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Abstract. This paper describes a method for rapid location and characterization 
of objects in 2D images. It derives optimizing parameters of a normalized 
Gaussian that best approximates the observed object, simultaneously finding the 
object location in the observed scene. A similarity measure to this optimized 
Gaussian is used to characterize the object. Optimization process has global and 
exponentially fast convergence, thus it can be used to implement saccadic mo-
tion for object recognition and scene analysis. This method was inspired by Per-
lovsky’s work on neural dynamic logic used for fast location, characterization, 
and identification of objects. Developed method was tested and illustrated with 
an example of an object location and characterization.  
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1 Introduction 

This paper addresses an important problem of visual object recognition. Koch argues 
that while it is possible to imagine the algorithms that could perform object identifica-
tion and recognition at a specific location, it is difficult to think of such parallel algo-
rithm in which object recognition takes place in the entire field of vision [1]. Such 
algorithm would face tremendous computational complexity. Koch’s work shows that 
the visual information is processed in a sequence of operations; each one identifies an 
object at a specific location, while early preprocessing stage may be performed in 
parallel on the entire image. 

Poggio developed computational vision approach to image recognition and under-
standing [2]. A computational vision system assembles scene description from the 
input image in which early vision modules extract various features of the observed 
image like edges, color, texture, size, direction of motion etc. Poggio’s computational 
vision system strived to match performance of human visual system in fast feedfor-
ward object categorization. He assumed that such system will perform mostly feed-
forward parallel operations for high speed processing.  

Subsequently, Poggio and his coworkers introduced a set of higher level features 
for object recognition [3]. These features were obtained from simple features (like 
edge detectors) combined into complex cells capable of detecting edges in the cell 
neighborhood, independently on their location and orientation. In [4] authors show 
that using a hierarchy of feature extraction circuits involving simple and complex 
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cells (similar to those observed by Hubel and Wiesel in research on ganglion cells in 
early vision) they can match human performance in a simple animal vs. non-animal 
categorization task. In a similar work, authors developed a tool for visual recognition 
of complex scenes [5].  

Hierarchical organization of an object features and their assemblies is a foundation 
of the visual saccades based object representation, memory organization and recogni-
tion presented in this work. The work reduces tremendous computational complexity 
indicated by Koch while preserving flexibility in resolution level, scale and rotation of 
the original object image. The system is compatible with visual memory organization 
that can use higher order visual features extracted from simple or complex cells ob-
tained from self-organizing feedforward neural networks in the visual input. 

Section 2 presents the concept of visual saccades and visual attention. Section 3 
describes finding characteristic features that represent an object or its parts using the 
most similar Gaussian distribution. Section 4 shows an example of object location and 
characterization. Section 5 contains conclusions and future work. 

2 Visual Perception 

2.1 Visual Saccades 

A visual saccade is a fast movement of an eye, head or of an optical device. It is in-
itiated either consciously or subconsciously, and serves as a mechanism for focusing 
the visual attention on an object or its part [6]. Saccades are used to locate interesting 
parts of the observed scene in order to recognize the observed objects and build a 
representation of the observed scene. Saccades are very rapid and end with the gaze 
fixated on a selected spot. Additional advantage of the saccadic movement is to apply 
full resolution of the central part of the retina to the observed scene fragment in order 
to help recognize the observed object. This leads to a better use of the computational 
resources, improves the processing speed, and increases the recognition accuracy. 

Saccadic movements are used to repeatedly revisit the same locations with a high 
saliency while reconstructing the whole scene. This is particularly useful at the object 
recognition stage. Once a mental image of the familiar object was made, it may serve 
as a reference for object recognition. Gradually the observed object and its features 
are inspected and compared to the internal image model with the best matching model 
selected for object recognition. Focus of attention associated with visual saccade  
improves recognition, and provides accurate information about the object location [7].  

Features that were used to build such mental image are recalled and are used as 
guidelines for conscious saccades, to either confirm individual expected details of the 
model, or are basis for rejection of the inspected image if the observed image does not 
match with the expectations [8]. In this later case the observed object is considered 
unknown and a new model may be introduced and stored in the semantic memory. 

2.2 Visual Attention 

Visually salient features (like brightness, movement, color, etc) are used to attract the 
visual attention. The visual attention supports efficient management of computing 
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resources, reducing time cost and performing different visual tasks in a normal, clut-
tered and dynamic environment. It is used in the object recognition in coordination 
with the object model stored in the semantic memory. 

