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Abstract. Contemporary artificial neural networks use various metrics to code 

input data and usually do not use temporal coding, unlike biological neural sys-

tems. Real neural systems operate in time and use the time to code external stim-

uli of various kinds to produce a uniform internal data representation that can be 

used for further neural computations. This paper shows how it can be done using 

special receptors and neurons which use the time to code external data as well as 

internal results of computations. If neural processes take different time, the acti-

vation time of neurons can be used to code the results of computations. Such 

neurons can automatically find data associated with the given inputs. In this way, 

we can find the most similar objects represented by the network and use them for 

recognition or classification tasks. Conducted research and results prove that time 

space, temporal coding, and temporal neurons can be used instead of data feature 

space, direct use of input data, and classic artificial neurons. Time and temporal 

coding might be an important branch for the development of future artificial neu-

ral networks inspired by biological neurons. 

Keywords: temporal coding, temporal neurons, feature representation in the time 

space, stimuli receptor transformation into the time space, associative temporal 

neural networks, associative graph data structure. 

1 Introduction 

Different types of artificial neural networks either directly use external data as inputs, 

or use normalization, standardization, various transformations of input data space (e.g. 

PCA, ICA) [1, 7], or code them through preprocessing operations. Most of the artificial 

neural networks use discrete time iterations where all or a part of neurons are evaluated 

and calculate outputs in the same iteration (discrete time step) making computation 

totally synchronous (e.g. Hebb’s rule, Oja’s rule, McCulloch-Pitts model, Perceptron) 

[7, 22]. It can be perceived as positive because some processes in the brain seem to be 

synchronized (due to brain waves of various frequencies). Nonetheless, the majority of 

neuron activations are asynchronous [1, 3] and difficult to implement because they re-

quire ordering and simulation in time on contemporary computers. Time is used in spik-

ing models of neurons [6, 14, 15, 20] that handle various internal processes in time, and 

time dependencies influence the stimulation processes in their networks [7, 8, 10, 14]. 
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On the other hand, synchronous processes are more likely used because discrete time 

iterations can be easily parallelized using GPUs. Modern deep neural network architec-

tures [7, 8] are also updated in discrete time steps. The synchronicity is an important 

factor to achieve efficient computational models on contemporary computers thanks to 

the use of vectorization and parallelization of computations of the same operations on 

multiple data. Nevertheless, we should not ignore the nature where asynchronous pro-

cesses take place and have a great part in brain processes [1, 19]. Such processes have 

significance in the creation of new biology inspired strategies and algorithms. 

The major difference between asynchronous and synchronous computations is that 

the synchronously fired neurons lose the possibility to code and differentiate external 

stimuli and internal results using time because the time is the same for all synchronously 

triggered neurons (e.g. in one iterative epoch or training cycle). Biological neural sys-

tems do not work in this way, and each neuron can be activated independently of other 

neurons if only it is charged to its activation threshold level [16, 19]. The synchronicity 

between the biological neurons is secondary and depends on the synchronic stimula-

tions from outside. Asynchronous activations of neurons in continuous time allow neu-

rons to compete and produce time-coded results based on such competitions. The first 

activated neurons in time identify objects or classes the most associated with the input 

stimuli, can influence other processes, inhibit competing neurons, and produce memo-

ries. In nature, the memories are usually created for the strongest and the most frequent 

stimuli associated with the earliest activated neurons representing memorized objects 

or their classes, temporal sequences, or spatial neighborhood of objects. 

This paper defines a new model of neural networks which are based on temporal 

coding, temporal neurons, and special receptors that transform external stimuli (input 

data) into an internal temporal form (time space). Temporal neurons work asynchro-

nously and must be simulated using a global queue mechanism responsible for ordering 

processes in time and allowing for competitions between such neurons. In our paper, 

this mechanism will be described and used in the conducted experiments. Temporal 

neurons are connected using associative rules that link features and objects in the same 

way as in the associative graph data structures (AGDS) [12, 13] where each unique 

value of each attribute is represented by a single node that aggregates the representation 

of all duplicates of this value in a dataset. Unlike many other approaches which use 

many-to-many connections between neurons organized in layers or matrices, the pre-

sented approach does not use layers but links similar features and connects them to the 

objects defined by these features. In nature and various biologically inspired models of 

neural networks, there is a wide variety of connections that only seldom form a multi-

layer structure where neurons are connected to other consecutive layers [1, 16, 19, 24]. 

