
Temporal Coding of Neural Stimuli

Adrian Horzyk 1[0000-0001-9001-4198], Krzysztof Gołdon 1[0000-0003-4540-1812] and

Janusz A. Starzyk 2,3[0000-0003-2678-5515]

1 AGH University of Science and Technology, Krakow, Poland
2 University of Information Technology and Management in Rzeszow, Rzeszow, Poland

3 School of EECS, Ohio University, Athens, USA

horzyk@agh.edu.pl, krzysztofgoldon@gmail.com, starzykj@gmail.com

Abstract. Contemporary artificial neural networks use various metrics to code

input data and usually do not use temporal coding, unlike biological neural sys-

tems. Real neural systems operate in time and use the time to code external stim-

uli of various kinds to produce a uniform internal data representation that can be

used for further neural computations. This paper shows how it can be done using

special receptors and neurons which use the time to code external data as well as

internal results of computations. If neural processes take different time, the acti-

vation time of neurons can be used to code the results of computations. Such

neurons can automatically find data associated with the given inputs. In this way,

we can find the most similar objects represented by the network and use them for

recognition or classification tasks. Conducted research and results prove that time

space, temporal coding, and temporal neurons can be used instead of data feature

space, direct use of input data, and classic artificial neurons. Time and temporal

coding might be an important branch for the development of future artificial neu-

ral networks inspired by biological neurons.

Keywords: temporal coding, temporal neurons, feature representation in the time

space, stimuli receptor transformation into the time space, associative temporal

neural networks, associative graph data structure.

1 Introduction

Different types of artificial neural networks either directly use external data as inputs,

or use normalization, standardization, various transformations of input data space (e.g.

PCA, ICA) [1, 7], or code them through preprocessing operations. Most of the artificial

neural networks use discrete time iterations where all or a part of neurons are evaluated

and calculate outputs in the same iteration (discrete time step) making computation

totally synchronous (e.g. Hebb’s rule, Oja’s rule, McCulloch-Pitts model, Perceptron)

[7, 22]. It can be perceived as positive because some processes in the brain seem to be

synchronized (due to brain waves of various frequencies). Nonetheless, the majority of

neuron activations are asynchronous [1, 3] and difficult to implement because they re-

quire ordering and simulation in time on contemporary computers. Time is used in spik-

ing models of neurons [6, 14, 15, 20] that handle various internal processes in time, and

time dependencies influence the stimulation processes in their networks [7, 8, 10, 14].

mailto:horzyk@agh.edu.pl
mailto:krzysztofgoldon@gmail.com

2

On the other hand, synchronous processes are more likely used because discrete time

iterations can be easily parallelized using GPUs. Modern deep neural network architec-

tures [7, 8] are also updated in discrete time steps. The synchronicity is an important

factor to achieve efficient computational models on contemporary computers thanks to

the use of vectorization and parallelization of computations of the same operations on

multiple data. Nevertheless, we should not ignore the nature where asynchronous pro-

cesses take place and have a great part in brain processes [1, 19]. Such processes have

significance in the creation of new biology inspired strategies and algorithms.

The major difference between asynchronous and synchronous computations is that

the synchronously fired neurons lose the possibility to code and differentiate external

stimuli and internal results using time because the time is the same for all synchronously

triggered neurons (e.g. in one iterative epoch or training cycle). Biological neural sys-

tems do not work in this way, and each neuron can be activated independently of other

neurons if only it is charged to its activation threshold level [16, 19]. The synchronicity

between the biological neurons is secondary and depends on the synchronic stimula-

tions from outside. Asynchronous activations of neurons in continuous time allow neu-

rons to compete and produce time-coded results based on such competitions. The first

activated neurons in time identify objects or classes the most associated with the input

stimuli, can influence other processes, inhibit competing neurons, and produce memo-

ries. In nature, the memories are usually created for the strongest and the most frequent

stimuli associated with the earliest activated neurons representing memorized objects

or their classes, temporal sequences, or spatial neighborhood of objects.

This paper defines a new model of neural networks which are based on temporal

coding, temporal neurons, and special receptors that transform external stimuli (input

data) into an internal temporal form (time space). Temporal neurons work asynchro-

nously and must be simulated using a global queue mechanism responsible for ordering

processes in time and allowing for competitions between such neurons. In our paper,

this mechanism will be described and used in the conducted experiments. Temporal

neurons are connected using associative rules that link features and objects in the same

way as in the associative graph data structures (AGDS) [12, 13] where each unique

value of each attribute is represented by a single node that aggregates the representation

of all duplicates of this value in a dataset. Unlike many other approaches which use

many-to-many connections between neurons organized in layers or matrices, the pre-

sented approach does not use layers but links similar features and connects them to the

objects defined by these features. In nature and various biologically inspired models of

neural networks, there is a wide variety of connections that only seldom form a multi-

layer structure where neurons are connected to other consecutive layers [1, 16, 19, 24].