Attention was considered as a mechanism for binding of distributed activations in 
response to presented stimuli [9]. It is a sequential mechanism used to select one of 
possibly many elements of the scene. Attention is used to temporarily suppress stimuli 
that do not belong to the object in attention focus, activating those that are correlated 
with the object of attention. The mechanism of temporal binding provided by atten-
tion may be used to quickly provide connections necessary to bind the activated 
groups of neurons forming long lasting memories. 

Selective visual attention, linked to visual saccades, is needed to recognize objects 
and to understand a complex scene. The question is which part of the observed scene 
should be focused on, or how can we know where to look for objects we want to rec-
ognize? This task can be accomplished by evaluating saliency of various parts of the 
observed scene, concentrating attention on the most salient regions. After the winning 
region is inhibited, the next most prominent salient location is automatically selected 
through the same mechanism. However, it was determined that saliency is not the 
only factor for visual attention focus and that a significant portion of visual saccades 
is affected by associations between the observed artifacts [10]. 

For fast location and better identification of observed objects, attentional selection 
of objects was used in [11]. An interesting part of the image was selected using bot-
tom-up attention based on salient features, to provide object location, and subsequent-
ly, an object was recognized using grouping based on segmentation. Thus both salient 
and homogeneous areas were used to locate and identify the object. Attentional mod-
ulation of neural activity helps to recognize object in a clattered scene [12].  

Since computers process images performing sequential operations, then bottom-up 
attention algorithms limit the processing effort to analyze selected locations in the 
image. Koch and Itti have built a complex model of saliency-based spatial attention 
[13]. In their model a Winner-Take-All (WTA) neural network selects a location 
based on the saliency map to shift the visual attention to the selected spot, and to ex-
amine the image in the selected location. 

Tsotsos et al. [14] used inhibition of the examined areas in order to perform atten-
tional based selection and to obtain a selective tuning model of the observed object or 
scene. He used a top-down WTA attentional selection, with inhibition used for 
switching attention to the next salient feature.  

Clark et al. [15] proposed a model where each task-specific feature detector is  
associated with a weight representing the relative importance of the particular feature 
to the current task. Also in his model, WTA operations are used on the saliency map 
to direct and switch spatial attention (triggering visual saccades). He used color and 
stereo vision to for attention focus and figure/ground separation. 

Grossberg developed adaptive resonance theory (ART) to perform attention based 
perceptual grouping [16]. He proposed how a machine can learn new objects and 
events without forgetting those that were previously learned. He also suggested how 
bottom-up and top-down pathways can be used to focus attention on expected combi-
nations of input features. ART also determines the level of mismatch between bottom-
up feature patterns and top-down expectations to trigger memory search, or hypothe-
sis testing, for recognition of objects and categories. 
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In [17] a hierarchical object-based computational model of visual attention was 
presented. This model combines object-based with visual saliency based model of 
visual attention [18] and uses bottom-up and top-down interaction [19,20]. The model 
integrates object and location based attention with visual representations of features. 
Top down attention provides priming to search for the expected features. 

3 Feature Selection 

Fitting models to data typically requires selecting parameters corresponding to vari-
ous models. However, the number of useful subsets of model parameters is combina-
torially large. Thus model-based approaches encountered computational complexity 
and required treatments of NP complete algorithms. This problem was addressed by 
Perlovsky [21,22] where he described computational mechanism of going “from va-
gue-fuzzy to crisp,” that he called the dynamic logic.  

In fast location, characterization and identification of objects using neural dynamic 
logic an important aspect is fast alignment of the object and its model. However,  
direct application of the dynamic logic needs a quick estimation of log-similarity 
between the image and the model. While this can be easily done for special cases (like 
matching two Gaussian functions), in general no constructive algorithm was pro-
posed, and computational complexity similarity estimation is unknown. 

An object may have a complex hierarchical structure of its visual features. Such 
features can be extracted and recognized using various methods. Representation of 
objects in the memory, which allow for recognition of objects irrespectively of the 
different viewing distance, direction, and other conditions, can be obtained using 
visual features descriptors generated with the SURF (Speeded Up Robust Feature) 
method [23]. 

In this paper I introduce a new approach which combines Perlovsky’s concept of 
finding proper parameters to represent the object with the idea of saccading move-
ment and attention switching for fast alignment of the object and its model. This will 
yield object representation and will help recognition of objects and visual scenes.  

