the VHDL savvy designer

can describe a design in a text-based language that can be automatically transferred to a

schematic in a matter of seconds.
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The final level of detail is the Gate-Level model.  After synthesis is complete, the

result is a netlist of primitive gates like NAND gates and NOR gates.  This netlist can be

simulated with timing information provided by the vendor of the target silicon.  This

simulation is called post synthesis pre place and route simulation.

As mentioned above, this thesis focuses on an IS model for the Intel 8031

microcontroller.  Prior to developing a detailed IS model, a designer needs to understand

the two levels above an IS model, the Performance model and the Behavioral model.  In

this case, the circuit of discussion has been thoroughly described in the datasheets

available from Intel.  This documentation takes the place of the Performance model.

That leaves the Behavioral model to develop first.

The Behavioral model developed is an abstract model of the Intel 8031 that

demonstrates a basic understanding of how instructions are fetched and executed.  The

model was written to give a starting point of understanding to the overall design.  Hence

the Behavioral model will not have any physical implications pertaining to the original

microcontroller.

Once the Behavioral model has been written one can then focus on developing an

IS model.  The IS model developed for this thesis allows for exercising a subset of Intel

MCS-51 instructions.  Since the Intel 8031 is a feature-reduced version of the Intel 8051,

the Intel 8031 uses the MCS-51 instructions.
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3.0 Intel 8031 Architecture

It is not the intent of this chapter to provide a thorough analysis of the Intel 8031

architecture.  Fig. 1 provides a general overview of the Intel 8031.  A sufficient portion

of the architecture will be described to give the reader an understanding of the Intel 8031

as it relates to the research presented.

Intel 8031 core features [5]:

•  8 bit CPU optimized for Control Applications
•  Extensive Boolean processing (single-bit logic) capabilities
•  64K Program Memory address space
•  64K Date Memory address space
•  128 bytes of on-chip Data RAM
•  32 bi-directional and individually addressable I/O lines
•  Two 16-bit timer/counters
•  Full duplex UART
•  6-source/5-vector interrupt structure with two priority levels
•  On-chip clock oscillator

EXTERNAL
Fig. 1. Block Diagram, Intel 8031 Core
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The Intel 8031 is a rather simple machine with quite a bit of flexibility.  The 4 I/O

ports are perfect for communicating with many external applications.  The rich interrupt

structure aides well in a control environment.  Fig. 2 is an architecture block diagram of

the Intel 8031.  Even though the previous diagram shows some architecture detail, more

detail is needed to get a better understanding of the true architecture.  Fig. 2 shows a

higher level of register detail for the Intel 8031.  More specifically, register organization

is more pronounced and the bus structure is well defined.

Fig. 2. Intel 8031 Detailed Architecture

Fig. 2 shows that the Intel 8031 design is based on the Harvard architecture; the data

space and the program space are separated.  Fig. 2 also shows a clear separation between

the Data Path and the Control Unit.  This will make modeling the Intel 8031 much
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Special Function Register (SFR).  Careful study of the architecture gives rise to several

SFRs.

Table 1. Special Function Registers

Ta

A

ar

st

by

Th
SYMBOL NAME ADDRESS RESET VALUE
ACC* Accumulator 0E0h 00000000
B* B Register 0F0h 00000000
PSW* Program Status Word 0D0h 00000000
SP Stack Pointer 81h 00000111
DPTR Data Pointer 2 Bytes
DPL Low Byte 82h 00000000
DPH High Byte 83h 00000000
P0* Port 0 80h 11111111
P1* Port 1 90h 11111111
P2* Port 2 0A0h 11111111
P3* Port 3 0B0h 11111111
IP* Interrupt Priority Control 0B8h xxx00000
IE* Interrupt Enable Control 0A8h 0xx00000
TMOD Timer/Counter Mode Control 089h 00000000
TCON* Timer/Counter Control 088h 00000000
TH0 Timer/Counter 0 High Byte 08Ch 00000000
TL0 Timer/Counter 0 Low Byte 08Ah 00000000
TH1 Timer/Counter 1 High Byte 08Dh 00000000
TL1 Timer/Counter 1 Low Byte 08Bh 00000000
SCON* Serial Control 098h 00000000
SBUF Serial Data Buffer 099h Indeterminate
PCON Power Control 087h 0xxx0000

* = Bit Addressable
ble 1 contains register descriptions for the SFRs and their respective addresses.

lthough the special function registers seem to exist as individual registers within the

chitecture, they are part of the Intel 8031 internal Random Access Memory (RAM)

ructure.  The next two figures to be introduced will help to describe the internal 256-

te RAM configuration. The internal RAM of the Intel 8031 has four distinct spaces.

e upper 128 bytes of RAM contain the SFRs.  The lower half of the RAM is further
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divided into three segments, scratch pad, bit addressing segment, and the register bank

area.  Fig.3 shows the initial division of the RAM block.  It also gives some details as to

which addressing modes may be used with the internal RAM.  The addressing modes

will be discussed in the next section.

Fig. 3. 256 Byte Ram Block

Though Fig. 3 depicts the SFRs as being within the structure of the RAM, it is more

likely and is hypothesized that most of the SFRs are physically located outside of the

RAM space.  Not having these registers in the RAM space would allow for easier
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A bit addressable segment has been included for control applications.  The lowest
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SFR located at D0h,  contains two bits that shift a pointer to specify with bank to use.

Otherwise a programmer may directly request or write data to this space.

Fig. 4. Lower Half of RAM Block
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3.1 Intel 8031 Addressing Modes and Instruction Set Notes

When one writes a program for a microcontroller, close attention is paid to what

kind of addressing modes are available to the programmer.  The Intel 8031 program

space is interfaced by four addressing modes: immediate, register, direct, and indirect.

In direct addressing the operand is specified by an 8-bit address field in the

instruction.  Only internal data RAM and SFRs can be directly addressed. With indirect

addressing both internal and external RAM can be indirectly addressed. The address

register for an 8-bit address can be R0 or R1 of the selected register bank, or the stack

pointer.  The address register for 16-bit addresses can only be the 16-bit “data pointer”

register, DPTR.  When using register addressing, the register banks, contain registers R0

through R7.  These registers can be accessed by certain instructions that include a 3-bit

register specification within the opcode.  One of four banks is selected at execution time

by the two bank select bits in the PSW mentioned earlier [5].

The instruction set available to the programmer of the Intel 8031 contains 255

instructions.  Dividing these instructions up into main groups, there are 4 major

classifications.  These groups are: arithmetic and logical operations, data transfers,

program branching, and Boolean variable manipulations.  The details of each instruction

will not be discussed.  Appendix A has been included to provide some detail about each

instruction.  The appendix includes the hex code, mnemonic, number of cycles, and byte

count for each instruction.
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For this thesis the main thrust of the modeling effort was on the register

addressing mode instructions, primarily with register bank R0 operations.  For the

Behavioral model only certain basic instructions where modeled.  Basically over half of

the instruction set was modeled for the IS model.  Certain instructions will be discussed

in detail as needed.
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3.2 Machine Cycle Sequence

More than just study of addressing modes, instructions and general block

diagrams is needed when modeling a microcontroller.  If a model is to emulate its

predecessor, the timing of data transactions must be accurate. Fig. 5 depicts the

waveforms for critical signals during a memory fetch and their critical relative timing.

Fig. 5. External Program Memory Fetches

The “clock” i.e. the XTAL input is the bases for the figure.  Address Latch Enable

(ALE) and Program Store Enable active low (PSENn) are also included.  Since the Intel
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updated.  In the Intel literature, the engineers have divided a machine cycle into six

major states, S1-S6.  Furthermore these states are divided into phases P1 and P2.  The T
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is essential for timing accurate models.  Fig. 6 not only contains the state ALE, and

PSEN waveforms as in Fig. 5, but also includes four examples of how different

instructions have different state timing.

Fig. 6. Instruction Examples with State Timing

In Fig.6, example A, register addressing mode instruction INC A states’ timing is

illustrated.  For INC A, it is obvious that this instruction is a single-machine cycle

instruction or a twelve T states instruction.  For example B, an immediate addressing

mode instruction, ADD A, # data is a single machine cycle instruction.  This instruction

P1     P2

S6
T11T1    T2

P1     P2

S1
T3    T4

P1     P2

S2
T5    T6

P1     P2

S3
T7    T8

P1     P2

S4
T9

P1     P2

S5
T10 T12

P1     P2

S6
T11T1    T2

P1     P2

S1
T3    T4

P1     P2

S2
T5    T6

P1     P2

S3
T7    T8

P1     P2

S4
T9

P1     P2

S5
T10 T12 T1    T2

P1     P2

S1

ALE

PSEN

OSC
(XTAL2)

READ
OPCODE

READ NEXT
OPCODE
(DISCARD)

S1 S2 S3 S4 S5 S6

(A) 1-byte, 1-cycle instruction, e.g., INC A

READ
OPCODE

READ 2nd
BYTE

S1 S2 S3 S4 S5 S6

(B) 2-byte, 1-cycle instruction, e.g., ADD A, # data

READ NEXT
OPCODE
AGAIN

READ NEXT
OPCODE

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6

READ
OPCODE

READ NEXT OPCODE (DISCARD)

(C) 1-byte, 2-cycle instruction, e.g., INC DPTR

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6

READ
OPCODE

READ 2nd BYTE

(D) 2-byte, 2-cycle instruction, e.g., MOV R0, A

READ 2nd BYTE
AGAIN



16

is a two-byte instruction.  INC DPTR, a register address mode instruction, is used for

example C.  There is only one critical port interaction, but two machine cycles or 24 T

states or 24 cycles of the system clock, are needed to execute the instruction.  Finally for

example D, MOV R0, A, is shown to be a 2-byte, 2-cycle instruction.

As one can see from the previous architecture figures, the Intel 8031 is a

microcontroller without a Read Only Memory (ROM).  This would explain the need to

fetch instructions from off-chip memory.  In order to use the Intel 8031, a minimum

system must be created to enable the controller to have basic functionality.  Fig. 7

illustrates that minimum system.

Fig. 7. Intel 8031 Minimum System
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3.3 Modeled Architecture

For the purpose of this thesis, certain parts of the Intel 8031 architecture were

modeled and others were not.  Since the end result of this work is an IS model that tests

the Register addressing mode using R0, the architecture to support this modeling will be

discussed.  The Intel 8031 instruction set contains 255 instructions.  The IS VHDL

model discussed in chapter 7 can support 133 instructions.  128 of the 133 instructions

are register addressing mode instructions.  The five remaining instructions were modeled

to allow for simulation. The following is a summary of the instructions that were

modeled.