Hence, the major part of the contemporary used artificial neural network models is 

based on unrealistic and highly restrictive fundamentals. We use these models in com-

putational intelligence because they produce valuable results, but they do not work like 

real neuronal systems that can exhibit the ability to self-develop appropriate cognitive 

and intelligent architectures [4, 5, 17, 23]. This paper partially removes the established 

limitations of contemporary neuronal models and shows new abilities of neural systems 

that can be used and exploited in future research. These abilities will be achieved using 

the time space, temporal coding, and time-based processing in the neural network. 
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2 Temporal Coding and Receptors 

Temporal coding means the transformation of values from the input feature space into 

the time space, i.e. to the appropriate charging periods of the neurons connected to re-

ceptors. Each receptor is most sensitive to the given feature value 𝑣𝑘
𝑛  and less sensitive 

to other close feature values. The sensitiveness of the n-th receptor of the k-th attribute 

and simultaneously its strength with which it stimulates the connected neuron can be 

expressed by the following condition: 

 𝑠𝑘
𝑛 = 1 −

|𝑣𝑘
𝑛−𝑣𝑘|

𝑅𝑘
 (1) 

where 𝑅𝑘 = 𝑣𝑘
𝑚𝑎𝑥 − 𝑣𝑘

𝑚𝑖𝑛 is a range of values of the attribute k. Each receptor is 
connected to a neuron that is charged by this receptor for the period 𝑝𝑛 according to the 
similarity of the input stimulus 𝑣𝑘 to the value 𝑣𝑘

𝑛 represented by this receptor:  

 𝑝𝑛 = 1 − 𝑠𝑘
𝑛 =

|𝑣𝑘
𝑛−𝑣𝑘|

𝑅𝑘
 (2) 

This provides the firing of neurons at a different time according to the presented input 
value. Using the continuous time of activations, input stimuli can be precisely coded in 
time space, i.e. without rounding. Thus, input data (external stimuli) are transformed into 
different charging periods and activation times of the connected neurons.  

Fig. 1 illustrates possible stimulation flow as a reaction to the input value 𝑣𝑘 sensed 

by the receptors that charge the 𝑉𝑘
𝑛 and 𝑉𝑘

𝑛+1 neurons, their neighbors  𝑉𝑘
𝑛−1 and 𝑉𝑘

𝑛+2, 

the connected temporal object neurons 𝑂𝑗2  and 𝑂𝑗4 of the strongest stimulated temporal 

value neuron 𝑉𝑘
𝑛, the subsequent class neuron 𝐶𝑙1 , and finally, the stop neuron S which 

activation stops the stimulation process of the neural network for the presented input. 

 

Fig. 1. Stimulation schema of temporal processes in the described neural network. The 

temporal process is started by the input stimulation of value 𝑣𝑘 that is sensed by the receptors 

representing the closest values with the different strengths (1) that influence charging periods (2) 

of connected temporal value neurons which start stimulation of connected neighboring temporal 

value neurons (through lateral connections) and temporal object neurons when activated. Acti-

vated temporal object neurons subsequently activate temporal class neurons, and finally, the tem-

poral stop neuron. 
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Always one or two receptors react to the input value 𝑣𝑘, computing the charging 
periods 𝑝𝑛 of the connected neurons. If the input value 𝑣𝑘 exactly equals to the value 𝑣𝑘

𝑛  
represented by one of the receptors, then only a single receptor reacts to such an input 
stimulus and the activation period 𝑝𝑛 of the connected neuron 𝑉𝑘

𝑛 is equal to 0 according 
to (2), i.e. it activates immediately after receiving the input stimulus. If the input 𝑣𝑘 
differs from all values 𝑣𝑘

𝑛  represented by the receptors of the attribute k, then two re-
ceptors representing the closest smaller and the closest bigger values react to such an 
input stimulus (except when the value 𝑣𝑘 is minimal or maximal). In this case, the ac-
tivation periods 𝑝𝑛 of two connected neurons are computed after (2), and those periods 
are greater than 0. 

