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Abstract. This paper presents concepts for the development and management 
of motivations in learning agents, which are critical for motivated learning. We 
suggest that an agent must be equipped with a mechanism referred to as a  
nonspecific formative process to trigger higher level motivations. Resource and 
action related motivations are discussed as examples of implementing such 
process in a virtual world learning scenario.  
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1 Introduction 

In this paper, we examine various ways to establish a motivation mechanism for the 
agent to develop. This is an extension of our earlier work on creation of goals by an 
autonomous learning agent[ 1]. 

Autonomous learning agents are needed to establish a path towards intelligent ma-
chines. Today, these agents find many applications in industry such as: robotics, video 
games, remote sensing, image recognition, quality control, warfare, assisting humans, 
entertainment, etc. and their importance is growing steadily. There are several con-
cepts for organizing motivational systems. One, introduced by Pfeifer [2], shows mo-
tivation as a result of the developmental process. Another concept, based on external 
reward signals, is known as reinforcement learning (RL). It was initialized by the 
work of Sutton and Barto [3], followed by Brooks [4], Pfeifer [5], Schmidhuber [6] 
and many others. The intrinsic motivation system based on artificial curiosity was 
proposed by Oudeyer [7].  

Merrick pointed out that RL robots do not have internal drives to maintain their re-
sources within an acceptable range [8].  To address this problem a motivated learning 
(ML) system was proposed to allow the agent to develop its own motivations and 
goals [9]. Merrick introduced motivated reinforcement learning (MRL) and used mo-
tivated exploration in video games [8].  Motivated learning based on the need for 
resources was used to develop a coordinated learning strategy in a multi-stage  
stochastic game [10]. 
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Motivated learning showed promise in supporting the development of intelligent sys-
tems. But a nagging question arises; where do the motivations come from? How should 
a system be motivated to develop?  What are the conditions for motivations to reach 
higher levels of abstraction and sophistication in an agent’s interaction with the envi-
ronment? This paper tries to answer some of these questions and proposes a mechanism 
for creating higher level motivations fundamental to agent’s mental development. 

2 Basic Concepts in Motivated Learning 

A ML agent has predefined needs (for instance need for shelter, food, or energy lev-
el).  Agent motivations are to satisfy its needs. Thus, in order to introduce new moti-
vations, an agent must develop new needs. A basic mechanism to create new needs 
for resources was described in [9]. This was extended in recent work to a mechanism 
that is used to create needs related to actions by other agents.  

In order to clarify our discussion let us define some critical concepts used in ML.   

Definitions 
A primitive pain is associated with each predefined need and measures how far the 
agent is from satisfying its need. The pain is larger if the degree of satisfaction of a 
need is lower. For example the following function can measure resource related pains: 

 (1) 

where Rd is a desired level of needed resource si, wi is a weight that increases with the 
increased importance of resource i, Rc is the current level, and ε is a small positive 
number to prevent numerical overflow.  Pain reduction in ML is equivalent to a  
reward in RL.  

When an agent is introduced to a new environment, it does not know how to satisfy 
its needs and must experiment with various resources and available actions until one 
of its needs is reduced. A new abstract need is created for the resource used to reduce 
the primitive need. The agent will reduce the new abstract need in the same manner it 
reduced its primitive needs by trying various actions. An Abstract pain measures how 
far the agent is from satisfying its abstract need and is computed based on (1).  

Once introduced, an abstract need can be satisfied by acting on another resource. 
This leads to another higher level abstract need (for this new resource) and related ab-
stract pain. This simple mechanism allows the agent to build a potentially complex 
“network of needs” and such mechanism is a foundation of resource based motivations. 

3 Developing Motivations 

In this paper, we ask questions as to what other cognitive mechanisms should be consi-
dered for building motivations, and to allow a ML agent to develop even more abstract 
motivations, such as a motivations to gain love, friendship, recognition in society, self 
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esteem, or the human tendency to actualize itself as fully as possible. The last one, 
known as self-actualization, is considered by psychologists as the final level of psycho-
logical development that can be achieved when all basic and other mental needs are 
satisfied. According to Goldstein [11] self-actualization is not an ultimate objective,  
but rather a process driven by the tendency to actualize all self capacities, the entire 
potential available at any given moment and in given conditions. 