Hence, the major part of the contemporary used artificial neural network models is

based on unrealistic and highly restrictive fundamentals. We use these models in com-

putational intelligence because they produce valuable results, but they do not work like

real neuronal systems that can exhibit the ability to self-develop appropriate cognitive

and intelligent architectures [4, 5, 17, 23]. This paper partially removes the established

limitations of contemporary neuronal models and shows new abilities of neural systems

that can be used and exploited in future research. These abilities will be achieved using

the time space, temporal coding, and time-based processing in the neural network.

3

2 Temporal Coding and Receptors

Temporal coding means the transformation of values from the input feature space into

the time space, i.e. to the appropriate charging periods of the neurons connected to re-

ceptors. Each receptor is most sensitive to the given feature value 𝑣𝑘
𝑛 and less sensitive

to other close feature values. The sensitiveness of the n-th receptor of the k-th attribute

and simultaneously its strength with which it stimulates the connected neuron can be

expressed by the following condition:

 𝑠𝑘
𝑛 = 1 −

|𝑣𝑘
𝑛−𝑣𝑘|

𝑅𝑘
 (1)

where 𝑅𝑘 = 𝑣𝑘
𝑚𝑎𝑥 − 𝑣𝑘

𝑚𝑖𝑛 is a range of values of the attribute k. Each receptor is
connected to a neuron that is charged by this receptor for the period 𝑝𝑛 according to the
similarity of the input stimulus 𝑣𝑘 to the value 𝑣𝑘

𝑛 represented by this receptor:

 𝑝𝑛 = 1 − 𝑠𝑘
𝑛 =

|𝑣𝑘
𝑛−𝑣𝑘|

𝑅𝑘
 (2)

This provides the firing of neurons at a different time according to the presented input
value. Using the continuous time of activations, input stimuli can be precisely coded in
time space, i.e. without rounding. Thus, input data (external stimuli) are transformed into
different charging periods and activation times of the connected neurons.

Fig. 1 illustrates possible stimulation flow as a reaction to the input value 𝑣𝑘 sensed

by the receptors that charge the 𝑉𝑘
𝑛 and 𝑉𝑘

𝑛+1 neurons, their neighbors 𝑉𝑘
𝑛−1 and 𝑉𝑘

𝑛+2,

the connected temporal object neurons 𝑂𝑗2 and 𝑂𝑗4 of the strongest stimulated temporal

value neuron 𝑉𝑘
𝑛, the subsequent class neuron 𝐶𝑙1 , and finally, the stop neuron S which

activation stops the stimulation process of the neural network for the presented input.

Fig. 1. Stimulation schema of temporal processes in the described neural network. The

temporal process is started by the input stimulation of value 𝑣𝑘 that is sensed by the receptors

representing the closest values with the different strengths (1) that influence charging periods (2)

of connected temporal value neurons which start stimulation of connected neighboring temporal

value neurons (through lateral connections) and temporal object neurons when activated. Acti-

vated temporal object neurons subsequently activate temporal class neurons, and finally, the tem-

poral stop neuron.

4

Always one or two receptors react to the input value 𝑣𝑘, computing the charging
periods 𝑝𝑛 of the connected neurons. If the input value 𝑣𝑘 exactly equals to the value 𝑣𝑘

𝑛
represented by one of the receptors, then only a single receptor reacts to such an input
stimulus and the activation period 𝑝𝑛 of the connected neuron 𝑉𝑘

𝑛 is equal to 0 according
to (2), i.e. it activates immediately after receiving the input stimulus. If the input 𝑣𝑘
differs from all values 𝑣𝑘

𝑛 represented by the receptors of the attribute k, then two re-
ceptors representing the closest smaller and the closest bigger values react to such an
input stimulus (except when the value 𝑣𝑘 is minimal or maximal). In this case, the ac-
tivation periods 𝑝𝑛 of two connected neurons are computed after (2), and those periods
are greater than 0.

3 Associative Temporal Neurons

Associative Temporal Neuron (ATN) is a new proposed model of neurons that differ-
entiate charging periods according to the stimulation strengths and create associative
connections representing various relations between input features and objects. ATN neu-
rons work in time, but their way of working is different from classic spiking neuron
models [6, 14, 15, 20]. The different charging periods determine the activation moments
of ATN neurons and the charging processes of other connected neurons in the network.
The order of the activations of neurons is used to produce and interpret results. The ear-
liest activated neurons represent the most strongly associated objects to the input stimuli,
where the associations can represent similarity, the order in sequence or spatial neigh-
borhood. Thus, the earliest activated neurons can point out the most similar objects rep-
resented by the neural network. In conscious thinking, we usually take into account the
first thoughts in response to the asked question or external stimuli. The ATN model also
defines a minimum number of charge stimuli for each neuron, which allows it to be
activated. This number is defined as a number of features which define the object repre-
sented by the temporal object neuron. It is equal to one for all value neurons representing
simple one-value input features. This number increases the confidence of the classifica-
tion when the neuron represents a class. Summarizing, ATN neuron n can be activated
when two following conditions are simultaneously true:

1. The number of input stimuli sn is equal to or greater than a threshold number n
of the required stimuli.

2. Current simulation time T of the network for the current run operation can be
established from the f function value (4) of the sum 𝑆𝑛 (3) of the g function
values of the earliest sn charging periods 𝑝1, …, 𝑝𝑠𝑛

, where functions f and g

must be positive:

 𝑆𝑛 = ∑ 𝑔(𝑝𝑖)𝑠𝑛
𝑖=1 (3)

 𝑝𝑛 = 𝑓(𝑆𝑛) (4)

 𝑝𝑖 = 𝑇𝑖 − 𝑇𝑜 (5)

where 𝑝𝑖 is a period (5) computed as a difference between the activation time 𝑇𝑖 of the
neuron sending the stimulus and the starting time 𝑇𝑜 of the currently running operation
in the network, where 𝑝1 ≤ ⋯ ≤ 𝑝𝑠𝑛

. Each ATN neuron counts incoming input stimuli

5

(sn) and sums the charging periods transformed by the function g according to (3). When

this count achieves the threshold number n, then the function f is evaluated, and the final
activation period 𝑝𝑛 of the charged neuron n is calculated (4). This means that after the
period 𝑝𝑛 of charging elapses, the neuron will be activated, its activation time 𝑇𝑛 during
simulation will be established according to this period and the simulation time To when
the charging operation was started:

 𝑇𝑛 = 𝑇𝑜 + 𝑝𝑛 (6)

The activation time 𝑇𝑛 together with the information about the neuron is added to the
global event queue (GEQ) that sorts events in the incremental order to control the se-
quence of updating neurons. The GEQ is responsible for activating the neurons in the
appropriate time (6) allowing for their competitions.
 The activated ATN neuron switches to the refraction period that prevents cyclic
retrograde stimulations of mutually stimulating neurons. During the refraction period,
ATN neurons are insensitive to any input stimuli. After the refraction period, the neuron
returns to its resting (initial) state waiting for the next stimuli. To switch the neuron from
its refraction state to its resting state, its parameters must be initialized. To perform this
efficiently, each ATN neuron stores a special counter of the network operations
(OPCntr). It points to the number of operation during which it has been updated the last
time. The OPCntr counter is also stored in the network and incremented by one each
time when the network is stimulated by new inputs (e.g. starts a new classification pro-
cess). If the OPCntr counter of the neuron is less than the OPCntr counter of the network,
the neuron variables are outdated and must be updated (e.g. initialized) before the next
operation on this neuron. After each operation, the neuron OPCntr is updated to be equal
to the network OPCntr of to avoid the repetitive updating (e.g. initialization) before the
subsequent updates of this neuron during the currently running operation. Owing to this
mechanism, neurons are initialized exactly once before they are used in the next
operation. This mechanism avoids the necessity to initialize variables of all neurons of
the neural network before starting a new operation, which saves a lot of time.

When the neuron is activated, it sends stimuli to the connected neurons. If the con-
nected neuron represents another numerical value 𝑣𝑘

𝑚 of the same attribute k, then the
charging period 𝑝𝑚 of this neuron is calculated from:

 𝑝𝑚 = 1 − 𝑤𝑘
𝑚,𝑛

 (7)

where 𝑤𝑘
𝑚,𝑛

 is a connection weight between neurons 𝑉𝑘
𝑛 and 𝑉𝑘

𝑚 representing neighbor

values 𝑣𝑘
𝑛 and 𝑣𝑘

𝑚. It is defined as the absolute difference between these values 𝑣𝑘
𝑛 and

𝑣𝑘
𝑚 normalized by the range 𝑅𝑘 of values of the k-th attribute:

 𝑤𝑘
𝑚,𝑛 = 1 −

|𝑣𝑘
𝑚−𝑣𝑘

𝑛|

𝑅𝑘
 (8)

The weights between value neurons 𝑉𝑘
𝑚 and 𝑉𝑘

𝑛 are symmetrical, i.e. 𝑤𝑘
𝑛,𝑚 = 𝑤𝑘

𝑚,𝑛
.

Value neurons representing symbolic data are not connected and weighted.