3 Associative Temporal Neurons 

Associative Temporal Neuron (ATN) is a new proposed model of neurons that differ-
entiate charging periods according to the stimulation strengths and create associative 
connections representing various relations between input features and objects. ATN neu-
rons work in time, but their way of working is different from classic spiking neuron 
models [6, 14, 15, 20]. The different charging periods determine the activation moments 
of ATN neurons and the charging processes of other connected neurons in the network. 
The order of the activations of neurons is used to produce and interpret results. The ear-
liest activated neurons represent the most strongly associated objects to the input stimuli, 
where the associations can represent similarity, the order in sequence or spatial neigh-
borhood. Thus, the earliest activated neurons can point out the most similar objects rep-
resented by the neural network. In conscious thinking, we usually take into account the 
first thoughts in response to the asked question or external stimuli. The ATN model also 
defines a minimum number of charge stimuli for each neuron, which allows it to be 
activated. This number is defined as a number of features which define the object repre-
sented by the temporal object neuron. It is equal to one for all value neurons representing 
simple one-value input features. This number increases the confidence of the classifica-
tion when the neuron represents a class. Summarizing, ATN neuron n can be activated 
when two following conditions are simultaneously true: 

1. The number of input stimuli sn is equal to or greater than a threshold number n 
of the required stimuli. 

2. Current simulation time T of the network for the current run operation can be 
established from the f function value (4) of the sum 𝑆𝑛 (3) of the g function 
values of the earliest sn charging periods 𝑝1, …, 𝑝𝑠𝑛

, where functions f and g 

must be positive:  

 𝑆𝑛 = ∑ 𝑔(𝑝𝑖)𝑠𝑛
𝑖=1  (3) 

 𝑝𝑛 = 𝑓(𝑆𝑛) (4) 

 𝑝𝑖 = 𝑇𝑖 − 𝑇𝑜 (5) 

where 𝑝𝑖  is a period (5) computed as a difference between the activation time 𝑇𝑖  of the 
neuron sending the stimulus and the starting time 𝑇𝑜 of the currently running operation 
in the network, where 𝑝1 ≤ ⋯ ≤ 𝑝𝑠𝑛

. Each ATN neuron counts incoming input stimuli 
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(sn) and sums the charging periods transformed by the function g according to (3). When 

this count achieves the threshold number n, then the function f is evaluated, and the final 
activation period 𝑝𝑛 of the charged neuron n is calculated (4). This means that after the 
period 𝑝𝑛 of charging elapses, the neuron will be activated, its activation time 𝑇𝑛 during 
simulation will be established according to this period and the simulation time To when 
the charging operation was started: 

 𝑇𝑛 = 𝑇𝑜 + 𝑝𝑛 (6) 

The activation time 𝑇𝑛 together with the information about the neuron is added to the 
global event queue (GEQ) that sorts events in the incremental order to control the se-
quence of updating neurons. The GEQ is responsible for activating the neurons in the 
appropriate time (6) allowing for their competitions. 
 The activated ATN neuron switches to the refraction period that prevents cyclic 
retrograde stimulations of mutually stimulating neurons. During the refraction period, 
ATN neurons are insensitive to any input stimuli. After the refraction period, the neuron 
returns to its resting (initial) state waiting for the next stimuli. To switch the neuron from 
its refraction state to its resting state, its parameters must be initialized. To perform this 
efficiently, each ATN neuron stores a special counter of the network operations 
(OPCntr). It points to the number of operation during which it has been updated the last 
time. The OPCntr counter is also stored in the network and incremented by one each 
time when the network is stimulated by new inputs (e.g. starts a new classification pro-
cess). If the OPCntr counter of the neuron is less than the OPCntr counter of the network, 
the neuron variables are outdated and must be updated (e.g. initialized) before the next 
operation on this neuron. After each operation, the neuron OPCntr is updated to be equal 
to the network OPCntr of to avoid the repetitive updating (e.g. initialization) before the 
subsequent updates of this neuron during the currently running operation. Owing to this 
mechanism, neurons are initialized exactly once before they are used in the next 
operation. This mechanism avoids the necessity to initialize variables of all neurons of 
the neural network before starting a new operation, which saves a lot of time. 