Table 2.  Modeled Register 0 Instructions
ADD     A,R0
ADDC  A,R0
ORL     A,R0
ANL     A,R0
XRL     A,R0
INC      R0
DEC     R0
MOV    R0,#DATA
MOV    DATA ADDR, R0
SUBB   A,R0
MOV    R0,DATA ADDR
CJNE    R0, #DATA, CODE ADDR
XCH     A,R0
DJNZ    R0, CODE ADDR
MOV    A,R0
MOV    R0,A
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As mentioned previously, five additional instructions where modeled.  These

instructions are critical for basic functionality.  These five instructions are described in

the following table.

Table 3.  Essential Modeled Instructions

 The first three instruc

and the Intel 8031 co

arithmetic instructions 

The architectur

the following registers 
LJMP CODE ADDR
MOV A, # DATA
MOV DATA ADDR, A
CLR  C
SETB C
tions in table 3 allow for basic data exchange between memory

re.  The last two instructions aided in determining if certain

were performing correctly.

e modeled in the IS model to support these instructions include

and functional blocks as displayed in Fig. 2.

Table 4.  IS Model Instructions

Port 0, latch and driver
Port 1, latch and driver
Port 2, latch and driver
RAM
RAM ADDR REGISTER
ALU
TMP1
TMP2
PSW
ACC
TIMING AND CONTROL
INSTRUCTION REGISTER
PROGRAM ADDR REGISTER
PC INCREMENTER
PROGRAM COUNTER
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The functions and registers listed account for 35% of the complete architecture.  Items

like the counter/timers and the UART were not modeled.  VHDL models for a UART

were found to exist.  Models of the counter/timer were viewed as not necessary to

display proof of concept of modeling the core of the Intel 8031 microcontroller.  The IS

VHDL model was written such that more instructions could easily be added.  The

remaining functional blocks would also integrate easily.
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4.0 Brainstorming the Design, The Creative Process

When trying to design a microcontroller, it is difficult to know where to start.

Literature research turned up a couple of books that would lead to a design process that

would aid in defining the goals for this thesis and provide a systematic approach for

modeling the Intel 8031.  In the book titled Digital Systems Design Using VHDL,

Charles H. Roth, Jr. suggested a design process.  The book was written to educate

readers on the use VHDL and how to write VHDL models for systems larger than an

MSI IC.  The book had a chapter about designing a microcontroller.  The author

suggested that, together, he and the student would study the MC68HC05 and write

behavioral code to model a portion of this chip.  The author broke the design into

subsystems.  The main focus though was on the basic functions of the microcontroller.

He recommends to the student to familiarize himself with the instruction set of the target

microcontroller or thoroughly plan out a new design’s instruction set.

A challenge for this research was that there was no book to aid in breaking down

the instruction set of the Intel 8031.  The Intel 8031, as mentioned before, is an 8-bit

microcontroller.  This implies that the instruction set could have a total of 256

instructions and indeed the Intel 8031 instruction set does have 256 instructions

including one NOP, i.e. no operation instruction.  The Intel 8031 instruction set seemed

to have a natural pattern to how the instruction set was structured.  A most crucial aspect

of this work was to determine how to decompose the instruction set and use the

discovered pattern in the most efficient manner.
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When writing a Behavioral model, one does not want to create a 256 entry case

structure.  This is a little cumbersome and would not translate well into a RTL VHDL

model. A RTL model would be used to synthesize the design to a specific technology.

Essentially the instruction set code had to be “cracked” as how to break the instruction

set up in a logical manner which would facilitate coding the instruction set into the

Behavioral and IS VHDL model.  Please refer to appendix A for an “as is” version of the

Intel 8031 instruction set.  This view will give the reader an idea of the decomposition

challenge.  It was finally decided that the instructions should be broken in the middle.

The four bit grouping consisting of the most significant bit (MSB) down to the (MSB –

3) bit of the 8 bit instruction, commonly referred to as the upper nibble, would identify

what type of instruction was being decoded.  The four bit grouping consisting of the least

significant bit (LSB) up to the (LSB + 3) bit of the 8 bit instruction, commonly referred

to as the lower nibble, would indicate what type of addressing would be needed to

complete that instruction.

For instance, if one looks at register addressing mode addition instructions, hex

codes 28h through 2Fh, one can see that the upper nibble does not change (see table 5).

It was helpful to take the instruction hex codes and write then in binary format.  If this is

done, one will see that for register addition the last three bits of the instruction indicate

which register should be used to complete the instruction.  It was this pattern that led to

completing the decomposition of the instructions.



22

Table 5.  Register Addressing Mode Addition Instruction Set Subset

Hex Code Number of Bytes Mnemonic Operands
28 1 ADD A,R0
29 1 ADD A,R1
2A 1 ADD A,R2
2B 1 ADD A,R3
2C 1 ADD A,R4
2D 1 ADD A,R5
2E 1 ADD A,R6
2F 1 ADD A,R7

After the instruction set was studied, the addressing modes were analyzed. As

mentioned in chapter 3, register addressing , one of four modes, would end up being the

primary focus of this thesis.  For behavioral modeling, five instructions were selected.

Those instructions were:

LJMP CODE ADDR
MOV A, #DATA
MOV DIRECT, A
ADD A, #DATA
ADD A, REGISTER

The LJMP instruction was selected due to its importance in beginning any

program for the Intel 8031.  Mentioned in chapter 3, the Intel 8031 has an interrupt

structure.  The addresses for the interrupt vectors are located at the beginning of the

program space.  For this reason, a LJMP is needed to perform an unconditional branch to

a safe address in memory to start a program.  The two move instructions are critical in

setting up control registers like the PSW.  The ADD instructions were selected to test out

ALU functionality.
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Next, as discussed in [1], it is suggested that the design process continue with the

construction of a register transfer table.  The next table illustrates the transaction needed

to execute the above selected instructions.

Table 6. Register Transfer Table

c

i

t

m

t

t

r

t

Addressing
Mode

Instruction 1st Cycle 2nd Cycle 3 rd Cycle 4th Cycle

Immediate Add A, #data {fetch} {addr1}
Tmp1 ←←←← mem(PC)
PC ←←←← PC + 1

(A ←←←← A + Tmp1)

Direct Add A, Direct {fetch} {addr1}
Rar ←←←← mem(PC)
PC ←←←← PC + 1

{data}
Tmp1 ←←←← Ram(Rar) (A ←←←← A + Tmp1)

Direct MOV Direct, A {fetch} {addr1}
Rar ←←←← mem(PC)
PC ←←←← PC + 1

{RamWrite}
Ram(Rar) ←←←← A

Register Add A, Rn {fetch} {addr1}
Rar ←←←← mem(PC)
PC ←←←← PC + 1

{data}
Tmp1 ←←←← Ram(Rar) (A ←←←← A + Tmp1)

LJMP {fetch} {addr1}
MarH ←←←← mem(PC)

{addr2}
PCL ←←←← mem(PC)
Table 6 maps out the necessary register transfers to complete each instruction.  In

olumn one the different addressing modes are noted for each instruction.  Column two

dentifies the instruction being described.  The next four columns represent needed

ransactions.  To explain this table, the ADD A, Direct instruction will be reviewed.

The first register transfer necessary for any of the instructions is a fetch from the

emory.  The next transfer for the ADD A, Direct instruction is a read from memory of

he RAM address that contains the data that will be added to the accumulator.  During

his “address 1” state the program counter also gets attention, it is updated.  The Tmp1

egister assists by holding the data retrieved from the RAM in cycle three.  To complete

he instruction, the value of the accumulator is added with the value of Tmp1 and stored

PC ←←←← PC + 1 PCH ←←←← MarH
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in the accumulator.  It was decided that the actual addition described with the register

transfer notation in column four or cycle four could be executed during the next fetch

cycle.  This explains why there is no ALU state enclosed in {} in cycle 4 for the ADD A,

Direct instruction.  The transfer explanation would follow a similar pattern for the other

four instructions.

Now that states have been identified for each instruction, a state diagram can be

constructed covering all five instructions.  The state diagram in Fig. 8 was used to

construct the Behavioral VHDL model.  The reset state and states cycle 8, cycle 9, and

cycle 10 are not related to the states in the transfer table in table 6.  These states were

added to allow for configuration of SFRs.

Fig. 8. Simple State Diagram

FETCH

ADDR1

ADDR2

DATA

RamWrite

Cycle 8

Cycle 9

Cycle 10

RST

 LJMP

ADD_IMM
MOV_IMM

ADD,
REG0

ADD_DIR

MOV_ACC_DIR

ADD,
REG1

RESET
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Instruction ADD A, Direct was determined to need three states to execute, fetch, addr1,

and data.  Reviewing the state diagram one can see that the ADD A, Direct instruction is

similar to the other four instructions.

Following state diagram creation, a Behavioral VHDL model was developed

based on the following completed tasks: instruction review, addressing mode review,

register transfer diagramming, and state diagramming.  The Behavioral VHDL model is

primarily comprised of a control process with a case statement that emulates the state

diagram. An arithmetic function, used to emulate the ALU of the Intel 8031, is called

during the fetch state of the control process.  The program memory was not modeled

based on true architecture.  The Intel 8031 is a ROMless microcontroller that normally

communicates through ports 0 and 2 to retrieve instructions.  For the Behavioral model

the program memory is simply designed into the same abstract structure as the process

that models the states of the controller.  This simplifies the model allowing for attention

to be paid to the instruction decoding and execution.

The Behavioral model simulation results pertaining to the five instructions

discussed will be charted and explained in chapter 6.  Before the results are shown, the

test method used will be discussed.  The next chapter will provide information as to the

testing technique used to simulate the Behavioral and IS VHDL model.  Before moving

onto chapter 5, a broad brush explanation of the IS model will be provided.

The organization of the IS model is similar to that of the Behavioral model.  Both

models have a control process that controls the state of the model.  Both models also

have the same ALU_OP procedure structure to perform arithmetic operations.  With the
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Behavioral model, a single process handles instruction decoding and state control.  In the

IS model, these functions are separated.  The main process, a state machine like process,

in the IS model is a lengthy simple looping state machine that steps through 12 cycles for

every machine cycle required for instruction execution.  The state machine cycle process

monitors the status of the Ports, initiates control signals at the proper time according to

the decoded instruction, and updates the Program Counter (PC).  See appendix D for a

listing of example code.  The sample code of appendix D also shows the signal

declarations and aliases used to support the IS model.

Supporting the main state machine process is a process that decodes the

instructions as they are retrieved from Port 0 (see appendix E).  When the state machine

enters state M1T2 or Machine cycle 1 T cycle 2, decoding of the incoming instruction is

initiated (see line 443 appendix D).  The Instruction Register (IR) used during decoding

is “split” in to two pieces. OP for operation alludes to the upper nibble of the 8-bit

register IR and MODE alludes to the lower nibble of IR.  A two level case statement

structure is used for the decoding process.  The first case statement looks at the 4-bit

nibble MODE to determine what addressing mode the incoming instruction is to use (see

line 94 appendix E).  Once the addressing mode is determined, additional case statement

structures within the case statement for each addressing mode type analyzes the 4-bit

nibble OP (see line 205 appendix E).  Once the type instruction is determined, control

signal bits are set or cleared for the specific instruction.
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As mentioned, a procedure called ALU_OP is used to execute arithmetic

instructions (see appendix F).  The VHDL code in appendix F just contains the code to

complete the Register Addressing mode ADD instruction.
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5.0 Testing and Verification

Testing is the most feared task of all engineers.  Most IC design engineers love to

design and hate to bother with thoroughly testing their new creations.  Personal feelings

aside, testing should not be taken lightly.  Testing is a critical, time consuming, and an

expensive necessity of product development.  Testing is just as important as the design.

