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Abstract. This paper presents an extension of the Motivated Learning model 
that includes environment masking, and opportunistic behavior of the motivated 
learning agent. Environment masking improves an agent’s ability to learn by 
helping to filter out distractions, and the addition of a more complex 
environment increases the simulation’s realism. If conditions call for it 
opportunistic behavior allows an agent to deviate from the dominant task to 
perform a less important but rewarding action. Numerical simulations were 
performed using Matlab and the implementation of a graphical simulation based 
on the OGRE engine is in progress. Simulation results show good performance 
and numerical stability of the attained solution. 
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1   Introduction 

In this paper we expand on our previous Motivated Learning (ML) work and show 
how it can yield an opportunistic learning system. The goal of this paper is to discuss 
the changes made to the algorithm presented in [2, 9] and to indicate how they yield a 
more complex and efficient system. 
	
  Motivated Learning is defined as an extension of reinforcement learning that uses 

intrinsic motivations as a way to build a motivated agent. These motivations are 
internal to the agent and are derived from various “pain” signals. “Pain” signals 
represent an underlying need, drive, or irritation. These signals can originate from 
internal states of the agent (memories and/or other internal drives) or external 
environmental states such as basic needs for sustenance and shelter. 

 This previously proposed system [2] is self-organizing and controls an agent’s 
behavior via competition between the dynamically changing needs of the system. In 
some respects, ML can be seen as an extension of reinforcement learning, in that it 
receives its reinforcement from the environment for its primitive objectives (i.e. its 
most basic needs). Upon this initial structure a more complex systems of goals and 
values can be built to establish complex internal motivations for advanced stages of 
development. This includes the creation of abstract concepts and needs and the 
creation of internal rewards for satisfying these needs.  



 However, unlike reinforcement learning, motivated learning, does not suffer from 
the “credit assignment” problem [6, 7]. Reinforcement learning typically spreads the 
value of a reward to earlier actions via a temporal difference mechanism; however, 
this often leads to credit assignment to actions that had no relation to the reward. In 
contrast, the ML approach, while not necessarily immune is much more resistant to 
this problem due to the focus on motivations and the creation of abstract needs. The 
abstract pains/needs serve to “break-up” the reward chain to the “primitive” needs (or 
basic reward in RL) and improve an agent’s overall learning ability. 

 Motivated learning also has some similarities and uses some elements of BDI 
(belief-desire-intention) agents. The work by Rao and Georgeff [3] is one of the first 
papers to consider how an actual BDI agent might be implemented and serves as a 
bridge between BDI theory and actual practice. Others such as Dastani et al. [4] and 
Wooldridge [5] deal more with individual aspects of BDI such as the deliberative 
processes and the open-mindedness of an agent.  

The presented ML model can be related to a BDI model in several respects. ML 
has belief in the sense that it observes the environment and extracts rules and state 
information to create its own internal “representation” of the state of the world around 
it. The ML agent’s beliefs link its perceptions to semantic knowledge about the 
environment as coded through the system of perceptions, pain centers, goals, and 
planned actions. Desires in BDI agents correspond to motivations as expressed by the 
pain centers in ML. The pains (or needs) compete for attention and are not handled 
unless one of them dominates or passes some threshold. And lastly, intentions are 
represented in the ML agent as the selected (or preferred) method for implementing a 
goal chosen by the agent. The most notable difference between BDI and ML agents is 
that BDI agents have their actions predetermined by their designers, while ML agents 
create their own as they learn to exist within their environment. BDI agents lack the 
ability to define more complex abstract motivations as is typically performed by ML 
agents. 

In our earlier work [2], we presented a basic implementation of a goal creation 
system and the motivated learning idea. In this paper, several enhancements of ML 
are implemented, ranging from enhancements to the environment and the ability to 
attempt and track multiple tasks. Our current work is modified to accommodate the 
computational model of a cognitive machine [1]. We discuss the effects these 
enhancements have had on the ML algorithm. Finally, we discuss ongoing work and 
present our future plans. 

 

2   Design of the Motivated Learning System  

Motivated Learning uses a neural network to weigh its options and create goals. Goals 
are created not only in response to externally set motivations (primitive pains) but 
also in response to needs determined at the various levels of abstract goals created by 
the machine during the learning process. As the machine learns, it develops 
associations between its percepts and builds representations of discovered abstract 
concepts. Initially these representations relate directly to its perception of the 



environment, however, over time, and with experience, the machine will begin to 
perceive increasingly complex relationships and behaviors. 