When the neuron is activated, it sends stimuli to the connected neurons. If the con-
nected neuron represents another numerical value 𝑣𝑘

𝑚 of the same attribute k, then the 
charging period 𝑝𝑚 of this neuron is calculated from: 

 𝑝𝑚 = 1 − 𝑤𝑘
𝑚,𝑛

 (7) 

where 𝑤𝑘
𝑚,𝑛

 is a connection weight between neurons 𝑉𝑘
𝑛 and 𝑉𝑘

𝑚 representing neighbor 

values 𝑣𝑘
𝑛  and 𝑣𝑘

𝑚. It is defined as the absolute difference between these values 𝑣𝑘
𝑛  and 

𝑣𝑘
𝑚 normalized by the range 𝑅𝑘 of values of the k-th attribute: 

 𝑤𝑘
𝑚,𝑛 = 1 −

|𝑣𝑘
𝑚−𝑣𝑘

𝑛|

𝑅𝑘
 (8) 

The weights between value neurons 𝑉𝑘
𝑚 and 𝑉𝑘

𝑛 are symmetrical, i.e. 𝑤𝑘
𝑛,𝑚 = 𝑤𝑘

𝑚,𝑛
. 

Value neurons representing symbolic data are not connected and weighted. 

In summary, each temporal value neurons 𝑉𝑘
𝑛 representing an input feature 𝑣𝑘

𝑛  is 
connected to at least one object neuron that represents a training sample defined by a set 
of input features. The activated neuron representing a feature 𝑣𝑘

𝑛 stimulates all connected 
object neurons. The stimulus contains the time when this neuron has been activated. 
Object neurons count up the incoming stimuli and compute the sums as defined by (3).  
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4 Associative Temporal Neural Networks 

Associative Temporal Neural Networks (ATNN) are built from associative temporal 

neurons (ATN) and special receptors which transform input data into the time space 

and implement temporal processes between associatively connected neurons. ATN 

neurons connect to reproduce relations between elements represented by these neurons, 

where elements can be single-value features or various objects defined by features or 

other objects. Some objects can define classes or clusters or have a special meaning in 

the network. Associative connections between neurons are created for the known rela-

tionships which can be deduced from the input (training) data. All unique single-value 

data (like numbers, symbols, or strings) are represented by separate neurons connected 

to the receptors which are sensitive for these values. Neurons representing orderable 

values are additionally connected to the neurons representing neighbor values, and the 

connections are weighted (8). The associative representation means that all duplicates 

of the features of each attribute separately are aggregated and represented by the same 

neurons [9, 13]. Therefore, objects defined by a subset of the same features are 

indirectly connected by a subset value neurons representing these features. Objects de-

fined by similar (not the same) features are also indirectly connected through connected 

value neurons representing similar features. Such associative organization of the net-

work automatically groups objects according to their similarities and facilitates the in-

ference processes [11]. For classic training data used for classification tasks composed 

from objects defined by a given number of features, the created network of elements 

can be described by the associative graph data structure (AGDS) [12, 13] that is used 

as a backbone structure of a proposed ATNN structure. Both these structures can be 

further accelerated using AVB+trees [13], which allow typically for less than the 

logarithmic time of the search of appropriate receptors for the input data. Any training 

dataset can be easily transformed into this graph structure as described in [12, 13]. 

Assume that we have a dataset 𝕊 = {𝑃1, … , 𝑃𝑁} consisting of N samples 𝑃𝑛 =
[𝑣1

𝑛 , … , 𝑣𝑘
𝑛 , … , 𝑣𝐾

𝑛] where 𝑣𝑘
𝑛  is a k-th attribute value defining the n-th sample (object) 

𝑃𝑛, and K is the number of attributes. Each unique sample 𝑃𝑛 is represented in the 

ATNN network by the temporal object neuron 𝑂𝑗 where the number of object neurons 

J is less or equal to the number of training samples (J ≤ N) because of possible dupli-

cates of samples in the dataset 𝕊 and their aggregated representation in the ATNN net-

work.  