Saccadic movement is obtained through rapid finding of object location, orienta-
tion and scale on 2D image plane. In this work a two-step approach is used. First, 
each object in the semantic memory is characterized by its best matching Gaussian 
model, and then Gaussian functions are used to quickly locate and characterize the 
image objects. Memory objects are compared with the observed images after proper 
rotation and scale. In such approach, derivative information needed to find an opti-
mum alignment is easily obtained by combining the observed image with properties 
of Gaussian function. 

3.1 Finding the Most Similar Gaussian Distribution 

We will characterize and locate objects in 2D image plane using square root of the 
normalized Gaussian (based on multivariate normal distribution) ݂ሺݔ, ,ߤ Σሻ ൌ ଵටଶగඥୢୣ୲ ሺஊሻ ݁ିሺೣ షഋሻ ಂషభሺೣ షഋሻర .   (1) 
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where ݔ ൌ ሾݔଵ, ,ଶሿݔ ߤ ൌ ሾ ߤଵ, ଶሿ, and Σߤ  is 2x2 covariance matrix. Parameters ݔ, ,ߤ and Σ are chosen to maximize similarity S to the target function computed as the 
normalized inner product between Gaussian and the target function  Sሺߤ, Σ, ߶ሻ ൌ  ݂ሺݔ, ,ߤ σሻ Ԅሺݔሻ dx ൌ ሺ௫,ఓ,ሻכமሺ௫ሻԡሺ௫,ఓ,ሻԡԡமሺ௫ሻԡஶିஶ .            (2) 

To find the optimum values of µ and Σ we need to calculate derivatives 
பSሺఓ,ஊ,୷ഥሻபµ  

and 
பSሺఓ,ஊ,୷ഥሻபஊ  and set them to zero. First let us find  ∂fሺݔ, ,ߤ Σሻ∂µ ൌ fሺݔ, ,ߤ Σሻ כ ൭െ 14 ∂∂µ ቀtr൫Σିଵ כ ሺݔ – ሻTߤ כ ሺݔ – ሻ൯ቁ൱ ൌߤ fሺݔ, ,ߤ Σሻ כ ቀെ ଵସ ൫ݔ – ൯ߤ כ Σିଵቁ   (3) 

where tr(A) is trace of a square matrix A ൌ ൣa୧୨൧, trሺAሻ ൌ ∑ a୧୧୧ . After normalizing 
both Gaussian and target functions we have: Sሺߤ, Σ, ߶ሻ ൌ ݂ҧሺݔ, ,ߤ Σሻ כ yതሺݔሻ ൌ ∑ ݂ҧሺݔ, ,ߤ Σሻ כ yതሺݔሻ          (4) 

and derivative of the similarity function is set to 0 to find the optimum value ߤ. பSሺఓ,ஊ,୷ഥሻபµ ൌ பҧሺ௫,ఓ,ஊሻכ୷ഥபµ ൌ ∑ ݂ҧሺݔሻ כ yത כ  ቀെ ଵସ ൫ݔ – ൯ߤ כ Σିଵቁ ൌ 0 . (5) 

 
Solving for the optimum values of µ we get: µ ൌ ∑ ҧሺ௫,ఓబ,ஊబሻכ୷ഥכ௫∑ ҧሺ௫,ఓబ,ஊబሻכ୷ഥ ,         (6) 

where ݔ  is a 2D coordinate vector ݔ ൌ ሾݔଵ, ,ሻݔଶሿ, and ݂ҧሺݔ  and yത  are scalar 
Gaussian and target function values at ݔ. In addition from ∂fሺݔ, ,ߤ Σሻ∂Σିଵ ൌ fሺݔ, ,ߤ Σሻ כ ቆ 14 כ detሺΣିଵሻ כ ∂detሺΣିଵሻ∂Σିଵ ቇ 

fሺݔ, ,ߤ Σሻ כ ∂ ቆെ 14 tr൫Σିଵ כ ሺݔ – ሻTߤ כ ሺݔ – ሻ൯ቇ∂Σିଵߤ  ൌ  fሺݔ, ,ߤ Σሻ כ ቆஊTସ െ ଵସ ൫ݔ – ൯Tߤ כ ൫ݔ –  ൯ቇ    (7)ߤ

where we used  ∂detሺΣିଵሻ∂Σିଵ ൌ detሺΣିଵሻ כ ΣT, 
we have ∂Sሺߤ, Σ, yതሻ∂Σିଵ ൌ ∂݂ҧሺݔ, ,ߤ Σሻ כ yത∂Σିଵ  
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ൌ ଵସ ∑ ݂ҧሺݔሻ כ yത כ  ቆΣT െ ൫ݔ – ൯Tߤ כ ൫ݔ – ൯ቇߤ ൌ 0    (8) 