In summary, each temporal value neurons 𝑉𝑘
𝑛 representing an input feature 𝑣𝑘

𝑛 is
connected to at least one object neuron that represents a training sample defined by a set
of input features. The activated neuron representing a feature 𝑣𝑘

𝑛 stimulates all connected
object neurons. The stimulus contains the time when this neuron has been activated.
Object neurons count up the incoming stimuli and compute the sums as defined by (3).

6

4 Associative Temporal Neural Networks

Associative Temporal Neural Networks (ATNN) are built from associative temporal

neurons (ATN) and special receptors which transform input data into the time space

and implement temporal processes between associatively connected neurons. ATN

neurons connect to reproduce relations between elements represented by these neurons,

where elements can be single-value features or various objects defined by features or

other objects. Some objects can define classes or clusters or have a special meaning in

the network. Associative connections between neurons are created for the known rela-

tionships which can be deduced from the input (training) data. All unique single-value

data (like numbers, symbols, or strings) are represented by separate neurons connected

to the receptors which are sensitive for these values. Neurons representing orderable

values are additionally connected to the neurons representing neighbor values, and the

connections are weighted (8). The associative representation means that all duplicates

of the features of each attribute separately are aggregated and represented by the same

neurons [9, 13]. Therefore, objects defined by a subset of the same features are

indirectly connected by a subset value neurons representing these features. Objects de-

fined by similar (not the same) features are also indirectly connected through connected

value neurons representing similar features. Such associative organization of the net-

work automatically groups objects according to their similarities and facilitates the in-

ference processes [11]. For classic training data used for classification tasks composed

from objects defined by a given number of features, the created network of elements

can be described by the associative graph data structure (AGDS) [12, 13] that is used

as a backbone structure of a proposed ATNN structure. Both these structures can be

further accelerated using AVB+trees [13], which allow typically for less than the

logarithmic time of the search of appropriate receptors for the input data. Any training

dataset can be easily transformed into this graph structure as described in [12, 13].

Assume that we have a dataset 𝕊 = {𝑃1, … , 𝑃𝑁} consisting of N samples 𝑃𝑛 =
[𝑣1

𝑛 , … , 𝑣𝑘
𝑛 , … , 𝑣𝐾

𝑛] where 𝑣𝑘
𝑛 is a k-th attribute value defining the n-th sample (object)

𝑃𝑛, and K is the number of attributes. Each unique sample 𝑃𝑛 is represented in the

ATNN network by the temporal object neuron 𝑂𝑗 where the number of object neurons

J is less or equal to the number of training samples (J ≤ N) because of possible dupli-

cates of samples in the dataset 𝕊 and their aggregated representation in the ATNN net-

work.

The training samples represent L classes {𝑐1, … , 𝑐𝐿} represented by L temporal class

neurons {𝐶1, … , 𝐶𝐿}, and each training sample can belong to one or more classes de-

pendently on the considered classification type (single-label classification or multi-la-

bel classification) [11, 21, 25]. In this paper, we consider only single-label classification

problems to compare ATNN networks to KNN classifiers. Each unique k-th attribute

value (feature) 𝑣𝑘
𝑛 is represented by a so-called temporal value neuron 𝑉𝑘

𝑚 in the

ATNN network. Because the same feature can define many objects in the training data

set, the number 𝑀𝑘 of the temporal value neurons {𝑉𝑘
1, … , 𝑉𝑘

𝑀𝑘} representing the k-th

attribute unique values is typically smaller than the number N of all training samples,

i.e. 𝑀𝑘 ≤ 𝑁 (usually 𝑀𝑘 ≪ 𝑁 for real datasets due to the big number of duplicated

attribute values defining various objects).

7

Temporal value neurons are also connected to object neurons, which represent train-

ing samples defined by the values represented by these connected value neurons. Con-

nection weights between value and object neurons are equal to one. A group of object

neurons can also define classes represented by temporal class neurons. The connections

between object and class neurons are also equal to one. The activation threshold number

of stimuli of temporal class neurons is set to one, so they immediately react to activation

of any object neuron that defines a sample of the given class.

The ATNN network can be used as a k nearest neighbor (KNN) classifier, where we

will also use a single temporal stop neuron that is connected to all class neurons. This

neuron is responsible for stopping the network calculations when the demanded goal of

computations (e.g. recognition, classification, or sorting) is finished. We defined the

threshold of this neuron accordingly to the task (e.g. 1 for recognition, N for sorting)

where this network is used. The weights between class and stop neurons are also equal

to one, reacting to all classified samples immediately, but the threshold of this neuron

can be set to the required number of searched samples. The activated ATN neurons of

all kinds will stimulate other connected neurons, and each stimulus includes

information about the time 𝑇𝑛 (6) of the activation to compute appropriate periods (4)

for computing sums (3) and charging periods (5) for the connected neurons.