In order to satisfy an agent’s motivation, a mechanism is needed to select which 
goals, or actions, to pursue. This mechanism needs to be able to process existing 
motivations and build new ones. Signals representing various abstract pains will 
compete against each other with input from the environment and other parts of the 
agent’s architecture. Additionally, as the machine effects the environment, the 
changes in the environment affect the machine. These changes will be perceived by 
the agent and influence its cognitive process. It is possible, however, to partially block 
outside influence in instances where it is “desirable” for the machine to focus on some 
internal mental task. For instance an agent may need to spend time performing mental 
analysis of various possible scenarios, steps, and combinations of actions needed to 
perform the task.  
 Once the agent determines the dominant need/pain it will attempt to choose a goal 
or action to remedy the pain. To do so, it uses a winner-take-all (WTA) neural-
network (NN) based approach, whereby bias weights and goal weights are decreased 
or increased based on the success or failure of a particular action. In the case of bias 
weights, they act on the previously mentioned pain biases, and increase when the 
resource associated with a specific pain is shown to be of relevance. However, they 
decrease gradually when a resource (or pain) is unused. Goal weights increase when a 
pain is decreased by the completions of the action associated with the goal. They 
decrease when the pain is unaffected, or worse, increased by the goal implementation. 
For a more detailed overview of the basic internal structures behind a ML agent refer 
to [2].  

2.1   Expanded Environment and Masking 

Presented in [2] environment for testing the ML agent consisted of only 6 sensors and 
6 motor commands allowing for a total of 36 possible goals/actions.  

While this environmental set-up is an appropriate first step, it is too simple to 
properly evaluate the efficacy of the model. Therefore, a significantly more complex 
environment has been implemented (see Figure 1) that utilizes 17 sensors and 26 
motor commands for a total of 442 different possible goals/actions. This leads to a 
much longer search time for the correct actions.  

In the basic simulation, there is only a single primitive pain, while in the more 
complex simulation, depicted in Figure 1, there are three primitive pains with six 
resources and 8 motor commands directly associated with them. Thus, at the very 
beginning of the expanded environment, the agent has a greater number of choices to 
process than in the basic simulation. To improve its learning in such environment we 
developed goal “masking”.  

The idea behind the use of masking is to block certain sensors and motor 
commands so that the agent does not perceive them until a certain time or 
environmental state is attained. The “masked” environment, combined with the 
masking of motor commands, emulates guided learning. The agent is not directly told 
what to do, it is guided and accelerates its learning by limiting available options. 
 



 
Figure 1. Expanded Environment. 

 Currently environments are focused on resource consumption. However, work is 
currently being undertaken to expand into areas such as location, motion, on/off 
options, and so on. 

2.2   Resource Utilization and Multi-cycle Task/Goals 

At the beginning of a simulation, the agent does not know which resources relieve 
what pains, nor does it know how the use of one resource impacts another one. 
Exploring a common situation such as dealing with “hunger” presents a good example 
of resource utilization. In this example, hunger is the pain, and the associated resource 
can be represented as blood sugar. When hungry the machine eats, but it does not 
know how much food it needs to consume to alleviate its hunger pain. As the 
simulation progresses, the machine will gradually be able to estimate the relationship 
between food and blood sugar level by evaluating the hunger pain. It does this by 
calculating the ratio of expected/desired pain reduction vs. actual pain reduction and 
determines the amount of resource needed by comparing it to what was used 
previously and its effects on the pain. Refining the ratio estimation will continue 
every time the hunger pain is above threshold. Additionally, because pain is a 
logarithmic function of resource utilization and because wBP changes with time 
affecting the pain value, the ratio will continue to change over time.    
 Goals are defined in our system as a need, or in BDI terms, a desire to reduce a 
specific pain. A task is an action selected by the machine in the hope that it will 
reduce the dominant pain. In a real world, it will not always be possible to complete a 
task or action in one cognitive cycle. Therefore, the system has been modified to 
allow for the effort required to perform the actions selected. In the current 
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implementation, effort requirements are based solely on the amount of time needed to 
perform the selected motor action. The implementation takes into account the quantity 
of resource consumed to determine how long it takes to complete an action (to reduce 
pain below threshold) and travel time in cases where movement is needed.  However, 
the rate at which pains change is not necessarily constant and depends on the task.  

2.3   Opportunistic Behavior  

The following describes an opportunistic task selection system, whereby the agent can 
decide to pause in execution of its current task to perform another task. In order to 
select another task, there needs to be sufficient difference in the required effort or 
change in the pain levels for the deviation from the original task to be worthwhile. In 
order to decide the value of a task (action value), the level of the pain that initiated the 
task, time needed to complete the task (shorter is better), and how useful is the task, 
are taken into account:  

!"#$%&  !"#$% =    !
!!∆!

! +    ∆!!  .      (1) 

The amount of time needed to perform the action is represented by ∆!, P is the pain 
considered for reduction, and ∆!!  represents the predicted changes in the pain levels. 
The agent computes “Action Values” in conjunction with wPG weights generating a 
“Task Value” for all possible actions. It then operates on the winning action.  If an 
ongoing action is interrupted, the agent can resume it where it was left off. The 
biological and algorithmic reasoning for “opportunistic behavior” has the potential to 
be fairly complex. However, we take a relatively simple approach by attempting to 
evaluate the “worth” or a task in progress against that of other potential tasks.  