Using (6) and (8) ߤ ܽnd Σ can be iteratively updated and the convergence is very 
fast. We will obtain 

µ ൌ ቂµଵµଶቃ ൌ ∑ ҧሺ௫,ఓబ,ஊబሻכ୷ഥכ௫భ∑ ҧሺ௫,ఓబ,ஊబሻכ୷ഥ∑ ҧሺ௫,ఓబ,ஊబሻכ୷ഥכ௫మ∑ ҧሺ௫,ఓబ,ஊబሻכ୷ഥ
,       (9) 

and Σ ൌ ቂeଵଵ eଵଶeଶଵ eଶଶቃ    

ൌ 1∑ ప݂ഥ כ yത ێێێۏ
ۍ  ప݂ഥ כ ሺݔଵ െ µଵሻଶ כ yത  ప݂ഥ כ ሺݔଵ െ µଵሻ כ ሺݔଶ െ µଶሻ כ yത ప݂ഥ כ ሺݔଵ െ µଵሻ כ ሺݔଶ െ µଶሻ כ yത  ప݂ഥ כ ሺݔଶ െ µଶሻଶ כ yത ۑۑۑے

ې
 

  (10) 
where for simplicity  

݂ ൌ ݂ҧሺݔ, ,ߤ Σሻ             (11) 

Assume that the set of points that represent a 2D object were rotated by Ԃ. In addi-
tion, if we scale the object in x and y directions by scaling factors λଵ and λଶ and 
translate it by shifting all the object points on the plane by vector a, we can represent 
a linear transformation of all points as: Ax  a ൌ R כ Λ כ x  a ൌ cosሺԂሻ െsinሺԂሻsinሺԂሻ cosሺԂሻ ൨ כ λଵ 00 λଶ൨ כ x  a     (12) 

Using properties of the covariance matrix we have for a matrix A and a vector a: ΣሺAx  aሻ ൌ ݔܣሺݒܿ  ܽሻ ൌ ܣ כ Σሺxሻ כ AT  (13) 

Using (13) it is easy to obtain covariance of the translated, rotated and scaled set of 
points.  

To characterize and object we will first need to find Σ and ߤ of the transformed 
Gaussian, that maximizes similarity S described by (2). This corresponds to finding 
the rotation matrix R, scale matrix Λ and mean values µ. 

From (12) we have the covariance matrix: ΣG ൌ ܣ כ Σ כ AT ൌ R כ Λ כ ΛT כ RT ൌ R כ ቈλGଵଶ 00 λGଶଶ  כ RT        (14) 

Using diagonalization of a matrix ΣG we can get  ΛG ൌ ቈλGଵଶ 00 λGଶଶ  ൌ Xିଵ כ ΣG כ X          (15) 
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where X is the matrix with eigenvectors of ΣG as column of X and λGଵଶ and λGଶଶ  are 
equal to eigenvalues of ΣG. Thus the scale factors in y and x directions λGଵ and λGଶ 
can be obtained from (15). In addition, the rotation matrix RG ൌ Xିଵ .  

3.2 Fitting Gaussian Function 

Fitting Gaussian function is used to characterize the object and to find its location. 
This is a quickly convergent iterative process and it is a part of object characterization 
and location procedures. Fitting Gaussian function it is performed by the following 
algorithm.  

 
Fitting Gaussian Function Algorithm:  

1. Start with the initial value for ߤ ൌ ቂቚ୶భౣ౮ି୶భౣଶ ቚ ቚ୶మౣ౮ି୶మౣଶ ቚቃ, where x1max, 

x1min, x2max, and x2min are respectively the maximum and minimum values of x 
and y coordinates in the observed scene. Notice, that for location and characteri-
zation the size of the observed scene is typically larger than the size of the object. 
Start with initial value for Σ equal to  
 Σ ൌ ሺxଵ୫୶୭ െ xଵ୫୬୭ሻଶ 00 ሺxଶ୫୶୭ െ xଶ୫୬୭ሻଶ൨ 

where x1mxo, x1mno, x2mxo, and x2mno are respectively the maximum and minimum 
values of x and y coordinates in the observed image. 

