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Abstract.  In this paper we present our work directed at building a simple mo-
tivated learning agent with symbolic I/O. To do this we created a simulation 
environment within the NeoAxis game engine. The purpose of this work is to 
explore autonomous development of motivations and memory in agents within 
a simulated environment.  The approach we took should speed up the develop-
ment process, bypassing the need to create a physical embodied agent as well as 
reducing the learning effort.  By rendering low-level motor actions such as 
grasping or walking into symbolic commands we remove the need to learn ele-
mentary motions.  Instead, we have several basic primitive motor procedures in 
a procedural memory, which can form more complex procedures. Furthermore, 
by simulating the agent’s environment, we both improve and simplify our con-
trol over the learning process. As a result, there are fewer adaptive learning var-
iables associated with both the agent and its environment, and learning takes 
less time, than it would in a more complex real world environment. 
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1 Introduction 

A significant challenge in robotics is to develop autonomous systems that can reason 
and perform missions in dynamic, uncertain, and uncontrolled environments [1].  
Therefore, recent research efforts are directed towards developing autonomous cogni-
tive systems. Existing methods have made a significant progress in this direction 
[2,3,4,5] and the topic is actively researched in laboratories around the world.   

Current cognitive architectures, such as SOAR [6], ACT-R [7], Icarus [8], LIDA 
[9], Polyscheme [10], and CLARION [11], either have to rely on predefined goals 
(without self-motivated learning) or predefined rules (without autonomous reasoning). 
Due to their reliance on predefined scripts and heuristic rules, current robotic systems 
lack autonomy, self-adaptability, and reasoning capabilities either to accomplish 
complex missions or to handle ever changing missions in uncontrolled environments.  

Another important direction in studying development of cognitive systems and ro-
bots is based on the idea of embodied intelligence. The principles of designing robots 
based on the embodied intelligence idea were first described by Brooks [12] and were 



characterized through several assumptions that would facilitate development of em-
bodied agents. 

Since our aim is to develop intelligent machines we introduce internal motivations, 
creating abstract goals not previously known to the designer or the robot. Intelligent 
systems will adapt to unpredictable and dynamic situations in the environment by 
learning, which will give them a high degree of autonomy, making them a perfect 
choice for robotics and virtual agents [13].  The recently developed mechanism of 
motivated learning (ML) has such capacities [14].  

With ML, robots can achieve various goals imposed by different challenge scenar-
ios autonomously. They develop higher level abstract goals and increase internal 
complexity of representations and skills stored in their memory. Our aim in this work 
is to develop simulation tools of virtual autonomous systems with ML mechanism. 

Most current autonomous robot systems concentrate on the cognitive development 
of individual robots [15,16,17]. They mainly focus on developing simple local behav-
ior control algorithms under heuristic rules, and then seek to emerge global behaviors.  
Adding intrinsic motivations and advanced reasoning capabilities improve the robots’ 
individual capabilities. In addition, improving robots’ learning in complex dynamical-
ly changing environments is very important.  

Therefore, we work to provide a systematic framework for developing cognitive 
robots that can autonomously accomplish a wide variety of real-world complex mis-
sions in dynamic, uncertain environments.  We have selected NeoAxis to build a vir-
tual 3D environment for embodied motivated agents. That environment is able to 
simulate wide scope of robot types, ranging from wheeled robots, along with flying or 
swimming robots, to humanoid robots. The second reason why we utilize NeoAxis is 
that NeoAxis has good support for physics modeling. We can assign static and dy-
namic friction parameters, mass, bounciness, hardness, etc., to obtain real-world rep-
resentation of objects and different material types. Objects could be attached to one 
another to create complex structures, like a car is composed of wheels, body, wind-
screen, and engine. It is also possible to create environment rules, i.e., a tree produces 
apples in certain intervals or times.  

The rest of this paper is organized as follows: In the section 2, we discuss the mo-
tivated learning agent and how it learns to interact with its environment. We discuss 
how pains are generated and adjusted and how goals are selected.  Following this in 
section 3, we discuss the simulation of a virtual OML agent.  Finally, in section 4, we 
discuss how we integrated the agent into the NeoAxis environment.  This includes our 
current work, and our plans to further advance the simulation tool. 

2 Motivated Learning Agent Memory Organization 

The motivated learning (ML) agent interacts with the virtual environment changing it 
by its actions and receiving rewards (external and internal) for its actions. In this im-
plementation of the motivated learning agent we assume that both sensory inputs and 
motor outputs are symbolic, and they provide interface to the virtual environment. 



ML uses a neural network where each sensory neuron represents an object and each 
motor neuron represents an action. 