Without an accurate and validated design, an engineers work is not complete and has a

little value to his or her company.

The IC technologies of today have sub-micron feature sizes.  Designs can consist

of millions of gates.  VHDL allows an engineer to easily design tens of thousands of

gates per day.  There can be many instructions to consider and many items in a data path

to test and verify.  For these reasons, a sound test method must be used.  This is where a

VHDL test bench, a VHDL model using available packages included in the VHDL

standard library STD, will help to minimize the testing challenge.

VHDL inherently contains constructs to aid in the creation of a test bench.  A test

bench, developed in VHDL, is VHDL code written to evaluate a digital design.  A test

bench is a VHDL model itself describing an instantiation of an architecture of the design

to be tested and the signals and functions or procedures to be used.  A test bench can

contain processes such as a clock generation process or procedure to read test vectors

from a text file that are to be clocked against the design or the Unit Under Test (UUT).

The preferred test bench will be a VHDL behavioral model that can be simply executed

with a VHDL simulator.  The test bench should initialize all necessary signals, apply test
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vectors, collect the results from the simulation for storage or review, and determine

which test vectors did not pass, i.e. self-checking.

During development of a VHDL model, having a test bench already prepared that

can be used by the designer will help to reach the design goal quickly.  In some cases, an

engineer other than the design engineer may write a test bench.  Having a test bench that

can be executed quickly and repeatedly to test a design is a desired method for VHDL

model development.  A test bench also creates in itself a form of documentation.  If the

creator of the test bench comments the VHDL code well, other engineers will be able to

understand how the UUT is being tested.  In a complete VHDL design flow using

synthesis, test benches are a must.  The test bench is written once and covers all of the

different levels of abstraction.  The same test bench that is used for the behavioral model

is used to test the RTL and also the Post synthesis and Post layout netlists.  The UUT

configuration statement is simply changed to point to the desired model.

For this research a test bench was written for the IS model and not for the

behavioral model.  During the development of the VHDL models, the value a VHDL test

benches was not fully appreciated until work began on the IS model.  The Behavioral

model is so simple that the VHDL simulator used allowed for simple testing.  In

addition, the Behavioral model was so abstract, that the interface necessary for a test

bench did not exist.  During IS model creation, a more detailed interface was created to

allow for testing with a VHDL test bench.
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Fig. 9 details the virtual testing environment that was created with a test bench

for the IS model.  This virtual environment allows for repetitive and convenient test of

the UUT.
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Hardware Modeler [3].  This device can be used to verify a VHDL design against real

hardware.  An actual IC is soldered to a circuit board in a module.  This module can then

be fastened to the front of an interface box.  The interface box allows for communication

between the actual IC and the hosting server.  This server allows a VHDL simulator tool

to interact with the actual IC.  Once all the hardware is installed, configured and

powered, an engineer can simulate his VHDL system design using the access to an IC

that he or she may have not yet modeled, i.e. Pentium processor.

For this research, the modeling unit was used in a slightly different manner.  The

modeler was used to verify a model of a specific IC, the Intel 8031 microcontroller.  A

set of hex codes was used in conjunction with a test bench to capture the output of the

physical Intel 8031.  The “golden code” was used later in conjunction with a test bench

to check the results of the IS model.

The VHDL test bench referred to in the previous paragraphs contains the

following structure.  The VHDL test bench contains 6 processes, 1 procedure, and the

standard configuration statements needed to refer to the correct UUT.  The one and only

procedure was designed to read a text file that contains the desired test code in a

hexadecimal format.  The 6 processes are as follows.  The CLK process is a rather short

process that simply generates a reoccurring square wave signal with 50% duty cycle.

Two processes were needed to help model the virtual test environment.  One of those

processes modeled a latch and the other process provides a model of a ROM.  The latch

model was written to provide a functional representation of a 74LS373 Octal D-type

transparent latch.  The ROM model was written for the NMC26C64 64K bit CMOS
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EPROM.  The Reset process created a virtual reset of the UUT.  Together the CLK,

Reset, Latch, and EPROM process models created a virtual minimum system that

allowed for exercising different sets of hex code against the IS model.

The last two processes, the “golden” hardware modeler results process and the

check results process completed the self-checking test bench.  The “golden” Hardware

Modeler results process read a test results file to be used for comparison with the IS

model results.  Test results were generated by exercising test code, later used for IS

model testing, against the actual Intel 8031. Any port changes were recorded.  At this

point the results were considered “golden” i.e. actual and correct part results.  The check

results process uses a simple if then statement to compare the actual IS model results

against the “golden” results that were read from the test results file.  If a discrepancy was

found, a report message was generated for display in the simulator using VHDL’s assert

statement [4].  The two resulting sets of signals were displayed in the simulator.  These

results will be graphically displayed in the next chapter.
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6.0 Behavioral Model and Simulation Results

The design process discussed so far has laid the groundwork necessary for

creating a Behavioral model for the Intel 8031.   A VHDL model was written based on

the transfer table and the state machine graph discussed in chapter 4.  After completing

the Behavioral model, verification of the model was needed.  Fig. 10 shows the program

that was used to test the Behavioral model.  Fig. 10 displays a program designed to

perform data transfers and two arithmetic operations that will now be reviewed along

with the results of the simulation.

Fig. 10. Test Code

The boldface entries in Fig. 10 correspond to the simulation results in Fig. 11 on the

next page.  The ST signal represents the state of the controller as discussed in chapter 4.

The first instruction is LJMP 0Ah.  The LJMP instruction, as detailed in table 6 in

chapter 4, should cause the state machine to cycle through three states, fetch, addr1, and

addr2.  These expected results as well as the program counter counting from 00h to 01h

Program
LJMP  0AH
MOV  A, #08h
MOV PSW, A
MOV A, #04h
MOV 09h, A
MOV 08h, A
ADD  A, R1
ADD  A, R0
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to 02h and then to 0Ah are shown below.  The next instruction performs a data transfer

of immediate data to the accumulator.

Fig. 11.  Behavioral Simulation Chart 1

The MOV instruction, MOV A, #08h just needs two cycles for execution.  It can be seen

that while two cycles are used; the completion of the instruction is carried out during the

next fetch. The MOV A, #08h instruction result is shown by seeing that the accumulator

is updated with 08h.  The Program Status Word (PSW) is updated by the next

instruction, MOV PSW, A. This MOV instruction requires an additional cycle for a

ramwrite as shown on the ST signal.  At this point three instructions have been executed.

The overall results being that the test program was initiated and that the PSW register

now has a value of 08h.   The value of 08h for the PSW selects the first bank of registers

in the RAM for register addressing instructions.  This was completed to give the

necessary direction to the controller for register addressing instructions like the two

ADD instructions to be discussed later.
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Another signal to review is the Port 0 signal.  This address/data port is never

updated.  Study of the architecture diagram in chapter 3 indicates that data should be

transferred on this port.  For this Behavioral model, the program memory model was

included in the CPU.  Hence the instruction fetches and the return of data from an

external ROM was not visible at the port level.  This issue was later addressed with the

IS model.  Chapter 7 will provide discussion of the IS model that will demonstrate the

necessary port activity for Port 0.

The next three instructions, shown in Fig. 12 in bold type, directs the Intel 8031

to transfer an immediate value of 04h to two registers within the RAM.  Looking at the

Opcode signal in Fig. 13 on the next page one can see instruction 74h being read.  The

Tmp1 signal shows what value is going to move to the accumulator.

Fig. 12. Test Code

The MOV instruction is completed during the next fetch cycle with the

accumulator being updated with a value of 04h.  The next two instructions obtain the

same results except for different registers.  Register R1 or 09h gets a value of 04h as

does register R0 or 08h.

Program
LJMP  0AH
MOV  A, #08h
MOV PSW, A
MOV A, #04h
MOV 09h, A
MOV 08h, A
ADD  A, R1
ADD  A, R0
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Fig. 13. Behavioral Simulation Chart 2

The final two instructions, in bold type in Fig.14, to be reviewed are two arithmetic

operations.  Both instructions perform an addition operation with the register and the

accumulator  with the results placed in the accumulator.

Fig. 14. Test Code

Fig. 15 on the next page demonstrates instruction ADD A, R1 which will take the

current value of 04h in Register R1 and add it to the accumulator which has 04h as it

value.  The result of this instruction is seen in the signal Acc with a value of 08h.  ADD

A, R0 will take the current value of 04h in Register R0 and add it to the accumulator that

Program
LJMP  0AH
MOV  A, #08h
MOV PSW, A
MOV A, #04h
MOV 09h, A
MOV 08h, A
ADD  A, R1
ADD  A, R0
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has 08h as it contents.  The result of this instruction is seen in signal Acc.  Acc changes

to 0Ch.

Fig. 15. Behavioral Simulation Chart 3

In summary, it has been demonstrated that the VHDL Behavioral model that

produced the above simulation charts correctly executes the instructions that were

chosen to be modeled.
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7.0 IS Model and Simulation Results

The simulation results of chapter 6 have shown that the mini-instruction set

Behavioral model of the Intel 8031 behaved correctly, as far as functionality is

concerned.  When reviewing the simulations with respect to timing, the waveforms are

no where close to meeting the timing diagrams as specified by the Intel 8031 databook

[5].  In translating the Behavioral model to an IS model much attention was paid to the

timing characteristics of the microcontroller.  The IS model needs to match the relative

timing as seen in chapter 3.

Table 7. T Cycles and RTN for ADD,Rn

ALE
         .
PSEN P0Lat RTN

T1 0 0 1
T2 1 1 0 PC ← PA; PCinc ← PC
T3 1 1 0 P0,P2 ← PA; PC + 1
T4 0 1 0 PC ← PCinc
T5 0 0 0 P0 ← High Z
T6 0 0 0
T7 0 0 1
T8 1 1 0 IR←P0Lat
T9 1 1 0 RamAddReg ← (Rn); TMP2 ← ACC
T10 0 1 0 TMP1 ← Ram(Rn)
T11 0 0 0 ALUout ← TMP1 + TMP2
T12 0 0 0 ACC ← ALUout

Table 7 shows a T cycle table along with the critical control signals and their

associated register transfers.  Table 7 shown is for any ADD, Rn instruction.  A table

similar to this one was constructed for other single machine cycle instructions and for

dual machine cycle instructions.  As directed by the Intel data book, a single machine
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cycle is broken into twelve evenly time-spaced steps.  A blank table was constructed

with twelve lines.  Details were added to the table as extracted from the Intel

8031datasheet timing diagrams.  In particular, the Address Latch Enable (ALE) and

Program Store Enable active low (PSENn) signals that are critical to external  memory

fetches were included.  If the timing of the ALE and PSENn signals are not correct then

the IS model is worthless, i.e. the microcontroller will not properly interface with the

external memory leaving the microcontroller “brain dead”.  In table 7 the ALE and

PSENn columns have a 1 or 0 depending on Intel specified relative timing.  See lines

454-489 of appendix D to see an example of how ALE and PSENn are toggled.  The

P0Latch column shows an entry of 1 were the data should be sampled from the external

memory bus.