The question is as follows: can all these levels of abstract motivation be derived 
from the fundamental mechanisms that create needs in ML?  Are they necessary 
consequences of mental development?  Are they characteristic of successful intelli-
gent behavior, whether this behavior is conducted by a human, an animal, or a ma-
chine?  Can these abstract motivations be achieved before the lower level needs are 
satisfied and if not, are they symptomatic to the friendliness, specific level of sophis-
tication, and reciprocal support from the environment in which such growth is possi-
ble and useful?   

Reasoning along this line we may ask: is the state of the environment related to the 
motivational levels and the level of mental development of its learning agents?  We 
may also ask a more direct question: is the state of the environment a result of and 
measure of the state of development of the most successful individuals that inhibit it? 
These are not existential questions, although they may relate to such questions. The 
aim of asking these questions is to specify the necessary environmental conditions for 
developmental robots. 

We have affirmative examples confirming mutual dependence of the environment 
and its inhabitants in humans.  The more advanced the state of the environment in 
terms of technological support, tools efficiency, and ease of satisfying basic human 
needs; the more capable, more motivated and better developed individuals become, 
even when their brains do not change much. 

There is a difference of opinion in psychology as to whether higher order needs 
and motivations are a driving force for human development or whether they are a 
prespecified ideal hierarchy of motivations and needs.  This difference can be reph-
rased in a question: do we develop our needs as we grow or is there a given hierarchy 
that is fixed and specified independently of individual capacities to reach them that 
perhaps only few of us can reach, living ordinary lives. This question is important in 
view of developmental learning in machines where we do not put limits on the devel-
opment or needs, but try to justify higher levels by what works and what makes the 
machine more successful in its interaction with the environment. A related and equal-
ly important question is about the basis of these motivations.  Is there a mechanism 
that creates them and if so what is it? 

Psychologists studying successful people like Albert Einstein and Charles Darwin 
found that these people were focused on finding solutions to societal problems rather 
than to their own personal problems, were open minded, had a strong sense of self, 
valued life and human dignity, and had a small group of close friends.  This helped 
them to succeed where others could not.  But this observation of personal traits in 
people who succeeded when extended to a general population may miss an important 
link in the developmental process, the one that justifies why such motivations  
are useful for growth of individuals and society. Instead some of the highest level 
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motivations are compared to the norms of morality in a given society.  Are these 
norms invariant to the level of growth and sophistication of social interactions?  Most 
likely not.  We know that such norms change as society changes, as social con-
sciousness and understanding of human needs and behavior grows.  Thus, such 
norms or prespecified hierarchy of motivations cannot be considered as a constant 
part of the mechanism responsible for the developmental process.  

Alderfer’s ERG theory [12] stresses existence, relatedness, and growth, where exis-
tence focuses on material existence requirements, relatedness focuses on the need to 
relate and maintain social interactions, and growth focuses on personal development.  
But are they the mechanisms that resulted in current social organization or rather they 
reflect it?  In this search for cause and effect we cannot accept existing norms as a 
foundation for the development of higher level motivations.  Norms were not given 
but were derived from the development of humans and accepted by society.  Subse-
quently, they became a part of the current environment that influences further growth.  
However, further growth must come from within individual’s drives which are  
modified but not predetermined by the current social order. 

Ryan and Deci [13] who promote self-determination theory focus on three ele-
ments: humans master their drives and emotions, have a tendency to grow and devel-
op, and optimal development does not happen automatically.  This theory is hard to 
accept as a drive for development since it does not explain what a driver for such 
motivations is or why they appeared in the first place.  They do not provide a causal 
relationship in behavioral development that would yield these kinds of drives. 