The training samples represent L classes {𝑐1, … , 𝑐𝐿} represented by L temporal class 

neurons {𝐶1, … , 𝐶𝐿}, and each training sample can belong to one or more classes de-

pendently on the considered classification type (single-label classification or multi-la-

bel classification) [11, 21, 25]. In this paper, we consider only single-label classification 

problems to compare ATNN networks to KNN classifiers. Each unique k-th attribute 

value (feature) 𝑣𝑘
𝑛  is represented by a so-called temporal value neuron 𝑉𝑘

𝑚 in the 

ATNN network. Because the same feature can define many objects in the training data 

set, the number 𝑀𝑘 of the temporal value neurons {𝑉𝑘
1, … , 𝑉𝑘

𝑀𝑘} representing the k-th 

attribute unique values is typically smaller than the number N of all training samples, 

i.e. 𝑀𝑘 ≤ 𝑁 (usually 𝑀𝑘 ≪ 𝑁 for real datasets due to the big number of duplicated 

attribute values defining various objects).   
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Temporal value neurons are also connected to object neurons, which represent train-

ing samples defined by the values represented by these connected value neurons. Con-

nection weights between value and object neurons are equal to one. A group of object 

neurons can also define classes represented by temporal class neurons. The connections 

between object and class neurons are also equal to one. The activation threshold number 

of stimuli of temporal class neurons is set to one, so they immediately react to activation 

of any object neuron that defines a sample of the given class. 

The ATNN network can be used as a k nearest neighbor (KNN) classifier, where we 

will also use a single temporal stop neuron that is connected to all class neurons. This 

neuron is responsible for stopping the network calculations when the demanded goal of 

computations (e.g. recognition, classification, or sorting) is finished. We defined the 

threshold of this neuron accordingly to the task (e.g. 1 for recognition, N for sorting) 

where this network is used. The weights between class and stop neurons are also equal 

to one, reacting to all classified samples immediately, but the threshold of this neuron 

can be set to the required number of searched samples. The activated ATN neurons of 

all kinds will stimulate other connected neurons, and each stimulus includes 

information about the time 𝑇𝑛 (6) of the activation to compute appropriate periods (4) 

for computing sums (3) and charging periods (5) for the connected neurons. 

5 Applying ATNN for Ordering Objects 

The main idea of ATNN networks is to allow neurons to be activated over time in a 

succession that comes from the associative (relationship) strengths, e.g. similarity, be-

tween input data and the object. Therefore, the object neurons representing objects that 

are similar to input data (external stimuli) should be activated faster than neurons rep-

resenting less similar objects. In fact, the ATNN can quickly order all represented ob-

jects (training samples) according to their similarities to the input data (Fig. 2), starting 

from the most similar one(s) (activated earlier, darker red in Fig. 2) and finishing with 

the least similar one(s) (activated later, lighter red in Fig. 2). Here, the similarities 

between represented objects by object neurons and given inputs will be defined by the 

Euclidean measure in the time space of charging periods of temporal value neurons 

representing transformed features into the charging periods.  

Associative Distance Sorting Algorithm using an ATNN network: 

Input: T: training data, x: classified sample, 

Output: sortedObjects: objects sorted in descending order 

OrderingObjects(T, x)  

atnn = CreateATNN(T) 

 GEQ.InitializeSimulationTime()  

 foreach attribute of atnn do 

  attribute.FindAndStartStimulate(x[numberOfAttribute]) // using AVB+trees 

 while (stopNeuron.State < threshold) 

 currentEvent = GEQ.RemoveFirst 

 simulationTime=currentEvent.UpdateTime 

 currentEvent.Simulate() // add activated object neurons to sortedObjects 

return sortedObjects 
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In the first step of this algorithm, the structure of the ATNN network based on AGDS 

[13] is created. Values of each attribute are represented via an AVB+tree [13] that 

supports efficient access, and all operations are processed in at most logarithmic time. 