After building all of the RTN tables for several instructions, the IS model was

constructed.  Instead of having a cycle or state for the action needed to complete each

instruction as with the Behavioral model, the IS model has a state machine with 24

states.  If an instruction is termed a single machine cycle instruction then that instruction,

through decoding, directs the state machine to use 12 cycles.  If an instruction is termed

a two-machine cycle instruction then that instruction will cause the state machine to

cycle through 24 states.  This will become apparent to the reader during the discussion of

the simulation results.  In the IS VHDL model each state of the CPU state machine

process was named with much detail.  This allowed for easier debugging (see lines 96-

110 appendix D).  As a consequence, the state names will not be visible in the

simulations shown in the next section.
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7.1 IS Model Simulation Results with Behavioral Code

Before explaining the results of the IS model, the timing of the instruction

interactions should be discussed.  In Fig. 16 below, one will notice that with the IS

VHDL model the ST signal is comprised of many states.  See lines 96-110 of appendix

D to view the state names used.  There is also activity on Port 0 and Port 2 that was not

present in the Behavioral model.  This port activity indicates that the IS model is

interacting with the test bench and retrieving instructions from the virtual ROM.  Also

included on the simulation figures for the IS model are the signals ALE and PSENn.

The activity on these signals also indicate that the IS model is communicating with the

virtual external ROM.

Fig. 16. IS Model Simulation Chart 1

The simulation results shown in Fig. 16 are similar to those for the Behavioral

model and also cover the same first three instructions, a LJMP and two MOV’s.  Again

we see that the end result of processing the LJMP instruction is that the PC is

incremented to 0Ah.  The first instruction, MOV A, #08h, completes as before with the

value of 08h being transferred while the next instruction is being fetched.  The third
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instruction, MOV PSW, A, completes with the PSW register updated to a value of 08h

as instructed.

The results for the next three instructions, entries in bold type in Fig. 17, are

displayed in Fig. 18.  The MOV A, #04h instruction executes with the same results as in

the Behavioral model;  the accumulator is updated with 08h.  The next two MOV

instructions are identical to those used before except for the specified destination

registers.  Both registers R1 and R0 of register bank 0 receive the value of 04h.

Fig. 17. Test Code

Fig. 18.  IS Model Simulation Chart 2

Program
LJMP  0AH
MOV  A, #08h
MOV PSW, A
MOV A, #04h
MOV 09h, A
MOV 08h, A
ADD  A, R1
ADD  A, R0



42

     The last two instructions of the test of code, as indicated by the bold type in Fig. 19,

are arithmetic instructions.  In Fig. 20, registers R1 and R0 of register bank zero are

updated with the results from the ALU.  The value stored in R1, 04h, is added to the

accumulator and the result of the addition stored in the accumulator.  The ADD A, R0

instruction operates the same way except targeting register R0.  As a result the final

value of the accumulator should be 0Ch and is.  This result compares with Behavioral

model result.

Fig. 19.  Test Code

Fig. 20. IS Model Simulation Chart 3

Program
LJMP  0AH
MOV  A, #08h
MOV PSW, A
MOV A, #04h
MOV 08h, A
MOV 09h, A
ADD  A, R1
ADD  A, R0
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7.2 IS Model Simulation Results with R0 Test Code

In the previous section, simulation results were shown for a simple eight-

instruction program.  A more exhaustive test of the register addressing instructions was

completed.  A program with 54 instructions was loaded by the test bench and re-

simulated.  A complete listing of the program used for IS model testing can be found in

appendix B.  For this test sequence, the results obtained from the hardware modeler,

referred to as the “golden code” for the same 54 instructions, were used for comparison.

A couple of the instructions for this new test sequence will be discussed in this section.

A complete set of results for the IS model tests can be found in appendix C.

Fig. 21 shows again the beginning of the test program.  This new program, like

the last program, begins with a LJMP instruction.   In Fig. 21 there are a couple new

signals not present in all previous simulation charts.

Fig. 21. IS Model Simulation Chart 4
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The signals with the suffix _HW are signals that were played back from a text file as the

simulation was running.  The text file was generated from running the hardware modeler

with the same program except the results were recorded from an actual Intel 8031

microcontroller.  The signal results recorded from the real Intel 8031 are termed “golden

vectors”.  This process of playing the “golden vectors” against the IS model was decided

to be the verification method.  While the hardware modeler does not allow access to the

internal registers of the actual Intel 8031, results of all port activities were recorded.

Since the internal register activity can not be viewed, instructions were chosen to

exercise the ALU and the like and the results were observed on Port1.  So if an addition

instruction was executed the next instruction would be a port write instruction to see if

the IS model would output the same result as the Intel 8031 chip as represented by the

signals with the _HW extension.

In Fig. 22, again we see a simulation chart of an arithmetic instruction execution.

This time a port write instruction was used to view the result of the arithmetic

instruction.  The result of this port write can be compared with the result from the

hardware modeler.  We see that on Port 0, instruction 08h i.e. increment R0, is being

read form external memory.  Since the events of the Intel 8031 internal registers could

not be recorded, the register R0 signal was not included.  The next instruction will let us

see if an increment had really occurred.  The previous value of register R0 was 01h.

After the completion of the port write instruction on Port 1, we see that indeed the result

is 02h and that matches the “golden code” recorded from the hardware model simulation.
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Fig. 22. IS Model Simulation Chart 5

As previously mentioned, the program for this test sequence contains 54

instructions.  The remaining simulation results are similar to what has been presented

here.  See appendix C for a complete set of simulation charts.  In summary, all tested

instructions matched the results from the hardware modeler.  The results obtained here

greatly support the statement; the IS model developed in this research is an accurate

model of the Intel 8031 for the instructions modeled.



46

8.0 Summary and Future Work

This thesis has detailed the results of creating and simulating 2 VHDL models for

the Intel 8031.  These models were written to help support an effort to eradicate the

component obsolescence problem faced by the U.S. government.  A simple Behavioral

model was written and tested to verify proper abstract modeling.  Next, an Instruction

Set (IS) model was written for one half of the instruction set of the Intel 8031.  The IS

model results were compared against the results from an actual Intel 8031 accessed and

simulated by using a Hardware Modeler made by Synopsys.  For the modeled

instructions, it was found that the IS model accurately emulates the functionality of the

original Intel 8031.  The efforts of this research will help support the overall goal to

fabricate an 8-bit microcontroller that emulates with form, fit, and function the original

Intel 8031 microcontroller.

Continuation of this research will be carried out at Ohio University. Items to

research and complete include: finishing the IS model, writing an RTL model,

synthesizing the RTL model, and testing all models.  Some of this work has been

completed, but was not documented in this thesis.  RTL models and synthesis results

have been made available to Dr. Starzyk.
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Appendix A - Intel 8031 INSTRUCTION SET

Instruction Opcodes in Hexadecimal Order

Hex Code Number of Bytes Mnemonic Operands
00 1 NOP
01 2 AJMP code addr
02 3 LJMP code addr
03 1 RR A
04 1 INC A
05 2 INC data addr
06 1 INC @R0
07 1 INC @R1
08 1 INC R0
09 1 INC R1
0A 1 INC R2
0B 1 INC R3
0C 1 INC R4
0D 1 INC R5
0E 1 INC R6
0F 1 INC R7
10 3 JBC bit addr, code addr
11 2 ACALL code addr
12 3 LCALL code addr
13 1 RRC A
14 1 DEC A
15 2 DEC data addr
16 1 DEC @R0
17 1 DEC @R1
18 1 DEC R0
19 1 DEC R1
1A 1 DEC R2
1B 1 DEC R3
1C 1 DEC R4
1D 1 DEC R5
1E 1 DEC R6
1F 1 DEC R7
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Appendix A - Intel 8031 INSTRUCTION SET

Instruction Opcodes in Hexadecimal Order (Continued)

Hex Code Number of Bytes Mnemonic Operands
20 3 JB bit addr, code addr
21 2 AJMP code addr
22 1 RET
23 1 RL A
24 2 ADD A, # data
25 2 ADD A, data addr
26 1 ADD A, @ R0
27 1 ADD A, @ R1
28 1 ADD A,R0
29 1 ADD A,R1
2A 1 ADD A,R2
2B 1 ADD A,R3
2C 1 ADD A,R4
2D 1 ADD A,R5
2E 1 ADD A,R6
2F 1 ADD A,R7
30 3 JNB bit addr, code addr
31 2 ACALL code addr
32 1 RETI
33 1 RLC A
34 2 ADDC A, # data
35 2 ADDC A, data addr
36 1 ADDC A, @ R0
37 1 ADDC A, @ R1
38 1 ADDC A,R0
39 1 ADDC A,R1
3A 1 ADDC A,R2
3B 1 ADDC A,R3
3C 1 ADDC A,R4
3D 1 ADDC A,R5
3E 1 ADDC A,R6
3F 1 ADDC A,R7
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Appendix A - Intel 8031 INSTRUCTION SET

Instruction Opcodes in Hexadecimal Order (Continued)

Hex Code Number of Bytes Mnemonic Operands
40 2 JC code addr
41 2 AJMP code addr
42 2 ORL data addr, A
43 3 ORL data addr, # data
44 2 ORL A, # data
45 2 ORL A, data addr
46 1 ORL A, @ R0
47 1 ORL A, @ R1
48 1 ORL A,R0
49 1 ORL A,R1
4A 1 ORL A,R2
4B 1 ORL A,R3
4C 1 ORL A,R4
4D 1 ORL A,R5
4E 1 ORL A,R6
4F 1 ORL A,R7
50 2 JNC code addr
51 2 ACALL code addr
52 2 ANL data addr, A
53 3 ANL data addr, # data
54 2 ANL A, # data
55 2 ANL A, data addr
56 1 ANL A, @ R0
57 1 ANL A, @ R1
58 1 ANL A,R0
59 1 ANL A,R1
5A 1 ANL A,R2
5B 1 ANL A,R3
5C 1 ANL A,R4
5D 1 ANL A,R5
5E 1 ANL A,R6
5F 1 ANL A,R7
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Appendix A - Intel 8031 INSTRUCTION SET