The ML system’s neural network, in addition to sensory S and motor M neurons, 
contains pain center neurons P that register the pain signals, and goal neurons G re-
sponsible for pain reduction.  Selected pain center neurons are connected to the exter-
nal reward/punishment signals.  In RL these neurons receive a reward or punishment 
signal according to the training algorithm, and in ML they receive primitive pain sig-
nals that directly increase or decrease their activation level.  In ML, abstract pain 
centers are created through the goal creation mechanism [14,18] and are activated via 
an interpretation of sensory inputs. A goal is an intended action that involves a senso-
ry-motor pair.  To implement a goal the agent acts on the observed object. All pain 
neurons are initially connected to goal neurons with random interconnection weights. 
All goal neurons and pain neurons are subject to Winner-Take-All (WTA) competi-
tion between them.  The number of goal neurons is equal to the number of sensory-
motor pairs.  In the symbolic representation each neuron represents a single symbol, 
pain, goal or action. Fig. 1 shows symbolically the interconnection structure, between 
S, P, B, G and M neurons.  In Fig. 1 an abstract pain center Pk connections to its sen-
sory, bias, goal and motor neurons are shown.  

 
Fig. 1. Connections between sensory, motor, bias, pain and goal neurons. 

2.1 Bias signals, weights, and associated pains 

A bias signal triggers an abstract pain and is defined depending on the type of per-
ceived situation. If the autonomous agent needs to maintain a certain level of re-
sources, the bias reflects how difficult it is to obtain this resource or in a more general 
case, how difficult it is to perform a desired action. Resources can be either desired if 
their use can reduce the agent’s pain or undesired if they can increase the pain. Thus 
the agent must first have an experience to determine if the resource is desired or unde-
sired to introduce a resource related bias signal.  



The bias signal for desired or undesired resources is calculated from the resource 
level of resource and its desired/undesired limits as follows:  

! = ! ∗ !!!! !!
!!!! !!

!!
     (1) 

where Rd is a desired resource value (observed at a sensory input si). !  is a small posi-
tive number to prevent numerical overflow, ! regulates how quickly pain increases, 
! > 0 and !! =1 when the resource is desired, !! =-1 when it is not desired, and 
!! = 0  otherwise (when the character of the resource is unknown).   

Initially all B-Pk weights wbp are set to 0.  Thus, the machine initially responds only 
to the primitive pain signals P directly stimulated by the environment.  Each time a 
specific pain P is reduced the weight wbp of the B-Pk bias link increases.  However, if 
the goal activated by the pain center P was completed and did not result in reduction 
of pain P, then the B-Pk weights wbp are reduced. Since the bias weight B-Pk indicates 
how useful it is to have access to a desired S, a bias weight adjustment parameter Δb 
must be properly selected to reflect the rate of stimuli applied to a higher order pain 
center.  This rate reflects how often a given abstract pain center Pk was used to reduce 
the lower order pain signal P.   

2.2 Changes of the goal related and curiosity weights 

Initial weights between P-G neurons are randomly selected in the 0-αg interval (a 
good setting will be between 0.49 and 0.51 of αg for faster learning).   Assume that 
the weights are adjusted upwards or downwards by a maximum amount µg.  In order 
to keep the interconnection weights within prespecified limits (0< wpg <αg ), the value 
of the actual weight adjustment applied can be less than µg  and is computed as  

Δa = µg  min (| αg – wpg |, wpg)  where αg ≤ 1    (2) 
and 

!! = !! 1 − !
!
atan   10 ∗ !!(!!)  

!!(!!)

!!
 where !! = 0.3    (3) 

Using (4) produces weights that slowly saturate towards 0 or αg.  (For quick learn-
ing set (µg = αg / 2). No other weights from other pain centers to this specific goal are 
changed, so the sum of weights incoming to the node G is not constant.   

If, as a result of the action taken, the pain that triggered this action increased (as 
determined by pain reduction parameter !! ), then the wpg weight is decreased by Δa, 
and if the pain decreased, then the wpg weight is increased by Δa   

!!" = !!" + !! ∗ ∆!.     (4) 

2.3 Action value determination for OML agent: 

In the opportunistic ML agent (OML) the “best action” is determined by the linear 
heuristic OML model, using action “Value” Vi  



!! =
!!! ∆!∗ !!"#!!!"#$

!!"#!!!"#$ !      (5) 

where ∆! is the estimated change in pain over 1 cycle for the primitives.  Pi is the 
pain associated with the action under consideration, !!"# is the required motor time to 
complete the action, and !!"#$ is the time required by the agent to travel to a distant 
location to perform the action.  We generally assume that pains won’t chance over the 
course of the action.  The action with the highest value of Vi is the one chosen by the 
OML agent. The selection of actions evaluated in (5) depends on the number of pains 
above threshold and whether or not they have been tried previously.  For example, a 
known “good” action will have precedence over one of unknown utility even if the 
“unknown” action may be more advantageous in terms of distance to travel and po-
tential pain reduced, simply because it is an unknown quantity. 

3 NeoAxis Implementation 

A cognitive architecture organization based on the ML idea was introduced in [19]. 
Since this architecture uses an emergent systems approach, it is essential to have a 
physical body and a physical environment. However, making a physical robot is ex-
pensive in terms of costs and design effort, so it is very helpful to use a computer 
simulation that can imitate real-time physical conditions. Thus the effort was switched 
from using a physical robot to making a simulated environment with a virtual robot.  