5 Applying ATNN for Ordering Objects

The main idea of ATNN networks is to allow neurons to be activated over time in a

succession that comes from the associative (relationship) strengths, e.g. similarity, be-

tween input data and the object. Therefore, the object neurons representing objects that

are similar to input data (external stimuli) should be activated faster than neurons rep-

resenting less similar objects. In fact, the ATNN can quickly order all represented ob-

jects (training samples) according to their similarities to the input data (Fig. 2), starting

from the most similar one(s) (activated earlier, darker red in Fig. 2) and finishing with

the least similar one(s) (activated later, lighter red in Fig. 2). Here, the similarities

between represented objects by object neurons and given inputs will be defined by the

Euclidean measure in the time space of charging periods of temporal value neurons

representing transformed features into the charging periods.

Associative Distance Sorting Algorithm using an ATNN network:

Input: T: training data, x: classified sample,

Output: sortedObjects: objects sorted in descending order

OrderingObjects(T, x)

atnn = CreateATNN(T)

 GEQ.InitializeSimulationTime()

 foreach attribute of atnn do

 attribute.FindAndStartStimulate(x[numberOfAttribute]) // using AVB+trees

 while (stopNeuron.State < threshold)

 currentEvent = GEQ.RemoveFirst

 simulationTime=currentEvent.UpdateTime

 currentEvent.Simulate() // add activated object neurons to sortedObjects

return sortedObjects

8

In the first step of this algorithm, the structure of the ATNN network based on AGDS

[13] is created. Values of each attribute are represented via an AVB+tree [13] that

supports efficient access, and all operations are processed in at most logarithmic time.

The stop condition of this algorithm is provided by the temporal stop neuron which is

connected to all object neurons and which threshold is equal to the number of all pattern

neurons to stop stimulation when all object neurons are activated. To aggregate

representation of all duplicates during the construction of the ATNN structure, a special

insertion operation using an AVB+tree [13] is used to increase counter if the inserted

value already exists in this structure or to insert it and rebalance the tree (if necessary)

when the inserted value is new and must be added:

SearchOrInsertNeuron(value)

 foreach neuron in node

 if (neuron.Value == value)

 neuron.IncrementCounterOfDuplicates() // aggregate their representation

 return true

 if (childList.Count==0) // this is a leaf of AVB+tree

 CreateNewNeuronAndInsertItIntoAVBTreeNode() // rebalance a tree if necessary

else

 if (Neurons.First.Value < value)

return Neurons.First.SearchOrInserNeuron(value)

elseif (Neurons.Last.Value > value)

return Neurons.Last.SearchOrInserNeuron(value)

else return Neurons.Middle.SearchOrInsertNeuron(value)

In the second step, the ATNN is stimulated by the sample as long as the stop neuron is

activated. During this process, a list of activated object neurons is created in the order

coming from the activation moments of these neurons. Thus, the samples (represented

by object neurons) are ordered according to the similarity (e.g. defined by the Euclidean

distance) to the sample presented on the input of the network. To start the stimulation

process of the ATNN network quickly, the previously created AVB+trees for all

attributes are used to search for temporal value neurons which will be stimulated

appropriately to the presented input values. Subsequently, temporal value neurons

compute their activation moments and put them to the GEQ that handles their ordering

and triggering in the right simulation time. In each simulation step, always the first

event from the GEQ is run until the temporal stop neuron is activated. During the

simulation process, all activated neurons stimulate connected neurons which insert new

events to the GEQ according to the computed activation periods as described in the

previous sections.

The similarity to input data in Fig. 2 is represented by the activation times (marked

with t in the lowest raw of circles of neurons that represents training samples) – the

smaller times are, the more similar the training samples are. Such ordering is used by

various methods, e.g. KNN classifiers, which base their classification decisions on the

given number of nearest neighbors, various sorting routines, recognition, clustering,

and classification algorithms. This ordering of ATNN networks is also quite fast be-

cause the algorithm needs to stimulate the neurons only once for a given input (training)

dataset to get results.

9

Fig. 2. Example of sorting objects by the ATNN according to the similarity to the given input

sample [5.4, 2.8, 3.6, 1.3] to 15 Iris samples [26]. The temporal value neurons representing fea-

tures of four attributes are stimulated laterally by the previously activated value neurons as

marked by blue arrows. The sorted training samples are represented by temporal object neurons

in the last row which compute their activation times using an Euclidean distance of activation

times of the stimulating value neurons as presented on a sample object neuron activated in time

0.12. Each neuron presents the value or ID in the upper part, the activation time in the middle,

and the number of its activations in the bottom part of its circle. The presented activation times

of object neurons reflect the similarity of the input sample to all training samples from this da-

taset. The similarities expressed by the activation times produced the following sequence of train-

ing samples: P:6, P:10, P:8, P:12, P:7, P:9, P:15, P:14, P:11, P:13, P:2, P:4, P:1, P:3, and P:5.