Instruction Opcodes in Hexadecimal Order (Continued)

Hex Code Number of Bytes Mnemonic Operands
60 2 JZ code addr
61 2 AJMP code addr
62 2 XRL data addr, A
63 3 XRL data addr, # data
64 2 XRL A, # data
65 2 XRL A, data addr
66 1 XRL A, @ R0
67 1 XRL A, @ R1
68 1 XRL A,R0
69 1 XRL A,R1
6A 1 XRL A,R2
6B 1 XRL A,R3
6C 1 XRL A,R6
6D 1 XRL A,R5
6E 1 XRL A,R6
6F 1 XRL A,R7
70 2 JNZ code addr
71 2 ACALL code addr
72 2 ORL C,bit addr
73 1 JMP @A +  DPTR
74 2 MOV A, # data
75 3 MOV data addr, # data
76 2 MOV @ R0, # data
77 2 MOV  @ R1, # data
78 2 MOV R0, # data
79 2 MOV R1, # data
7A 2 MOV R2, # data
7B 2 MOV R3, # data
7C 2 MOV R4, # data
7D 2 MOV R5, # data
7E 2 MOV R6, # data
7F 2 MOV R7, # data
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Appendix A - Intel 8031 INSTRUCTION SET

Instruction Opcodes in Hexadecimal Order (Continued)

Hex Code Number of Bytes Mnemonic Operands
80 2 SJMP code addr
81 2 AJMP code addr
82 2 ANL C,bit addr
83 1 MOVC A,@A + PC
84 1 DIV AB
85 3 MOV data addr, data addr
86 2 MOV data addr, @ R0
87 2 MOV data addr, @ R1
88 2 MOV data addr,R0
89 2 MOV data addr,R1
8A 2 MOV data addr,R2
8B 2 MOV data addr,R3
8C 2 MOV data addr,R8
8D 2 MOV data addr,R5
8E 2 MOV data addr,R8
8F 2 MOV data addr,R7
90 3 MOV code addr
91 2 ACALL code addr
92 2 MOV C,bit addr
93 1 MOVC @A +  DPTR
94 2 SUBB A, # data
95 2 SUBB data addr, # data
96 1 SUBB @ R0, # data
97 1 SUBB  @ R1, # data
98 1 SUBB R0, # data
99 1 SUBB R1, # data
9A 1 SUBB R2, # data
9B 1 SUBB R3, # data
9C 1 SUBB R4, # data
9D 1 SUBB R5, # data
9E 1 SUBB R8, # data
9F 1 SUBB R7, # data
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Appendix A - Intel 8031 INSTRUCTION SET

Instruction Opcodes in Hexadecimal Order (Continued)

Hex Code Number of Bytes Mnemonic Operands
A0 2 ORL C,/bit addr
A1 2 AJMP code addr
A2 2 MOV C,bit addr
A3 1 INC DPTR
A4 1 MUL AB
A5 reserved
A6 2 MOV @ R0,  data addr
A7 2 MOV  @ R1,  data addr
A8 2 MOV R0,  data addr
A9 2 MOV R1,  data addr
AA 2 MOV R2,  data addr
AB 2 MOV R3,  data addr
AC 2 MOV R4,  data addr
AD 2 MOV R5,  data addr
AE 2 MOV R6,  data addr
AF 2 MOV R7,  data addr
B0 2 ANL C,/bit addr
B1 2 ACALL code addr
B2 2 CPL bit addr
B3 1 CPL C
B4 3 CJNE A, # data, code addr
B5 3 CJNE A, data addr, code addr
B6 3 CJNE @ R0, # data, code addr
B7 3 CJNE  @ R1, # data, code addr
B8 3 CJNE R0, # data, code addr
B9 3 CJNE R1, # data, code addr
BA 3 CJNE R2, # data, code addr
BB 3 CJNE R3, # data, code addr
BC 3 CJNE R4, # data, code addr
BD 3 CJNE R5, # data, code addr
BE 3 CJNE R8, # data, code addr
BF 3 CJNE R7, # data, code addr
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Appendix A - Intel 8031 INSTRUCTION SET

Instruction Opcodes in Hexadecimal Order (Continued)

Hex Code Number of Bytes Mnemonic Operands
C0 2 PUSH data addr
C1 2 AJMP code addr
C2 2 CLR bit addr
C3 1 CLR C
C4 1 SWAP A
C5 2 XCH A, data addr
C6 1 XCH A,@ R0
C7 1 XCH  A,@ R1
C8 1 XCH A,R0
C9 1 XCH A,R1
CA 1 XCH A,R2
CB 1 XCH A,R3
CC 1 XCH A,R4
CD 1 XCH A,R5
CE 1 XCH A,R6
CF 1 XCH A,R7
D0 2 POP data addr
D1 2 ACALL code addr
D2 2 SETB bit addr
D3 1 SETB C
D4 1 DA A
D5 3 DJNZ data addr, code addr
D6 1 XCHD A,@ R0
D7 1 XCHD  A,@ R1
D8 2 DJNZ R0, code addr
D9 2 DJNZ R1, code addr
DA 2 DJNZ R2, code addr
DB 2 DJNZ R3, code addr
DC 2 DJNZ R4, code addr
DD 2 DJNZ R5, code addr
DE 2 DJNZ R6, code addr
DF 2 DJNZ R7, code addr
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Appendix A - Intel 8031 INSTRUCTION SET

Instruction Opcodes in Hexadecimal Order (Continued)

Hex Code Number of Bytes Mnemonic Operands
E0 1 MOVX A, @ DPTR
E1 2 AJMP code addr
E2 1 MOVX A, @ R0
E3 1 MOVX A, @ R1
E4 1 CLR A
E5 2 MOV A, data addr
E6 1 MOV A,@ R0
E7 1 MOV  A,@ R1
E8 1 MOV A,R0
E9 1 MOV A,R1
EA 1 MOV A,R2
EB 1 MOV A,R3
EC 1 MOV A,R4
ED 1 MOV A,R5
EE 1 MOV A,R6
EF 1 MOV A,R7
F0 1 MOVX code addr
F1 2 ACALL code addr
F2 1 MOVX C,bit addr
F3 1 MOVX @A +  DPTR
F4 1 CPL A, # data
F5 2 MOV data addr, A
F6 1 MOV @ R0, A
F7 1 MOV  @ R1, A
F8 1 MOV R0,A
F9 1 MOV R1,A
FA 1 MOV R2,A
FB 1 MOV R3,A
FC 1 MOV R4,A
FD 1 MOV R5,A
FE 1 MOV R6,A
FF 1 MOV R7,A
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Appendix B - Instruction Set Model Test Code

This following test program was used to test the Register 0 Register Addressing Mode.
Results from this test code are available in Appendix C.

Reg RTN Mnemonic Operands Op Code
Status

A = 01h A ← #01h MOV A, #01h 74 01
R0 = 1d R0 ←  A MOV 08, A F5 08
P1 = 1d P1 ← R0 MOV 90, R0 88 90

R0 = 2d INC R0 08
P1 = 2d P1 ← R0 MOV 90, R0 88 90

R0 = 1d DEC R0 18
P1 = 1d P1 ← R0 MOV 90, R0 88 90

A = 2d ADD A, R0 28
P1 = 2d P1 ← A MOV 90, A F5 90

C = 1 C  ← 1 SETB C D3
A = 4d A ← A + C + R0 ADDC A, R0 38
P1 = 4d P1 ← A MOV 90, A F5 90

A ← 5d ORL A, R0 48
P1 = 5d P1 ← A MOV 90, A F5 90

A ← 1d ANL A, R0 58
P1 = 1d P1 ← A MOV 90, A F5 90

A ← 00h XRL A, R0 68
P1 = 00h P1 ← A MOV 90, A F5 90

R0 ← 20h MOV R0, #20h 78 20
P1 = 20h P1 ← R0 MOV 90, R0 88 90
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Appendix B - Instruction Set Model Test Code

Reg RTN Mnemonic Operands Op Code
Status

A ← R0 MOV A, R0 E8
P1 = 20h P1 ← A MOV 90, A F5 90

R0 ← 0Bh MOV R0, #0Bh 78 0B
P1 = 0Bh P1 ← R0 MOV 90, R0 88 90

C ← 0 CLR C C3
C ← 1 SETB C D3
A ← A - C - R0 SUBB A, R0 98    

P1 = 14h P1 ← A MOV 90, A F5 90

R0 ← #22h MOV R0, #22h 78 22
B3 = 22h B3 ← R0 MOV B3, R0 88 B3

R0 ← #48h MOV R0, #48h 78 48
R0 ← B3 MOV R0, B3 A8 B3 

P1 = 22h P1 ← R0 MOV 90, R0 88 90

R0 = 01h R0 ← #01h MOV R0, #01h 78 01
DJNZ R0, 10h D8 10

R0 = 02h R0 ← #02h MOV R0, #02h 78 02
DJNZ R0, 10h D8 04

00 00
00 00

R0 = #48h R0 ← #48h MOV R0, #48h 78 48
CJNE R0, #48h B8 48 04 
CJNE R0, #50h B8 50 04

00 00
00 00

R0 = 03h R0 ← #03h MOV R0, #03h 78 03
A = 0Ch A ← 0Ch MOV A, 0Ch 74 0C

XCH A, R0 C8
P1 = 03h P1 ← A MOV 90, A F5 90
P1 = 0Ch P1 ← R0 MOV 90, R0 88 90
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Appendix B - Instruction Set Model Test Code

Reg RTN Mnemonic Operands Op Code
Status

R0 = #05h R0 ← #05h MOV R0, #05h 78 05
A = #09h A ← #09h MOV A, #09h 74 09

MOV A, R0 E8
P1 = 05h P1 ← A MOV 90, A F5 90

R0 = #02h R0 ← #02h MOV R0, #02h 78 02
A = #04h A ← #04h MOV A, #04h 74 04

MOV R0, A F8
P1 = 04h P1 ← R0 MOV 90, R0 88 90
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Appendix C - Instruction Set Model Simulation Results with Test Code

Reg RTN Mnemonic Operands Op Code
Status

A = 01h A ← #01h MOV A, #01h 74 01
R0 = 1d R0 ←  A MOV 08, A F5 08
P1 = 1d P1 ← R0 MOV 90, R0 88 90
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Appendix C - Instruction Set Model Simulation Results with Test Code

Reg RTN Mnemonic Operands Op Code
Status

R0 = 1d DEC R0 18
P1 = 1d P1 ← R0 MOV 90, R0 88 90
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Appendix C - Instruction Set Model Simulation Results with Test Code

Reg RTN Mnemonic Operands Op Code
Status

R0 = 2d INC R0 08
P1 = 2d P1 ← R0 MOV 90, R0 88 90
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Appendix C - Instruction Set Model Simulation Results with Test Code