The stop condition of this algorithm is provided by the temporal stop neuron which is 

connected to all object neurons and which threshold is equal to the number of all pattern 

neurons to stop stimulation when all object neurons are activated. To aggregate 

representation of all duplicates during the construction of the ATNN structure, a special 

insertion operation using an AVB+tree [13] is used to increase counter if the inserted 

value already exists in this structure or to insert it and rebalance the tree (if necessary) 

when the inserted value is new and must be added: 

SearchOrInsertNeuron(value) 

 foreach neuron in node 

  if (neuron.Value == value) 

   neuron.IncrementCounterOfDuplicates() // aggregate their representation 

   return true 

 if (childList.Count==0) // this is a leaf of AVB+tree 

 CreateNewNeuronAndInsertItIntoAVBTreeNode()  // rebalance a tree if necessary 

else 

 if (Neurons.First.Value < value)  

return Neurons.First.SearchOrInserNeuron(value) 

elseif (Neurons.Last.Value > value) 

return Neurons.Last.SearchOrInserNeuron(value) 

else return Neurons.Middle.SearchOrInsertNeuron(value) 

In the second step, the ATNN is stimulated by the sample as long as the stop neuron is 

activated. During this process, a list of activated object neurons is created in the order 

coming from the activation moments of these neurons. Thus, the samples (represented 

by object neurons) are ordered according to the similarity (e.g. defined by the Euclidean 

distance) to the sample presented on the input of the network. To start the stimulation 

process of the ATNN network quickly, the previously created AVB+trees for all 

attributes are used to search for temporal value neurons which will be stimulated 

appropriately to the presented input values. Subsequently, temporal value neurons 

compute their activation moments and put them to the GEQ that handles their ordering 

and triggering in the right simulation time. In each simulation step, always the first 

event from the GEQ is run until the temporal stop neuron is activated. During the 

simulation process, all activated neurons stimulate connected neurons which insert new 

events to the GEQ according to the computed activation periods as described in the 

previous sections. 

The similarity to input data in Fig. 2 is represented by the activation times (marked 

with t in the lowest raw of circles of neurons that represents training samples) – the 

smaller times are, the more similar the training samples are. Such ordering is used by 

various methods, e.g. KNN classifiers, which base their classification decisions on the 

given number of nearest neighbors, various sorting routines, recognition, clustering, 

and classification algorithms. This ordering of ATNN networks is also quite fast be-

cause the algorithm needs to stimulate the neurons only once for a given input (training) 

dataset to get results. 
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Fig. 2. Example of sorting objects by the ATNN according to the similarity to the given input 

sample [5.4, 2.8, 3.6, 1.3] to 15 Iris samples [26]. The temporal value neurons representing fea-

tures of four attributes are stimulated laterally by the previously activated value neurons as 

marked by blue arrows. The sorted training samples are represented by temporal object neurons 

in the last row which compute their activation times using an Euclidean distance of activation 

times of the stimulating value neurons as presented on a sample object neuron activated in time 

0.12. Each neuron presents the value or ID in the upper part, the activation time in the middle, 

and the number of its activations in the bottom part of its circle. The presented activation times 

of object neurons reflect the similarity of the input sample to all training samples from this da-

taset. The similarities expressed by the activation times produced the following sequence of train-

ing samples: P:6, P:10, P:8, P:12, P:7, P:9, P:15, P:14, P:11, P:13, P:2, P:4, P:1, P:3, and P:5. 

The computational complexity of ordering all objects according to their similarities 

to the given input sample is linear 𝑂(𝑁 + ∑ ℎ𝑘(𝑁)𝐾
𝑘=1 ) ≤ 𝑂((𝐾 + 1) ∙ 𝑁), where N is 

the number of objects, and K is the number of attributes, and the function ℎ𝑘 defines the 
number of unique values for the k-th attribute. If we do the same operation on a tabular 
data structure, we need to compute similarity factors for each object and sort final results 
according to these factors. This operation would cost log-linear time O(K ∙ N log N) for 
quicksort, heapsort, or merge sort algorithms [2] or O(K ∙ N) for counting sort or radix 
sort [2]. Thus ATNN networks based on the AGDS structure can theoretically have the 
same or better complexity than the best classic sorting algorithms based on a tabular 
structure especially when the sorted data consist of many duplicated values defining ob-
jects in the dataset. Unfortunately, the simulation of temporal neurons on a sequential 
machine (which are most common today) takes extra time because events (representing 
activation times of neurons) must be ordered, so the presented sorting on ATNN is not 
always faster than classic approaches, however, on asynchronously parallel machines, it 
would run much faster. Therefore, the presented sorting approach using ATNN networks 
can only explain how biological neurons can deal with ordering tasks when working on 
a different computational platform than contemporary computers.  