The Need for Achievement theory [14] of motivational growth stresses social mo-
tives like dominance.  According to this theory people will take calculated risks, 
establish attainable goals, and fear failure.  They also want to be praised for their 
accomplishments and receive feedback from others. Such and other theories debated 
by psychologists focus on explaining the human motivational system, the way it is 
and the way expresses itself, but they do not answer the important question from the 
developmental point of view. How did the human motivational system develop? 

What is important for building intelligent machines is to describe the nonspecific 
formative processes (NFP) that the agent may use to develop motivations at a certain 
abstraction level.  Nonspecific means that these processes are not prespecified to 
obtain certain motivations (like the need for food or shelter) but rather are used to 
develop motivations that help to solve a group of existential problems.   

3.1 Nonspecific Formative Processes 

An example of a NFP process is the way an agent creates goals and motivations in 
order to acquire resources needed for its survival as discussed in Section 2. Such a 
NFP process includes evaluation of changes in the environment and creates motiva-
tions to collect or to avoid certain resources in the environment.  The resources are 
defined as objects in the environment that do not initiate actions by themselves.  
Rather they can be used by the agent to satisfy its needs (for instance food or water) 
or to be avoided since they may harm the agent (for instance poisons or toxic  
substances). 
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Another example is to equip the agent with an NFP process to evaluate actions by 
other agents (non agent characters or NACs) and learn how to encourage or discou-
rage such actions.  Such a NFP evaluation process is nonspecific because it makes no 
assumption as to what kind of agent performs the action, what action it performs, or 
whether or not this action has any effect on the ML agent.  Learning how to discou-
rage or encourage an action is also nonspecific as the ML agent has no preconceived 
knowledge whether or not the action performed by NAC is beneficial or harmful. 

The need for action to discourage NAC action (that increases ML agent pain) will 
be a result of the NAC action pain signal created by the agent.  The NAC action pain 
can be computed using: 

    (2) 

where L(y) is a likelihood that NAC agent will act on the ML agent, y identifies the 
NAC action, is the average pain to ML agent caused in the past by a NAC ac-
tion, and is desirability of such action.   is 1 when the action by NAC is desired 
and is -1 when it is not. The value  is a small positive number to prevent numeri-
cal overflow, and   >0 regulates how quickly pain increases. 

Another example will be an NFP process to evaluate actions by other intelligent 
agents that can learn to modify their actions according to the response of ML agent.  
Since no such mechanism has been developed yet, it is hard to speculate how general 
it can be and what it will involve. 

It is this category of ML agent mechanisms that need to be investigated, designed 
and implemented in order to provide the agent with cognitive support to reach higher 
levels of motivational development as described by Maslow [15].  This paper ad-
dresses some of the issues and poses open questions to discuss scenarios, current  
developmental skills, levels of sophistication of the environment in which such devel-
opment is useful or possible.  

Developmental skills determine the internal state of the agent ready for further 
growth and development of its motivations and mental abilities. Thus, some motiva-
tions cannot be developed before others and they will naturally form a hierarchy of 
motivations and related skills.  The developmental process is a function of itself and 
depends on its history as well as the agent’s ability to accommodate new challenges in 
the environment.  For instance, before the agent learns how to interact with another 
intelligent agent, it must possess skills necessary to respond to NAC actions. Similar-
ly, in order to learn how to respond to NAC actions that are damaging an agent’s  
resources, the ML agent must first learn the values of such resources, and have moti-
vations to collect or protect them.  Thus, it must have developed a resource NFP 
process before it can develop a NAC NFP process and related motivations. 

To some degree, the structure of motivational drives develops gradually and can be 
compared to the genetic development of species. The difference is that it concerns 
only a single individual rather than generations of individuals. The similarity between 
these two processes is that both mental development as well as evolutionary devel-
opment are incremental and depend on the current state of the developmental process. 
Similarity also lies in the randomness of the incremental changes that take place.  
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In genetic development it is survival of the fittest as a way to adapt to changes in the 
environment (by random mutations and crossovers), while in mental development it is 
the opportunity to learn an interesting trait to improve the way that an individual 
works (by random trial and error). 