Reg RTN Mnemonic Operands Op Code
Status

A = 2d ADD A, R0 28
P1 = 2d P1 ← A MOV 90, A F5 90
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Appendix C - Instruction Set Model Simulation Results with Test Code

Reg RTN Mnemonic Operands Op Code
Status

C = 1 C  ← 1 SETB C D3
A = 4d A ← A + C + R0 ADDC A, R0 38
P1 = 4d P1 ← A MOV 90, A F5 90
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Appendix C - Instruction Set Model Simulation Results with Test Code

Reg RTN Mnemonic Operands Op Code
Status

A ← 5d ORL A, R0 48
P1 = 5d P1 ← A MOV 90, A F5 90
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Appendix C - Instruction Set Model Simulation Results with Test Code

Reg RTN Mnemonic Operands Op Code
Status

A ← 1d ANL A, R0 58
P1 = 1d P1 ← A MOV 90, A F5 90
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Appendix C - Instruction Set Model Simulation Results with Test Code

Reg RTN Mnemonic Operands Op Code
Status

A ← 00h XRL A, R0 68
P1 = 00h P1 ← A MOV 90, A F5 90
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Appendix C - Instruction Set Model Simulation Results with Test Code

Reg RTN Mnemonic Operands Op Code
Status

R0 ← 20h MOV R0, #20h 78 20
P1 = 20h P1 ← R0 MOV 90, R0 88 90
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Appendix C - Instruction Set Model Simulation Results with Test Code

Reg RTN Mnemonic Operands Op Code
Status

A ← R0 MOV A, R0 E8
P1 = 20h P1 ← A MOV 90, A F5 90
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Appendix C - Instruction Set Model Simulation Results with Test Code

Reg RTN Mnemonic Operands Op Code
Status

R0 ← 0Bh MOV R0, #0Bh 78 0B
P1 = 0Bh P1 ← R0 MOV 90, R0 88 90
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Appendix C - Instruction Set Model Simulation Results with Test Code

Reg RTN Mnemonic Operands Op Code
Status

C ← 0 CLR C C3
C ← 1 SETB C D3
A ← A - C - R0 SUBB A, R0 98    

P1 = 14h P1 ← A MOV 90, A F5 90
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Appendix C - Instruction Set Model Simulation Results with Test Code

Reg RTN Mnemonic Operands Op Code
Status

R0 ← #22h MOV R0, #22h 78 22
B3 = 22h B3 ← R0 MOV B3, R0 88 B3

R0 ← #48h MOV R0, #48h 78 48
R0 ← B3 MOV R0, B3 A8 B3 

P1 = 22h P1 ← R0 MOV 90, R0 88 90
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Appendix C - Instruction Set Model Simulation Results with Test Code

Reg RTN Mnemonic Operands Op Code
Status

R0 = 01h R0 ← #01h MOV R0, #01h 78 01
DJNZ R0, 10h D8 10

R0 = 02h R0 ← #02h MOV R0, #02h 78 02
DJNZ R0, 10h D8 04
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Appendix C - Instruction Set Model Simulation Results with Test Code

Reg RTN Mnemonic Operands Op Code
Status

DJNZ R0, 10h D8 04
00 00
00 00

R0 = #48h R0 ← #48h MOV R0, #48h 78 48
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Appendix C - Instruction Set Model Simulation Results with Test Code

Reg RTN Mnemonic Operands Op Code
Status

R0 = #48h R0 ← #48h MOV R0, #48h 78 48
CJNE R0, #48h B8 48 04
CJNE R0, #50h B8 50 04
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Appendix C - Instruction Set Model Simulation Results with Test Code

Reg RTN Mnemonic Operands Op Code
Status

CJNE R0, #50h B8 50 04
00 00
00 00

R0 = 03h R0 ← #03h MOV R0, #03h 78 03
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Appendix C - Instruction Set Model Simulation Results with Test Code

Reg RTN Mnemonic Operands Op Code
Status

R0 = 03h R0 ← #03h MOV R0, #03h 78 03
A = 0Ch A ← 0Ch MOV A, 0Ch 74 0C

XCH A, R0 C8
P1 = 03h P1 ← A MOV 90, A F5 90
P1 = 0Ch P1 ← R0 MOV 90, R0 88 90
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Appendix C - Instruction Set Model Simulation Results with Test Code

Reg RTN Mnemonic Operands Op Code
Status

R0 = #05h R0 ← #05h MOV R0, #05h 78 05
A = #09h A ← #09h MOV A, #09h 74 09

MOV A, R0 E8
P1 = 05h P1 ← A MOV 90, A F5 90
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Appendix C - Instruction Set Model Simulation Results with Test Code

Reg RTN Mnemonic Operands Op Code
Status

R0 = #02h R0 ← #02h MOV R0, #02h 78 02
A = #04h A ← #04h MOV A, #04h 74 04

MOV R0, A F8
P1 = 04h P1 ← R0 MOV 90, R0 88 90
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Appendix D - Machine Cycle VHDL Code Example

library IEEE;1
use IEEE.std_logic_1164.all;2
use IEEE.std_logic_unsigned.all;3
--use IEEE.numeric_bit.all;4
--use std.textio.all;5

6
entity cpu8031 is7

port (8
P1: inout std_logic_vector(7 downto 0);9
RST: in std_logic;10
P3: inout std_logic_vector(7 downto 0);11
XTAL2: in std_logic;12
XTAL1: in std_logic;13
P0: inout std_logic_vector(7 downto 0);14
EAn: in std_logic;15
ALE: out std_logic;16
PSENn: out std_logic;17
P2: inout std_logic_vector(7 downto 0)18

);19
end cpu8031;20

21
architecture behavior of cpu8031 is22

23
type IntRAMtype is array (0 to 255) of24

std_logic_vector(7 downto 0);25
26

signal IntMem: IntRAMtype:= (others=>(others=> '0'));27
28

-- Upper Internal Memory29
alias Acc: std_logic_vector(7 downto 0) is IntMem(224);30
alias B: std_logic_vector(7 downto 0) is IntMem(240);31

32
alias TL0: std_logic_vector(7 downto 0) is IntMem(138);33
alias TL1: std_logic_vector(7 downto 0) is IntMem(139);34
alias TH0: std_logic_vector(7 downto 0) is IntMem(140);35
alias TH1: std_logic_vector(7 downto 0) is IntMem(141);36
alias R0: std_logic_vector(7 downto 0) is IntMem(8);37
alias R1: std_logic_vector(7 downto 0) is IntMem(9);38

39
40

alias IP: std_logic_vector(7 downto 0) is IntMem(219);41
alias IE: std_logic_vector(7 downto 0) is IntMem(168);42

43
alias SCON: std_logic_vector(7 downto 0) is IntMem(152);44
alias SBUF: std_logic_vector(7 downto 0) is IntMem(153);45
alias PCON: std_logic_vector(7 downto 0) is IntMem(135);46
alias TMOD: std_logic_vector(7 downto 0) is IntMem(137);47
alias TCON: std_logic_vector(7 downto 0) is IntMem(136);48
alias SP: std_logic_vector(7 downto 0) is IntMem(129);49
-- Stack Pointer50

51
52
53
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alias DPH: std_logic_vector(7 downto 0) is IntMem(131);54
-- Data Pointer High byte55

56
alias DPL: std_logic_vector(7 downto 0) is IntMem(130);57
-- Data Pointer Low byte58

59
alias PSW: std_logic_vector(7 downto 0) is IntMem(208);60
-- Program Status Word61

62
alias CY: std_logic is PSW(7); -- Carry Flag63
alias AC: std_logic is PSW(6); -- Auxiliary Carry Flag64
alias FO: std_logic is PSW(5); -- Flag 065
alias RS1: std_logic is PSW(4);66
-- Register Bank selector bit 167

68
alias RS0: std_logic is PSW(3);69
-- Register Bank selector bit 070

71
alias OV: std_logic is PSW(2); -- Overflow Flag72
alias UD: std_logic is PSW(1); -- User definable flag73
alias P: std_logic is PSW(0);74
-- Parity Flag, Parity of Accumulator75

76
alias Port0_Ram_Reg: std_logic_vector(7 downto 0) is77
IntMem(128);78

79
alias Port1_Ram_Reg: std_logic_vector(7 downto 0) is80
IntMem(144);81

82
alias Port2_Ram_Reg: std_logic_vector(7 downto 0) is83
IntMem(160);84

85
alias Port3_Ram_Reg: std_logic_vector(7 downto 0) is86
IntMem(176);87

88
89

alias R0RS00: std_logic_vector(7 downto 0) is IntMem(08);90
alias R1RS00: std_logic_vector(7 downto 0) is IntMem(09);91

92
93
94
95

type state_type is (reset, fetch, addr1, addr2, data,96
cycle8,cycle9,cycle10,97

98
M1T1_fetch1,99
M1T2_AleDrvHigh1,100
M1T3_PcOut1,101
M1T4_AleDrvLow1,102
M1T5_PsenDrvLow1,103
M1T6_Null1,104
M1T7_fetch2,105
M1T8_AleDrvHigh2,106
M1T9_PcOut2,107
M1T10_AleDrvLow2,108
M1T11_PsenDrvLow2,109
M1T12_Null2);110
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signal ST, nST: state_type;111
112
113

signal IR : std_logic_vector(7 downto 0) := (others=> '0');114
alias OP: std_logic_vector(3 downto 0) is IR(7 downto 4);115
alias mode: std_logic_vector(3 downto 0) is IR(3 downto 0);116

117
signal RAR: std_logic_vector(7 downto 0) := (others =>118
'Z'); -- Ram Address Register119

120
signal RARTemp: std_logic_vector(7 downto 0) := (others =>121
'Z'); -- Ram Address Register122

123
signal PC, PAR: std_logic_vector(15 downto 0);124

125
alias PCH : std_logic_vector(7 downto 0) is126
PC(15 downto 8);127
-- Program Counter High128

129
alias PCL : std_logic_vector(7 downto 0) is PC(7 downto 0);130
-- Program Counter Low131

132
alias PARH : std_logic_vector(7 downto 0) is133
PAR(15 downto 8);134
-- Program Address Register High135

136
alias PARL : std_logic_vector(7 downto 0) is137
PAR(7 downto 0);138
-- Program Address Register Low139

140
signal PCLtemp : std_logic_vector(7 downto 0);141
signal PCHtemp : std_logic_vector(7 downto 0);142

143
signal AluOutput : std_logic_vector(7 downto 0)144
:= "00000000";145

146
constant zero: std_logic_vector(7 downto 0) := "00000000";147

148
subtype ot is std_logic_vector(3 downto 0);149

150
-- upper 4 bits of opcode151

152
constant ADD: ot:= "0010";153
constant ADDC: ot:= "0011";154
constant INC: ot:= "0000";155
constant DEC: ot:= "0001";156
constant ANL: ot:= "0101";157
constant ORL: ot:= "0100";158
constant XRL: ot:= "0110";159
constant XCH: ot:= "1100";160
constant MOVR2A: ot:= "1110";161
constant MOVA2R: ot:= "1111";162
constant MOVIMM2R: ot:= "0111";163
constant MOVR2DIR: ot:= "1000";164
constant MOVDIR2R: ot:= "1010";165