The computational complexity of ordering all objects according to their similarities

to the given input sample is linear 𝑂(𝑁 + ∑ ℎ𝑘(𝑁)𝐾
𝑘=1) ≤ 𝑂((𝐾 + 1) ∙ 𝑁), where N is

the number of objects, and K is the number of attributes, and the function ℎ𝑘 defines the
number of unique values for the k-th attribute. If we do the same operation on a tabular
data structure, we need to compute similarity factors for each object and sort final results
according to these factors. This operation would cost log-linear time O(K ∙ N log N) for
quicksort, heapsort, or merge sort algorithms [2] or O(K ∙ N) for counting sort or radix
sort [2]. Thus ATNN networks based on the AGDS structure can theoretically have the
same or better complexity than the best classic sorting algorithms based on a tabular
structure especially when the sorted data consist of many duplicated values defining ob-
jects in the dataset. Unfortunately, the simulation of temporal neurons on a sequential
machine (which are most common today) takes extra time because events (representing
activation times of neurons) must be ordered, so the presented sorting on ATNN is not
always faster than classic approaches, however, on asynchronously parallel machines, it
would run much faster. Therefore, the presented sorting approach using ATNN networks
can only explain how biological neurons can deal with ordering tasks when working on
a different computational platform than contemporary computers.

The ATNN sorts objects starting from the most similar, so the efficiency of ATNN

will be better when searching for a limited subset of the most similar objects because

the classic approaches usually require to compute all similarities and sort all objects

before selecting the most similar ones. The results presented in Table 1 show the sorting

times of the most similar objects to the given input sample computed using the classic

10

quicksort approach on data stored in tables compared to the sorting made by the simu-

lated ATNN networks on a sequential machine.

Table 1. Comparisons of the recognition speed of the classic and ATNN sorting routines.

 Training
Datasets*

No of
Instances

No of
Attributes

Unique
Features

Sorting Time [timer ticks]

Classic ATNN

Immunotherapy 90 7 27,46% 5456 487

Iris 150 4 20,50% 21825 596

Wine 178 12 59,74% 35466 2565

Banknote 1372 4 91,40% 43651 16136

Wine Quality Red 1599 11 8,26% 35466 10924

Eye 14980 14 2,58% 504719 428724

HTRU2 17898 8 52,81% 373765 1150166

Telescope 19020 10 77,34% 428329 1591250

Credit Card 30000 23 25,30% 2515411 2272482

Shuttle 43500 9 0,26% 774812 2600721

Drive 58509 48 59,75% 18036210 27835709

Skin 245057 3 0,10% 1355921 556790

* Datasets were taken from UCI ML Repository [26]

In most of the cases, ATNN network is faster than quicksort, but the major goal of this
paper is to prove that data can be transformed into the uniform time space and temporal
spikes, not a better processing speed on the contemporary computer. Thus a higher effi-
ciency of our approach is an extra bonus point.

6 Applying ATNN for Recognition Tasks

The first studies in comparisons of classic implementation of KNN classifiers based on

the associative graph data structures (AGDS) were described in [12]. The results

demonstrated that the associative organization of data with additional relations between

values of the same attribute could greatly accelerate KNN classifiers. In this work, we

show that KNN classifiers can also be modeled by ATNN networks and that the clas-

sification process can be fully automatic.

If 𝑔(𝑝𝑖) = 𝑝𝑖 and 𝑓(𝑆𝑗) = 𝑆𝑗 are defined as the identity functions, then the computed

activation periods reflects the normalized Manhattan distance between input data and
the features defining an object represented by an object neuron:

 𝑃𝑛
𝑘 = ∑ 𝑝𝑖

𝑛𝑗

𝑖=1
= ∑

|𝑣𝑘
𝑚−𝑣𝑘

𝑛|

𝑅𝑘

𝑛𝑗

𝑖=1
 (9)

 If 𝑔(𝑝𝑖) = 𝑝𝑖
2 and 𝑓(𝑆𝑗) = √𝑆𝑗, then the computed activation time reflects the Eu-

clidean distance between input data and the features defining an object represented by
an object neuron:

11

 𝑃𝑛
𝑘 = √∑ 𝑝𝑖

2
𝑛𝑗

𝑖=1
= √∑ (

|𝑣𝑘
𝑚−𝑣𝑘

𝑛|

𝑅𝑘
)

2
𝑛𝑗

𝑖=1

 (10)

Hence, ATN neurons can be used to compute the nearest neighbors for KNN classifiers

because the Manhattan or Euclidean distances of training samples to the classified sam-

ple can be transformed into the activation periods of object neurons representing these

samples. The charging periods linearly change as these distances, so they model origi-

nal training data space in the internal time space of ATNN networks. Therefore, the

first k activated ATN temporal object neurons represent the same k nearest neighbors

(objects) as computed by the KNN classifier.