We implemented the basic infrastructure of the ML agent in NeoAxis describing 
the motivated agent functionality in C++ and in C#.  The virtual environment for ML 
agents built in NeoAxis is a 3D simulated world governed by realistic physics to pre-
sent the robots with a complex, challenging world. This simulation environment can 
be separated into two major components. The first one is the animation controller that 
handles display tasks and transitions the agent from one action to another. The second 
component processes the agent’s behaviors and defines the potentially sophisticated 
rules governing the virtual world in which the agent lives.  The agent working in the 
created environment discovers these rules and learns to use them to its advantage.   

To test the ML agent’s learning process, we built a sample virtual environment. In 
this environment, we created resources that the agent could use (presented in Table 1), 
and we endowed the agent with the ability to act on the resources (listed in Table 1). 
The agent's actions are driven by pains. Only two pains listed in Table 1 as primitive 
pains are predefined. One is hunger which increases over time and the other is Curios-
ity. Curiosity pain makes the agent explore the environment when no other pain is 
detected and until valid actions are learned. Other pains are learned by the agent using 
the goal creation methodology. The agent observes which resources it needs and in-
troduces the need to have them. We also defined world rules, which describes which 
agent actions make sense and what their results are. Those rules are listed in Table 1. 
The agent’s actions result in various outcomes like increasing and decreasing resource 
quantities, as well as in reducing some pains.  



Table 1. List of valid Resource-Motor pairs and their outcome  

3.1 Simulation Algorithm of OML Agent in NeoAxis 

In order to properly test our agent we needed to embed it in an environment and pro-
vide it with a means to observe the environment and interact with it. To do this, we 
expanded on our earlier testing methodologies and created the basis for a simple, but 
effective test bed within the NeoAxis engine. The basic steps of OML agent simula-
tion in NeoAxis are as follows: 

After initialization, the algorithm performs successive iterations.  Each iteration 
consists of the Agent Phase, where the agent observes the Environment, updates its 
internal state, and generates motor outputs, and an Environment Phase where the en-
vironment performs the agent’s actions and updates itself accordingly. 

Our simulation of the virtual environment in NeoAxis implements all the preceding 
rules. To better visualize resources quantities, current task, pains levels and the agent's 
memory, we added windows to the simulation, which display the current state of the 
agent and the environment as shown in Fig. 2.  

 

 
Fig. 2. Main simulation view with displayed simulation state in windows 

Motor Resource 
Outcome 

Increase Decrease Pain reduce 

Eat food from Bowl  Food in Bowl Hunger 

Take food from Bucket Food in Bowl Food in Bucket Lack of food in Bowl 

Buy food with Money Food in Bucket Money Lack of food in Stock 

Work for money with Hammer Money Hammer Lack of Money 

Study for job with Book Hammer Book Lack of Job 

Play for joy with Beach ball Book Beach ball Lack of School  



When a pain level is above threshold it displays it in red. In this screenshot, the 
agent action is driven by 'Lack of Money' pain. The agent tries to learn valid actions 
and their outcomes. Sometime the agent takes a nonsense action like "Play for joy 
with hammer" in the simulation. Nevertheless, even actions such as this are useful for 
agent because by taking them, it learns that they are useless. The memory window, 
presented in Fig. 2 on the left, displays the memory state. When the color is gray then 
it means that the agent has not learned usefulness of this action yet. When the color is 
white then this means that the action is valid, if the color is black than the action is 
invalid. Each row in the  “memory” corresponds to a driving pain, while each column 
represents a possible action. Once the agent learns all valid actions and its pains are 
under control, then the agent does the "Go rest on mattress" action. This motor action 
is a desirable final state for the agent. 

We have run multiple simulations where we modified resources quantities and mo-
tor action times. By using a human controlled character we tried to disturb the ML 
agent via the by getting in its way or moving resources to different location. When 
starting resources were sparse, the agent couldn't learn all valid actions because it ran 
out of resources to test new actions. And sometimes when resources like food were 
plentiful, the agent did not bother to learn anything new once the hunger pain was 
under control. When action times were too long the agent couldn't satisfy all pains. 
But when we select proper simulation parameters the ML agent proves to learn cor-
rectly even in a complex and changing environment. 

4 Conclusions 

In this paper, we have presented our motivated learning agent with a focus toward 
simulating the agent within a graphical environment.  We also included the discussion 
of several new modifications to our algorithm, including new calculations for bias 
signals and wpg weights.  Additionally, we introduced greater complexity into the 
environment by introducing undesirable resources. This includes changes in !!calcu-
lation and the calculation of desired resource levels.  By adding these new features 
we’ve improved the agent’s ability to handle its environment as well as our own abil-
ity to implement complex and interesting environments for our agents to interact with. 

The simulation results of the ML agent in the virtual 3D environment for embodied 
motivated agents in NeoAxis prove that our theoretical assumptions for motivated 
learning agent memory organization, determination of bias signals, weights, goal 
creation and selection, associated pain calculations, were valid. The OML agent was 
able to learn all environment rules, and keep the agent's pains under control.  

Our further research will focus on the extension of the simulation, specifically, 
making a more complex environment and to introduce friendly and hostile characters. 
It will be also worthwhile to test if multiple ML agents could cooperate to obtain 
common goals. 
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