The ATNN sorts objects starting from the most similar, so the efficiency of ATNN 

will be better when searching for a limited subset of the most similar objects because 

the classic approaches usually require to compute all similarities and sort all objects 

before selecting the most similar ones. The results presented in Table 1 show the sorting 

times of the most similar objects to the given input sample computed using the classic 
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quicksort approach on data stored in tables compared to the sorting made by the simu-

lated ATNN networks on a sequential machine. 

Table 1. Comparisons of the recognition speed of the classic and ATNN sorting routines. 

  Training   
Datasets* 

No of  
Instances 

No of  
Attributes 

Unique  
Features 

Sorting Time [timer ticks] 

Classic ATNN 

Immunotherapy 90 7 27,46% 5456 487 

Iris 150 4 20,50% 21825 596 

Wine 178 12 59,74% 35466 2565 

Banknote 1372 4 91,40% 43651 16136 

Wine Quality Red 1599 11 8,26% 35466 10924 

Eye 14980 14 2,58% 504719 428724 

HTRU2 17898 8 52,81% 373765 1150166 

Telescope 19020 10 77,34% 428329 1591250 

Credit Card 30000 23 25,30% 2515411 2272482 

Shuttle 43500 9 0,26% 774812 2600721 

Drive 58509 48 59,75% 18036210 27835709 

Skin 245057 3 0,10% 1355921 556790 

* Datasets were taken from UCI ML Repository [26] 

In most of the cases, ATNN network is faster than quicksort, but the major goal of this 
paper is to prove that data can be transformed into the uniform time space and temporal 
spikes, not a better processing speed on the contemporary computer. Thus a higher effi-
ciency of our approach is an extra bonus point. 

6 Applying ATNN for Recognition Tasks 

The first studies in comparisons of classic implementation of KNN classifiers based on 

the associative graph data structures (AGDS) were described in [12]. The results 

demonstrated that the associative organization of data with additional relations between 

values of the same attribute could greatly accelerate KNN classifiers. In this work, we 

show that KNN classifiers can also be modeled by ATNN networks and that the clas-

sification process can be fully automatic. 

If 𝑔(𝑝𝑖) = 𝑝𝑖  and 𝑓(𝑆𝑗) = 𝑆𝑗  are defined as the identity functions, then the computed 

activation periods reflects the normalized Manhattan distance between input data and 
the features defining an object represented by an object neuron: 

 𝑃𝑛
𝑘 = ∑ 𝑝𝑖

𝑛𝑗

𝑖=1
= ∑

|𝑣𝑘
𝑚−𝑣𝑘

𝑛|

𝑅𝑘

𝑛𝑗

𝑖=1
 (9) 

 If 𝑔(𝑝𝑖) = 𝑝𝑖
2 and 𝑓(𝑆𝑗) = √𝑆𝑗, then the computed activation time reflects the Eu-

clidean distance between input data and the features defining an object represented by 
an object neuron: 
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 𝑃𝑛
𝑘 = √∑ 𝑝𝑖

2
𝑛𝑗

𝑖=1
= √∑ (

|𝑣𝑘
𝑚−𝑣𝑘

𝑛|

𝑅𝑘
)

2
𝑛𝑗

𝑖=1

 (10) 

Hence, ATN neurons can be used to compute the nearest neighbors for KNN classifiers 

because the Manhattan or Euclidean distances of training samples to the classified sam-

ple can be transformed into the activation periods of object neurons representing these 

samples. The charging periods linearly change as these distances, so they model origi-

nal training data space in the internal time space of ATNN networks. Therefore, the 

first k activated ATN temporal object neurons represent the same k nearest neighbors 

(objects) as computed by the KNN classifier. 

 

Fig. 3.  Example of recognition (for k=1) of the most similar object (here P:6) to the presented 

inputs [5.6, 3.0, 4.1, 1.3] made by the ATNN network created for the training data consisting of 

15 Iris samples [26]. The temporal value neurons for each attribute separately are presented in 

the four top rows. In the fifth row, there are temporal object neurons defined by the appropriate 

combinations of temporal value neurons (representing training samples). The sixth row consists 

of temporal class neurons. The temporal STOP neuron in the last row stops the simulation when 

the most similar object is found. Neurons painted in red symbolized the activated neurons at 

different times. Only activated neurons stimulate other connected neurons which do not always 

achieve activations (neurons painted in green). White colored neurons do not take part in the 

presented recognition process, which saves time in comparison to the KNN classification process, 

where all training samples take part in the classification process. 