166
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-- Register Addressing Operands167
168

constant INC_REG: ot:= "0000";169
constant DEC_REG: ot:= "0001";170
constant ADD_REG: ot:= "0010";171
constant ADDC_REG: ot:= "0011";172
constant ORL_REG: ot:= "0100";173
constant ANL_REG: ot:= "0101";174
constant XRL_REG: ot:= "0110";175
constant SUBB_REG: ot:= "1001";176
constant XCH_REG: ot:= "1100";177
constant DJNZ_REG: ot:= "1101";178
constant CJNE_REG: ot:= "1011";179
constant MOV_REG_A2R: ot:= "1110";180
constant MOV_REG_R2A: ot:= "1111";181
constant MOV_REG_IMM: ot:= "0111";182
constant MOV_DIR_REG: ot:= "1000";183
constant MOV_REG_DIR: ot:= "1010";184

185
-- Immediate Addressing Operands186

187
constant INC_IMM: ot := "0000"; -- Hex Code 04188
constant DEC_IMM: ot := "0001"; -- Hex Code 12189
constant ADD_IMM: ot := "0010"; -- Hex Code 24190
constant MOV_IMM: ot := "0111"; -- Hex Code 74191

192
-- Direct Addressing Operands;193

194
constant ADD_DIR: ot := "0010";195
constant MOV_DIR: ot := "1110";196
constant MOV_DIR_ACC: ot:= "1111";197
constant LJMP: ot := "0000";198
constant SETB: ot := "1101";199
-- Upper nibble for SETB opcode D3 HEX200
constant CLRB: ot := "1100";201

-- Upper nibble for CLR C opcode C3 HEX202
203

-- lower 4 bits of opcode204
205

constant IMM: ot := "0100"; -- Immediate Addressing206
207

constant DIR: ot := "0101"; -- Direct Addressing208
209

constant MM2: ot := "0010"; -- Mix and Match Set 2210
constant MM3: ot := "0011"; -- Mix and Match Set 3211

212
constant IND0: ot := "0110"; -- Indirect Addressing R0213
constant IND1: ot := "0111"; -- Indirect Addressing R1214

215
constant REG0: ot := "1000"; -- Register Addressing R0216
constant REG1: ot := "1001"; -- Register Addressing R1217
constant REG2: ot := "1010"; -- Register Addressing R2218
constant REG3: ot := "1011"; -- Register Addressing R3219
constant REG4: ot := "1100"; -- Register Addressing R4220
constant REG5: ot := "1101"; -- Register Addressing R5221
constant REG6: ot := "1110"; -- Register Addressing R6222
constant REG7: ot := "1111"; -- Register Addressing R7223

224
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signal Opcode,Tmp1,Tmp2: std_logic_vector(7 downto 0);225
226
227

type decode_type is array (0 to 15) of228
bit_vector(15 downto 0);229

230
signal opd : bit_vector(15 downto 0);231

232
constant decode: decode_type :=233
(X"0001", X"0002", X"0004", X"0008",X"0010", X"0020",234
X"0040", X"0080",235
X"0100", X"0200", X"0400", X"0800",X"1000", X"2000",236
X"4000", X"8000");237

238
-- Data Registers and Control Signals239

240
-- Data Registers241

242
signal shiftout, op1, op2: std_logic_vector(7 downto 0):=243
"00000000";244

245
signal alu9: std_logic_vector(8 downto 0);246

247
signal Cin : std_logic;248

249
signal Read2ndByte: bit := '0';250
signal Read3rdByte: bit := '0';251
signal Read4thByte: bit := '0';252

253
signal SecondByteDest: integer range 0 to 5 := 0;254

-- 0 = Discard255
-- 1 = Tmp1256
-- 2 = PCHtemp257
-- 3 = RAR258
-- 4 = PCLtemp -- for DJNZ code259
-- 5 = Tmp2260

261
signal ThirdByteDest: integer range 0 to 2 := 0;262

-- 0 = Discard263
-- 1 = Tmp1264
-- 2 = PCLtemp265

266
signal FourthByteDest: integer range 0 to 3 := 0;267

-- 0 = Discard268
-- 1 = Tmp1269
-- 2 = PCLtemp270
-- 3 = RAR271

signal MCycleLength: integer range 1 to 4 := 1;272
-- 1 = 1 Machine Cycle273
-- 2 = 2 Machine Cycles274
-- 4 = 4 Machine Cycles275

276
signal CycNum : integer := 0;277

278
signal ChangeRAR : std_logic := '0';279
-- this Rar Change sig is checked in M1T3280

281
282
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signal ChangeRAr2 :std_logic := '0';283
-- this Rar Change sig is checked in M2T3284

285
signal incPCxNO : std_logic := '0';286
signal incPCx2 :std_logic := '0';287
signal incPCx3 :std_logic := '0';288
signal incPCx4 :std_logic := '0';289
signal PCtemps2PC :std_logic := '0';290

291
signal M1T1incPCxNO : std_logic := '0';292
signal M1T1incPCx2 :std_logic := '0';293
signal M1T1incPCx3 :std_logic := '0';294
signal M1T1incPCx4 :std_logic := '0';295
signal M1T1PCtemps2PC :std_logic := '0';296

297
signal M1T7incPCxNO : std_logic := '0';298
signal M1T7incPCx2 :std_logic := '0';299
signal M1T7incPCx3 :std_logic := '0';300
signal M1T7incPCx4 :std_logic := '0';301
signal M1T7PCtemps2PC :std_logic := '0';302

303
signal M2T1incPCxNO : std_logic := '0';304
signal M2T1incPCx2 :std_logic := '0';305
signal M2T1incPCx3 :std_logic := '0';306
signal M2T1incPCx4 :std_logic := '0';307
signal M2T1PCtemps2PC :std_logic := '0';308

309
signal M2T7incPCxNO : std_logic := '0';310
signal M2T7incPCx2 :std_logic := '0';311
signal M2T7incPCx3 :std_logic := '0';312
signal M2T7incPCx4 :std_logic := '0';313
signal M2T7PCtemps2PC :std_logic := '0';314

315
signal M2T7addPCxRel :std_logic := '0';316

317
signal AccRamWrite : std_logic := '0';318
signal RamReadTmp1 : std_logic := '0';319
signal RamWrite : std_logic := '0';320
signal RamWrite2 : std_logic := '0';321
-- This Ram Write signal will be for 2 Cycle322
-- instructions that need to write to the RAM323

324
signal Updating_Port1_Driver : std_logic := '0';325
signal Port1_Driver_NeedsUpdate : std_logic := '0';326
signal SetCarry : std_logic := '0';327
signal ClearCarry : std_logic := '0';328

329
signal CurrentAluOutputNotZero : std_logic := '0';330
signal UseRelOffset: std_logic := '0';331

332
constant hi_Z8 : std_logic_vector(7 downto 0) :=333
(others => 'Z');334
constant hi_Z16 : std_logic_vector(15 downto 0) :=335
(others => 'Z');336

337
338
339
340
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------------------------------------------------------341
-- Begin Finite State Machine, i.e. CPU_Cycle Process342
------------------------------------------------------343

344
CPU_Cycles: process345

346
variable reg_mem : Boolean;347

348
variable CurrentInstLength: integer := 0;349

350
begin351

352
wait until XTAL2 = '0' and XTAL2'event;353

354
355

if ((mode = IMM) or (mode = DIR) or (mode = REG0) or (mode =356
REG1) or (mode = IND0)357

or (mode = IND1)) then358
359

reg_mem:= true;360
361

else362
363

reg_mem:= false;364
365

end if;366
367
368

if(RST = '1' ) then ST <= reset;369
370

else371
372

case ST is373
374

-----------375
-- RESET --376
-----------377

378
when reset =>379

380
ST <= cycle8;381

382
------------------------------383
--384
---- Machine Cycle 1385
--386
------------------------------387

388
when M1T1_fetch1 => -- Machine Cycle 1, T Cycle 1389

390
if RamWrite = '1' then391

report "Writing to Ram";392
IntMem(CONV_INTEGER(RAR)) <= AluOutput;393

end if;394
395
396

if Port1_Driver_NeedsUpdate = '1' then397
398
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P1 <= Port1_Ram_Reg;399
end if;400

401
-----------------402
-- Special increments for the PC403
-----------------404

405
if M1T1incPCx2 = '1' then406

407
PC <= PC + 2; -- Increment PC by 2408
report "Incrementing the PC by 2";409

410
elsif M1T1incPCx3 = '1' then411

412
PC <= PC + 3; -- Increment PC by 3413
report "Incrementing the PC by 3";414

415
elsif M1T1incPCx4 = '1' then416

417
PC <= PC + 4; -- Increment PC by 4418
report "Incrementing the PC by 4";419

420
elsif M1T1PCtemps2PC = '1' then421

422
423

PCH <= PCHtemp;424
PCL <= PCLtemp;425
report "Setting PC to Coded Value";426

427
else428

429
PC <= PC + 1; -- Increment PC by 1430
report "incremening PC by 1";431

end if;432
433

----------------434
--End Special PC Incrementing435
----------------436

437
IR <= P0; -- Send Instruction to Instruction438

Register439
440

ST <= M1T2_AleDrvHigh1;441
442

when M1T2_AleDrvHigh1 => -- Machine Cycle 1, T Cycle 2443
444

report "Current Stat is M1T2 / ";445
446

if Updating_Port1_Driver <= '1' then447
Updating_Port1_Driver <= '0';448

end if;449
450

PAR <= PC;451
-- Move PC Value to Program Address Register452

453
ALE <= '1';454
-- Set Address Latch Enable High455

456
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PSENn <= '1';457
-- Set Program Store Enable High458