2. Compute the square root of the Gaussian function  ݂ሺݔ, ,ߤ Σሻ ൌ 1ට2ߨඥdet ሺΣሻ ݁ିሺ௫ ିఓሻ ஊషభሺ௫ ିఓሻସ , 
where ݔ ൌ ሾݔଵ ߤ , ଶሿ்ݔ ൌ ሾߤଵ  .ଶሿ் and Σ is 2x2 covariance matrixߤ

3. Use (9) and (10) to compute new values for µ and Σ. 
4. Since both µ and Σ influence computation of the function ݂ሺݔ, ,ߤ Σሻ values, we 

need to iterate repeating steps 2. and 3.  

The algorithm convergence is very fast. Fig. 1 shows the convergence rates for 
both the covariance matrix and the mean values. As we can see, even after the first 
iteration the object is located within the distance of 23 pixels as the error of the mean 
value indicates. Considering that the object was located within a 960x740 pixels im-
age this indicates less than 1% error for the first iteration and the error is reduced 
exponentially to less than 2-8 pixel distance after 20 iterations. Such accuracy is sel-
dom required and a single iteration is sufficient to locate the object or its feature, im-
plementing rapid saccading motion to the target area. 
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Fig. 1. Convergence of the covariance matrix and the mean values for the Gaussian  
characterization 

3.3 2D Object Characterization 

To characterize the object we perform the following operations: 

2D Object Characterization Algorithm: 
 

1. Normalize the object image and remove its background. 
a. Object image is reduced to black and white image. 
b. The black and white version of the image is normalized to have norm equal to 1. 

2. Position the normalized object image in a bigger picture by shifting its lower left 
corner by a preset vector µC.  

3. Fit Gaussian function ݂ҧሺݔ, ,ߤ Σሻ to obtain relative location of the Gaussian µ୭ ൌ ቂµ୭ଵµ୭ଶቃ with respect to the lower left corner of the image. This is obtained by 

subtracting position of the left lower corner of the object image from the coordi-
nates of the Gaussian µ୭ ൌ µG െ µC. 

4. Obtain covariance matrix Σ୭ of its best fitting Gaussian function and similarity Sሺߤ, Σ୭, ߶ሻ ൌ ݂ҧሺݔ, ,ߤ Σሻ כ tҧሺݔሻ measure between the normalized image tҧሺݔሻ 
and this Gaussian. 

5. The object image is characterized by ߤ, Σ୭, ܽ݊݀ Sሺߤ, Σ୭, ߶ሻ. 

4 Example 

To illustrate the discussed approach let us consider an image of an object and its gray 
scale version shown in Fig. 2. Vertical and horizontal axes correspond to y and x  
values. 
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Fig. 2. An object and its grayscale version 

This image was shifted in such a way that its upper left corner was moved from the 
location (1,1) to the position µC ൌ ሾ320 240ሿ் as shown in Fig. 3. 
 

 

Fig. 3. The object placed in a larger area  

The image was characterized using 2D object characterization algorithm by the 
Gaussian function located at µG ൌ ሾµG୷ µG୶ሿ ൌ ሾ545.58 357.78ሿT and the optimum 
Gaussian has its covariance matrix equal to: Σ୭ ൌ ቂ 1719.7  െ245.2െ245.2 677.5 ቃ 

After characterization this image similarity to square root of the optimum Gaussian 
was determined to be Sሺߤ, Σ୭, ߶ሻ ൌ 0.9444. 
5 Conclusions and Future Work 

Presented in this paper, quick characterization and location of the object image is a 
machine implementation of the visual saccades idea for object recognition. Using this 
approach the observed image is described based on the mean value and the covariance 
matrix of a 2D Gaussian function that is most similar to the observed image. Similari-
ty measure between the best Gaussian fit and the observed object is used for  
object characterization. Subsequently, characterized and memorized objects that have 
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specific Gaussian similarity are extracted from the memory, and after proper rotation 
and scale, are placed in the identified location for recognition.  

Mathematical equations that solve the optimization problem to find the most simi-
lar Gaussian function are solved explicitly, yielding fast convergence of the iterative 
algorithm. One iteration of the algorithm typically suffices to find approximate loca-
tion of the perceived object. More precise determination of the object location, its 
scale, and rotation require very few iterations and can be quickly computed. 

This procedure can be applied either to the entire image, its parts, or to a complex 
scene. Inhibition of previously visited areas of the image will force saccadic searches 
to describe and recognize various objects in the observed scene. 

Future work is to test this concept in realistic scenes with several objects, to build 
hierarchical object representations in the semantic memory, and to apply various reso-
lution levels in order to minimize the processing time. 
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