When k=1 the classification process points out the most similar object to the pre-

sented sample on the input, so this process can also be viewed as a recognition process 

as shown in Fig. 3. The comparisons of the speed of the classic KNN classifier with 

k=1 and ATNN used in recognition tasks are presented in Table 2 where ATNN net-

works win in recognition speed. 
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Table 2. Comparisons of the recognition speed of the classic and ATNN approaches. 

  Training   
Datasets* 

No of  
Instances 

No of  
Attributes 

Unique  
Features 

Recognition [timer ticks] 

Classic ATNN (k=1) 

Immunotherapy 90 7 27,46% 301 38 

Iris 150 4 20,50% 282 25 

Wine 178 12 59,74% 309 84 

Banknote 1372 4 91,40% 476 33 

Wine Quality Red 1599 11 8,26% 550 81 

Eye 14980 14 2,58% 2814 363 

HTRU2 17898 8 52,81% 2863 84 

Telescope 19020 10 77,34% 3233 85 

Credit Card 30000 23 25,30% 7319 7472 

Shuttle 43500 9 0,26% 5629 4803 

Drive 58509 48 59,75% 25948 1429 

Skin 245057 3 0,10% 19741 79 

* Datasets were taken from UCI ML Repository [26] 

In most of the cases, the proposed approach was more efficient than the classical 

one. The results were obtained on a sequential machine and were from 2% slower in 

case of Credit Card data set to 250 times faster in case of Skin data set than the classic 

KNN approach. Notice, that our temporal coding network would be much faster if im-

plemented on a network of neurons, since neurons pass information to its neighbors 

concurrently, while classic algorithm would have no such additional efficiency increase 

since finding the nearest neighbor would require sequential comparisons. However, 

once again, the high efficiency of our approach was its extra bonus. We aimed to 

demonstrate that both ordering and recognition of the input data was possible using 

temporal coding of input stimuli and associative temporal neurons that may represent 

sensory values, objects, and classes. A network made of such associative temporal neu-

rons may be a useful addition to neural network structures that work with numeric as 

well as symbolic data. Such networks may be good to obtain grounded semantic mem-

ories needed for efficient learning and motor control functions in robots.  

7 Conclusions and Remarks 

This paper presented temporal coding of the input data using associative temporal neu-

rons and the resulting associative structures named associative temporal neural net-

works. The contribution of this paper was to show that it is possible to code features of 

various attributes using time, namely, various periods of charging and activations of 

neurons. The temporal coding also requires an appropriate associative neural structure 

which reproduces relations between features and objects. That is why we used the as-

sociative graph data structure AGDS to reproduce the structure of features and samples 

by value neurons and object neurons which were appropriately connected, and the con-

nections weighted to emphasize the relationships between them. On this basis, neurons 

and their connections were set up to be charged in different periods according to the 

similarity of the features and objects to the presented input samples. As a result of such 
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coding, temporal neurons were activated over time after different periods, which repro-

duced the Euclidean or Manhattan distance between training samples and the input 

samples. Using such a network, we could define a sorting routine which allowed to 

designate the most similar samples and sort them due to the computed similarities. The 

computed similarities were used to designate k nearest neighbors, order samples, or 

recognize the most similar sample. The created networks can be used for classification, 

sorting, and recognition tasks. Thanks to the use of the associative structure of the cre-

ated associative temporal neural networks, not all objects need to be compared in 

ATNN networks, so we can usually compute results faster, especially when running 

them in parallel. In spite of the experimentally proven efficiency, the major goal of this 

paper was to show how original data space can be transformed into the time space. 

Experiments proved that the time-based computations using associative temporal neu-

rons are possible, and classic coding of input data can be replaced by the presented 

temporal one using the time space instead of the original one.  

This work was supported by the grant from the National Science Centre, Poland DEC-

2016/21/B/ST7/02220 and AGH 11.11.120.612. 
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