3.2 Social Agent 

A learned response to NAC action pain (2) may not work well when the NAC is intel-
ligent. An intelligent NAC agent may change its strategy, such that an initially suc-
cessful action may fail.  Another way in which an intelligent NAC may respond is to 
fight back, causing additional pain that was not there before. This may be a primitive 
pain inflicted on the ML agent, so there is no need to use bias estimation. To avoid 
such pain, the ML agent must learn that its action caused the NAC’s response and 
modify its behavior. If the ML agent observes that total pain from all pain sources 
increased as a result of its action, the action should be avoided. 

So, the question is what recourse does the ML agent have when an intelligent NAC 
destroys its resources or otherwise inflicts pain on the ML agent? No action against 
the NAC will be painful. An action that causes a response from NAC may be painful, 
but if the total pain increase is smaller than when no action is taken, such an action is 
acceptable. For instance, the ML agent may fight the NAC and even when it suffers 
some pain, the overall pain reduction may be greater than the pain inflicted by the 
fight, particularly if the ML agent is stronger than the NAC and makes it go away. 

If the NAC is stronger, the pain inflicted by it may exceed the pain reduction and 
such action should be avoided. We then see a typical flight situation, where the agent 
will suffer the pain without fighting back. 

But what if the NAC can fight back with equal resolve and inflict equal pain to the 
agent? Both agents will suffer a significant amount of pain without any benefit. For 
instance when they fight over the food supply, neither will get food, and they suffer 
the pain inflicted by their opponent. The obvious solution to this situation will be 
sharing the resources, rather than fighting for them.  Such a decision, when neither 
agent fights for the resource will be “agreed” upon if the two agents know each oth-
er’s ability to inflict significant pain and decide not to fight. Such an estimate can be 
obtained using (2) and evaluating the likelihood of aggression by the NAC directed 
against the ML agent.   

The only modification we need in this case is to replace  by a likelihood esti-
mate based on learning the NAC’s behavior. This can be accomplished using RL 
which will learn the likelihood of NAC actions and predict the negative reward in 
response to the ML agent’s action.  

Similar analysis can be performed in the case where intelligent NAC action is de-
sired. The likelihood of the NAC’s action is learned using RL. If this likelihood is 
low, the ML agent will suffer the pain described by (2) proportional to the amount of 
reward (pain reduction) that the NAC action can bring.  
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3.3 Directing the Machine 

A good way to accelerate learning is to use help from a teacher. The problem is how 
to introduce a teacher within the framework of ML?  The simplest (but not the most 
desirable) way is to assume that any instruction given by the teacher motivates the 
robot to complete this instruction to a satisfaction of a teacher. We can use voice 
commands as sensory input that must be recognized and interpreted by the robot. We 
assume that a spoken command generates a primitive pain signal that is removed by 
the teacher once its command was correctly implemented by the robot.  The level of 
the pain signal is between threshold and the maximum pain and depends on the articula-
tion. A sharp and angry command will carry higher pain that a soft and gentle instruc-
tion. So the agent must learn not only to recognize the command but also to determine 
its emotional content. The teacher will reward the agent by pressing a prespecified key. 
A more developed agent may learn to use verbal praise for a reward.  

4 Simulation Scenario 

To illustrate the process of developing motivations, we designed a learning environ-
ment for the ML agent. In our simulation scenario, presented in Fig.1, we have five 
primitive pains: Sweet-tooth, Bee stings, Hunger, Thirst, Curiosity.  

In Fig. 1 all resources are represented by ovals and actions by rectangles. Acting on 
a resource that inhibits a pain is indicated by inhibitory links (with solid black circle). 
An excitatory link (with arrow) triggers a NAC action pain or a NAC appearance. In 
Fig. 1, only simplified relations are shown to avoid clutter.  Each resource symbol 
can be interpreted as an inhibitory interaction on the amount of resource and the lack 
of resource pain as shown in Fig. 2. Similarly, a related action on the resource causes 
a small inhibitory feedback link to the resource being utilized as shown on Fig.2 b 
from the action ‘Plant Flowers’ to the resource ‘Flowers’.   