Fig. 3. Example of recognition (for k=1) of the most similar object (here P:6) to the presented

inputs [5.6, 3.0, 4.1, 1.3] made by the ATNN network created for the training data consisting of

15 Iris samples [26]. The temporal value neurons for each attribute separately are presented in

the four top rows. In the fifth row, there are temporal object neurons defined by the appropriate

combinations of temporal value neurons (representing training samples). The sixth row consists

of temporal class neurons. The temporal STOP neuron in the last row stops the simulation when

the most similar object is found. Neurons painted in red symbolized the activated neurons at

different times. Only activated neurons stimulate other connected neurons which do not always

achieve activations (neurons painted in green). White colored neurons do not take part in the

presented recognition process, which saves time in comparison to the KNN classification process,

where all training samples take part in the classification process.

When k=1 the classification process points out the most similar object to the pre-

sented sample on the input, so this process can also be viewed as a recognition process

as shown in Fig. 3. The comparisons of the speed of the classic KNN classifier with

k=1 and ATNN used in recognition tasks are presented in Table 2 where ATNN net-

works win in recognition speed.

12

Table 2. Comparisons of the recognition speed of the classic and ATNN approaches.

 Training
Datasets*

No of
Instances

No of
Attributes

Unique
Features

Recognition [timer ticks]

Classic ATNN (k=1)

Immunotherapy 90 7 27,46% 301 38

Iris 150 4 20,50% 282 25

Wine 178 12 59,74% 309 84

Banknote 1372 4 91,40% 476 33

Wine Quality Red 1599 11 8,26% 550 81

Eye 14980 14 2,58% 2814 363

HTRU2 17898 8 52,81% 2863 84

Telescope 19020 10 77,34% 3233 85

Credit Card 30000 23 25,30% 7319 7472

Shuttle 43500 9 0,26% 5629 4803

Drive 58509 48 59,75% 25948 1429

Skin 245057 3 0,10% 19741 79

* Datasets were taken from UCI ML Repository [26]

In most of the cases, the proposed approach was more efficient than the classical

one. The results were obtained on a sequential machine and were from 2% slower in

case of Credit Card data set to 250 times faster in case of Skin data set than the classic

KNN approach. Notice, that our temporal coding network would be much faster if im-

plemented on a network of neurons, since neurons pass information to its neighbors

concurrently, while classic algorithm would have no such additional efficiency increase

since finding the nearest neighbor would require sequential comparisons. However,

once again, the high efficiency of our approach was its extra bonus. We aimed to

demonstrate that both ordering and recognition of the input data was possible using

temporal coding of input stimuli and associative temporal neurons that may represent

sensory values, objects, and classes. A network made of such associative temporal neu-

rons may be a useful addition to neural network structures that work with numeric as

well as symbolic data. Such networks may be good to obtain grounded semantic mem-

ories needed for efficient learning and motor control functions in robots.

7 Conclusions and Remarks

This paper presented temporal coding of the input data using associative temporal neu-

rons and the resulting associative structures named associative temporal neural net-

works. The contribution of this paper was to show that it is possible to code features of

various attributes using time, namely, various periods of charging and activations of

neurons. The temporal coding also requires an appropriate associative neural structure

which reproduces relations between features and objects. That is why we used the as-

sociative graph data structure AGDS to reproduce the structure of features and samples

by value neurons and object neurons which were appropriately connected, and the con-

nections weighted to emphasize the relationships between them. On this basis, neurons

and their connections were set up to be charged in different periods according to the

similarity of the features and objects to the presented input samples. As a result of such

13

coding, temporal neurons were activated over time after different periods, which repro-

duced the Euclidean or Manhattan distance between training samples and the input

samples. Using such a network, we could define a sorting routine which allowed to

designate the most similar samples and sort them due to the computed similarities. The

computed similarities were used to designate k nearest neighbors, order samples, or

recognize the most similar sample. The created networks can be used for classification,

sorting, and recognition tasks. Thanks to the use of the associative structure of the cre-

ated associative temporal neural networks, not all objects need to be compared in

ATNN networks, so we can usually compute results faster, especially when running

them in parallel. In spite of the experimentally proven efficiency, the major goal of this

paper was to show how original data space can be transformed into the time space.

Experiments proved that the time-based computations using associative temporal neu-

rons are possible, and classic coding of input data can be replaced by the presented

temporal one using the time space instead of the original one.

This work was supported by the grant from the National Science Centre, Poland DEC-

2016/21/B/ST7/02220 and AGH 11.11.120.612.

References

1. Carpenter, G.A., Grossberg, S.: Adaptive resonance theory. In The Handbook of Brain The-

ory and Neural Networks, M. Arbib (Ed.), MIT Press, Cambridge, MA, pp. 87–90, 2003.