3   Simulation of Motivated Learning in Virtual Environments 

Virtual environments are excellent developmental platforms for embodied 
intelligence concepts. Many robotics projects such as the iCub [8] make use of 
simulated environments. The iCub project is an open hardware and software platform 
for developmental robotics. Of course, it is not practical for most people to purchase 
the iCub hardware (over $200,000 for a complete robot), meaning many have to rely 
on a virtual environment, the iCub Simulator, which is included in the free software 
package.  

The initial versions of the Motivated Learning software [9] used a very simple 
simulated environment to demonstrate its advantages over RL; however, this is 
inadequate for testing of more complex behaviors and systems.  

This is why we are working on integrating our agent with NeoAxis [10]. NeoAxis 
provides a graphical game engine with many existing assets and the ability to add 
more as needed. It is designed to be easily modifiable by users, and is provided as a 
free SDK for non-commercial use. The NeoAxis engine itself is based on OGRE 
(Object-oriented Graphics Rendering Engine) [11]. Figure 2 shows an image from 
one of the demo maps included in the NeoAxis SDK. 



 

 
Figure 2. NeoAxis graphics example. 

To embed the ML agent into NeoAxis we decided to modify the game’s AI and 
integrate the agent into the decision making part of the code. Additionally, a new 
class of environmental objects referred to as “Resources” was created to simplify the 
transition. Integrating the ML agent required providing information from the 
environment to the agent and receiving and interpreting the agent’s responses.  

3.1   Simulation and discussion of results 

While at the time of writing integration with NeoAxis is under development, the ML 
agent described in Section 2 is fully operational.  

Figures 3 and 4 depict the results from the simulation in a more complex 
environment shown on Figure 1. Figure 3 shows resource utilization for simulated 
environment over a period of 30,000 iterations. The figure displays the results in 2000 
iteration increments, or to clarify from zero to 2000, from 6000 to 8000, from 12,000 
to 14,000, and so on. Figure 4 displays iterations in the same manner as Figure 3.  
Notice in Figure 4 how the pains stabilize at relatively low levels. And while there is 
at least one instance where the pains spike to greater levels, once the machine learns 
how to handle them they stabilize once more.  

3.2   Impact of opportunistic behavior on results 

In section 2.3 several changes to the original motivated learning algorithm were 
discussed including, an expanded environment model, masking of sensors and motors, 
quantitative rather than probability based resource availability, actions requiring 
multiple cycles, and opportunistic behavior.  

One can observe how increasing the complexity of the environment changes the 
simulation dynamics. The most obvious effect is that the simulation requires longer 
time to run in a more complex environment. From Figure 4, it is apparent that only a 
fraction of the available resources have been utilized in 30,000 iterations. This is 
partially an effect of masking, since many resources are not available until the system 
reaches a higher level of development.  

The effect of masking sensory inputs and motor commands should be clear. With 
higher “level” sensors and motor commands masked until the agent needs them, the 
agent will have fewer options to select from, and thus will be able to learn how to 



navigate the environment more quickly. Masking can either be done manually (via 
setting the masks to be enabled or disabled at specific times) or “automatically” by 
probing the agent’s internal weights to see if it has learned a desired concept and 
introduce the sensors/motors it would need for the next learning level. Automatic 
masking has the most favorable impact on improving the learning speed. 

 
Figure 3. Resource Usage. 

 
Figure 4. Pain vs. Iterations 

Resource consumption is tied in with the environment model. Early versions of the 
environment model were probability based, however, in the recent version the 
environment contains measurable quantities of each resource. As such, it became 
important to the agent to be able to determine how much of each resource to use (and 
how it affects another resource). This change did not affect the performance of the 
agent in a significant way, however it helped to integrate the agent with a more 
realistic environment such as the NeoAxis. 
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 The use of multi-cycle tasks was another significant change for the agent. It has 
the effect of significantly increasing the amount of time required for simulation. It 
also paves the way for a more realistic implementation of the agent. As has been 
mentioned, tasks can easily take variable amounts of time. The use of variable task 
times has also allowed for the implementation of more complex opportunistic 
behavior.  

4.   Conclusions 

In this paper we presented Opportunistic Motivated Learning model. Also discussed 
was our effort to integrate the ML agent with simulated environments using NeoAxis 
graphics engine. As confirmed by the simulation results our model can surpass other 
reinforcement learning based models [2]. With the planned additions to the motivated 
learning model, combined with an effective cognitive model discussed in [1, 12] we 
hope to design a machine capable of cognition. Simulation results showed good 
performance and numerical stability of opportunistic ML. In the future we would like 
to implement our model not only in various simulated environments but also in real 
robots. 
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