459
ST <= M1T3_PcOut1;460

461
462

when M1T3_PcOut1 => -- Machine Cycle 1, T Cycle 3463
464

if ChangeRAR = '1' then465
RAR <= RARTemp;466

end if;467
468

P0 <= PARL;469
-- Move the Lower byte of PAR to Port 0470

471
P2 <= PARH;472
-- Move the Higher byte of PAR to Port 2473

474
ST <= M1T4_AleDrvLow1;475

476
when M1T4_AleDrvLow1 =>477

-- Machine Cycle 1, T Cycle 4478
479

ALE <= '0';480
-- Set Address Latch Enable Low481

482
ST <= M1T5_PsenDrvLow1;483

484
485

when M1T5_PsenDrvLow1 => -- Machine Cycle 1, T Cycle 5486
487

P0 <= hi_Z8; -- Drive Port 0 to Z state488
PSENn <= '0';489

490
ST <= M1T6_Null1;491

492
when M1T6_Null1 => -- Machine Cycle 1, T Cycle 6493

494
if SetCarry = '1' then495

CY <= '1';496
end if;497

498
if ClearCarry = '1' then499

CY <= '0';500
end if;501

502
ST <= M1T7_fetch2;503

504
when M1T7_fetch2 => -- Machine Cycle 1, T Cycle 7505

506
If SecondByteDest = 0 then507

508
report"Discard Current Byte";509

510
elsif SecondByteDest = 1 then511

512
Tmp1 <= P0;513

514
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report " Second Byte Destination is Tmp1";515
516
517

elsif SecondByteDest = 2 then518
519

PCHtemp <= P0;520
521

report "Second Byte Destination is PCH temp";522
523
524

elsif SecondByteDest = 3 then525
526

RAR <= P0;527
528

report "Second Byte Destination is RAR";529
530
531

elsif SecondByteDest = 4 then532
533

report "Second Byte Destination is PCL temp";534
535

PCLtemp <= P0;536
537

elsif SecondByteDest = 5 then538
539

report "Secondbyte Destination is Tmp2 ";540
541

Tmp2 <= P0;542
543

end if;544
545

-----------------546
-- Special increments for the PC547
-----------------548

549
if M1T7incPCxNO = '1' then550

report "Not incrementing PC";551
552

elsif M1T7incPCx2 = '1' then553
554

PC <= PC + 2; -- Increment PC by 2555
report "Incrementing the PC by 2";556

557
elsif M1T7incPCx3 = '1' then558

559
PC <= PC + 3; -- Increment PC by 3560
report "Incrementing the PC by 3";561

562
elsif M1T7incPCx4 = '1' then563

564
PC <= PC + 4; -- Increment PC by 4565
report "Incrementing the PC by 4";566

567
elsif M1T7PCtemps2PC = '1' then568

569
570

PCH <= PCHtemp;571
PCL <= PCLtemp;572
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report "Setting PC to Coded Value";573
574

else575
576

PC <= PC + 1; -- Increment PC by 1577
report "Incrementing PC by 1";578

579
end if;580

581
------------------582
----End Special PC Incrementing583
------------------584

585
ST <= M1T8_AleDrvHigh2;586

587
when M1T8_AleDrvHigh2 => -- Machine Cycle 1, T Cycle 8588

589
590

PAR <= PC;591
-- Move Program Counter to Program Address Register592

593
ALE <= '1';594
-- Set Address Latch Enable High595

596
PSENn <= '1';597

598
ST <= M1T9_PcOut2;599

600
when M1T9_PcOut2 => -- Machine Cycle 1, T Cycle 9601

602
P0 <= PARL;603
-- Move the Lower byte of PAR to Port 0604

605
P2 <= PARH;606

607
ST <= M1T10_AleDrvLow2;608

609
when M1T10_AleDrvLow2 => -- Machine Cycle 1, T Cycle 10610

611
ALE <= '0';612
ST <= M1T11_PsenDrvLow2;613

614
when M1T11_PsenDrvLow2 => -- Machine Cycle 1, T Cycle 11615

616
P0 <= hi_Z8; -- Drive Port 0 to Z state617
ST <= M1T12_Null2;618
PSENn <= '0';619

620
if RamReadTmp1 = '1' then621

report "Attempting RamReadTmp1";622
Tmp1 <= IntMem(CONV_INTEGER(RAR));623

end if;624
625

if AccRamWrite = '1' then626
report "Attemping AccRamWrite";627
IntMem(CONV_INTEGER(RAR)) <= Acc;628

end if;629
630
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when M1T12_Null2 => -- Machine Cycle 1, T Cycle 12631
632

if reg_mem then633
634

report "Attemping ALU_OP Call";635
636

ALU_OP(Tmp1,Tmp2,Acc,AluOutput,CY,UseRelOffset);637
638

end if;639
640

IR <= "00000000"; -- Reset IR641
642

if MCycleLength = 2 then643
-- if the current opcode is a 2 cycle644
-- instruction then go into M2645

646
ST <= M2T1_fetch1;647
report" transitioning to M2T1_fetch";648

else649
650

ST <= M1T1_fetch1;651
report "transitioning to M1T1_fetch";652

end if;653
654

--------------------------------------------655
-- End Machine Cycle 1656
--------------------------------------------657

658
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Appendix E - Decoder Process VHDL Example Code

--------------------------------------------------------1
--2
-- Opcode Decode Process3
--4
--------------------------------------------------------5

6
OpcodeDecode: process(ST)7

8
begin9

10
case ST is11

when M1T1_fetch1 =>12
13

MCycleLength <= 1; -- Reset the Current Machine Cycle14
AccRamWrite <= '0'; -- Reset AccRamWrite flag15
incPCxNO <= '0';16

17
when M1T3_PcOut1 =>18

19
M1T1incPCxNO <= '0';20
M1T1incPCx2 <= '0';21
M1T1incPCx3 <= '0';22
M1T1incPCx4 <= '0';23
M1T1PCtemps2PC <= '0';24

25
when M1T5_PsenDrvLow1 => -- Machine Cycle 1, T Cycle 526

27
ChangeRAR <= '0';28

29
when M1T9_Pcout2 =>30

31
M1T7incPCxNO <= '0';32
M1T7incPCx2 <= '0';33
M1T7incPCx3 <= '0';34
M1T7incPCx4 <= '0';35
M1T7PCtemps2PC <= '0';36

37
when M1T12_Null2 =>38

39
SecondByteDest <= 0;40
Read2ndByte <= '0';41
RamReadTmp1 <= '0';42

43
-- Reset Ram Read to Temp 1 register44

45
SetCarry <= '0';46
-- Reset Set the Carry Bit Signal47

48
ClearCarry <= '0';49
-- Clear Clear the Carry Bit Signal50

51
when M2T2_AleDrvHigh1 =>52

53
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SecondByteDest <= 0;54
incPCxNO <= '0';55

56
when M2T3_PcOut1 =>57

58
M2T1incPCxNO <= '0';59
M2T1incPCx2 <= '0';60
M2T1incPCx3 <= '0';61
M2T1incPCx4 <= '0';62
M2T1PCtemps2PC <= '0';63

64
when M2T5_PsenDrvLow1 =>65

66
ChangeRAR2 <= '0';67

68
when M2T9_PcOut2 =>69

70
M2T7incPCxNO <= '0';71
M2T7incPCx2 <= '0';72
M2T7incPCx3 <= '0';73
M2T7incPCx4 <= '0';74
M2T7PCtemps2PC <= '0';75
M2T7addPCxRel <= '0';76

77
when M2T12_Null2 =>78

79
PCtemps2PC <= '0';80
-- Turns off the Special PC Incrementation81

82
ThirdByteDest <= 0;83
FourthByteDest <= 0;84
RamWrite <= '0'85
RamWrite2 <= '0';86

87
----------------------------88
-- Decoding Instructions ---89
----------------------------90

91
when M1T2_AleDrvHigh1 =>92

93
case MODE is94

95
when IMM =>96

97
case OP is98

99
when ADD_IMM | MOV_IMM =>100

101
report "/\***/\ Decoding an102
Immediate ADD or MOV /\***/\103
";104

105
-- Instruction type, 2 Byte106
Read2ndByte <= '1';107

108
-- Read Next Byte109

110
SecondByteDest <= 1;111
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112
-- Move Data Byte 2113
--Tmp1114

115
MCycleLength <= 1;116

117
when others => null;118

119
end case; -- End Case OP120

121
when MM2=>122

123
case OP is124

125
when LJMP =>126

127
report "/\***/\ Processing128
Long Jump Instruction /\***/\129
";130

131
Read2ndByte <= '1';132
-- 1 is True133

134
Read3rdByte <= '1';135
Read4thByte <= '0';136

137
SecondByteDest <= 2;138
-- 2 = PCHtemp139

140
ThirdByteDest <= 2;141
-- 2 = PCLtemp142

143
M2T7PCtemps2PC <= '1' ;144
-- This Causes the PC to be145
-- set to a coded value146

147
M2T1incPCxNO <= '1';148

149
MCycleLength <= 2;150

151
152

when others => null;153
154

end case;155
-- End case OP--156

157
when MM3 =>158

159
case OP is160

161
when SETB =>162

163
report "/\***/\ Processing164
Set Carry Instruction /\***/\165
";166

167
Read2ndByte <= '0';168
-- 1 is True169
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170
SecondByteDest <= 0;171
-- 2 = PCHtemp172

173
MCycleLength <= 1;174

175
SetCarry <= '1';176

177
M1T7incPCxNO <= '1';178

179
when CLRB =>180

181
182

report "/\***/\ Processing183
Clear Carry Instruction184
/\***/\ ";185

186
Read2ndByte <= '0';187
-- 1 is True188

189
SecondByteDest <= 0;190
-- 2 = PCHtemp191

192
MCycleLength <= 1;193

194
ClearCarry <= '1';195

196
M1T7incPCxNO <= '1';197

198
when others => null;199

200
end case;201

202
when REG0 => -- REGISTER 0 <----------203

204
case OP is205

206
when ADD_REG =>207

208
report"/\***/\ Decoding209
Register 0 Addition /\***/\210
";211

Read2ndByte <= '0';212
-- Don't Read Next Byte213

214
SecondByteDest <= 0;215
-- Discard Byte216

217
M1T7incPCxNO <= '1';218

219
RARTemp <= "000"& RS1 & RS0 &220
IR(2 downto 0);221

222
ChangeRAR <= '1';223
RamReadTmp1 <= '1';224
MCycleLength <= 1;225

226
when others => null;227
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228
end case;229

230
when others => null;231

232
end case;233

234
end process OpcodeDecode;235

236
--------------------------------------------------------237
--238
-- End Opcode Decode Process239
--240
----------------------------------------------------241
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Appendix F - ALU_OP Procedure Example Code

-----------------1
--2
-- ALU_OP Procedure3
--4
-----------------5

6
procedure ALU_OP(Tmp1 : in std_logic_vector(7 downto 0);7

Tmp2 : in std_logic_vector(7 downto 0);8
signal A: inout std_logic_vector(7 downto 0);9
signal RegResult: inout std_logic_vector(710

downto 0);11
signal CY: inout std_logic;12
signal UseRelOffset: out std_logic) is13

14
-- A is Accumulator15
-- RegResult is ALU Output reg16
-- Cy is Carry bit17

18
variable res: std_logic_vector(8 downto 0); -- result of ALU19
operation20
variable temp: std_logic_vector(8 downto 0);21
variable updateCY : Boolean := True; -- update CY flag by22
default23

24
begin25

UseRelOffset <= '0';26
27

case OP is28
29

-- Covers Immediate Add and Register ADD30
when ADD => res := ('0'&A) + ('0'&Tmp1);31

A <= res(7 downto 0); --32
when others => updateCY := FALSE;33

end case;34
35

end ALU_O36
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