2. Cormen, T., Leiserson, Ch., Rivest, R., Stein, C.: Introduction to Algorithms. 3nd ed., MIT

Press and McGraw-Hill, pp. 484–504 (2009).

3. Deuker, L. et al.: Memory Consolidation by Replay of Stimulus-Specific Neural Activity.

Jour. of Neuroscience, Vol. 33, No. 49, pp. 19373–19383 (2013).

4. Duch, W.: Brain-inspired conscious computing architecture, Journal of Mind and Behaviour,

Vol. 26, pp. 1–22 (2005).

5. Franklin, S., Madl, T., D’Mello, S., Snaider, J.: LIDA: A Systems-level Architecture for

Cognition, Emotion, and Learning. IEEE Trans. on Autonomous Mental Development, Vol.

6, No. 1, pp. 19–41 (2014).

6. Gerstner, W., Kistler, W.: Spiking Neuron Models. Cambridge University Press (2002).

7. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016).

8. Graupe, D.: Deep Learning Neural Networks. World Scientific (2016).

9. Horzyk, A.: Neurons Can Sort Data Efficiently. In: Rutkowski L., Korytkowski M., Scherer

R., Tadeusiewicz R., Zadeh L., Zurada J. (eds), Artificial Intelligence and Soft Computing,

Springer-Verlag, LNCS, Vol. 10245, 64–74, DOI: 10.1007/978-3-319-59063-9_6 (2017).

10. Horzyk, A.: Deep Associative Semantic Neural Graphs for Knowledge Representation and

Fast Data Exploration. In: Proc. of KEOD 2017, Scitepress Digital Lib., pp. 67–79 (2017).

11. Horzyk, A., Starzyk, J.A.: Fast Neural Network Adaptation with Associative Pulsing Neu-

rons. In: 2017 IEEE Symposium Series on Computational Intelligence, IEEE Xplore, pp.

339–346 (2017).

12. Horzyk, A., Gołdon, K.: Associative Graph Data Structures Used for Acceleration of K

Nearest Neighbor Classifiers, In: 27th International Conference on Artificial Neural

Networks (ICANN 2018), Springer-Verlag, LNCS 11139, pp. 648–658 (2018).

13. Horzyk, A.: Associative Graph Data Structures with an Efficient Access via AVB+trees. In:

2018 11th International Conference on Human System Interaction (HSI), IEEE Xplore, pp.

169–175 (2018).

14

14. Izhikevich, E.M.: Neural excitability, spiking, and bursting, Int. J. Bifurcat. Chaos, 10:1171–

1266 (2000).

15. Izhikevich, E.M.: Simple Model of Spiking Neurons. IEEE Transactions on Neural Net-

works, Vol. 14, No. 6, pp. 1569–1572 (2003).

16. Kalat, J.W.: Biological grounds of psychology. 10th ed., Wadsworth Publishing (2008).

17. Laird, J.E.: Extending the Soar Cognitive Architecture. In Proc. of the First Conference on

AGI, Memphis, Tenn, pp. 224–235 (2008).

18. Larose, D.T.: Discovering knowledge from data. Introduction to Data Mining. PWN, War-

saw (2006).

19. Longstaff, A.: Neurobiology. PWN, Warsaw (2006).

20. Maass, W.: Networks of spiking neurons: The third generation of neural network models.

Neural Networks, Vol. 10, Issue 9, pp. 1659–1671, Elsevier (1997).

21. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier Chains for Multi-label Classifica-

tion. Machine Learning Journal, Vol. 85(3), Springer (2011).

22. Rutkowski, L.: Techniques and Methods of Artificial Intelligence. PWN, Warsaw (2012).

23. Tadeusiewicz, R.: Introduction to intelligent systems, Fault Diagnosis. Models, Artificial

Intelligence, Applications, CRC Press, Boca Raton, FL (2011).

24. Tyukin, I., Gorban, A.N., Calvo, C., Makarova, J., Makarov, V.A.: High-Dimensional Brain:

A Tool for Encoding and Rapid Learning of Memories by Single Neurons. Bulletin of Math-

ematical Biology, Special Issue: Modelling Biological Evolution: Developing Novel Ap-

proaches, pp. 1-33, https://doi.org/10.1007/s11538-018-0415-5, Springer US (2018).

25. Zhang, M.L., Zhou, Z.H.: Multi-label neural networks with applications to functional ge-

nomics and text categorization. IEEE Transactions on Knowledge and Data Engineering,

Vol. 18, pp. 1338–1351 (2006).

26. UCI ML Repository, http://archive.ics.uci.edu/ml/datasets/Iris, last accessed 2018/04/14.

https://doi.org/10.1007/s11538-018-0415-5