As illustrated in Fig. 2, the top inhibitory link inhibits the abstract pain 'Lack of 
Flowers'. When the 'Lack of Flowers' is inhibited the Flowers resource is automatical-
ly activated. A resource is restored through proper action by the agent, in this case by 
buying flowers.  As the resource is used up by frequent action (planting flowers) the 
inhibition from Flowers to the Lack of Flowers is weaker and the abstract pain 'Lack 
of Flowers' increases. In Fig. 2, the resource nodes and lack of resource nodes are 
automatically activated unless inhibited.  The forward arrow links are excitatory, so 
the Flowers resource activates the non-agent character (bees). 

Curiosity pain drives agent to explore the environment, i.e., to learn useful actions 
on resources. Curiosity pain stays high until the agent learns all valid actions.  Other 
primitive pains like Thirst, Hunger, Bee stings, Sweet-tooth, may be satisfied by vari-
ous actions. For example, the Thirst pain can be satisfied by the 'Drink water from 
Cup' action. Hunger, Thirst, and Sweet-tooth pains increase with time, while the 'Bee 
stings' pain increases when Bees are around. We call those actions 'useful motor-
sensor pairs', because the agent can satisfy one of its needs performing a motor action 
on a resource.  
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Resource related abstract pains are introduced as soon as a resource is determined 
useful for satisfying a primitive pain. For instance, as soon as the agent learns that it 
can satisfy its thirst pain by drinking water from the cup, it develops an abstract need 
to have water in the cup. Some resources may be used for multiple actions, like 
Money can be used to: Buy Food, Buy Flowers, or Buy Cigars. Similarly, a resource 
pain can be satisfied by more than one action. 

To illustrate NAC action pains, we introduce non-agent characters like a Bug and 
Bees. Those characters interact with the agent or with the resources. Bees produce 
Honey from Flowers, the Bug eats Food, and Bees can also sting the agent. We 
wanted to create characters which do useful or harmful actions for the agent. In this 
example, we have two NACs. The Bug only engages in harmful action by steeling 
food, which cause the agent ‘Lack of Food’ pain. Bees do both useful and harmful 
actions.  They produce honey and they sting the agent. In this example, we show the 
ability of our model to easily accommodate more characters, which can perform both 
useful and harmful actions. All useful motor-sensor pairs and their outcomes are  
presented in Table 1.  

Table 1. List of Resources, useful Resource-Motor pairs and their outcome 

Motor  
action 

Resource  
name 

Agent’s  
pains 

Outcome 
Increase Decrease Pain reduced 

Eat food from Bowl Lack of Bowls  Bowls Hunger 
Drink water from Cup Lack of Cups  Cups Thirst 
Eat honey from  Honeycomb Lack of Honeycombs  Honeycombs Sweet tooth 
Smoke Cigar Lack of Cigars  Cigars Bee sting 
Take food from Fridge Lack of Fridges Bowls Fridges Lack of Bowls 
Pour water from Bucket Lack of Buckets Cups Buckets Lack of Cups 
Plant Flowers Lack of Flowers Honeycombs Flowers Lack of Honeycombs 
Buy food with Money Lack of Money Fridges Money Lack of Fridges 
Pull water from Well - Buckets - Lack of Buckets 
Buy flowers with Money Lack of Money Flowers Money Lack of Flowers 
Buy cigars with  Money Lack of Money Cigars Money Lack of Cigars 
Work for money with Tools Lack of Tools Money Tools Lack of Money 
Study for job with Book Lack of Books Tools Books Lack of Tools 
Play for joy with Beach ball  Books  Lack of Books 
Kick Bug -  Likelihood Bug eating food 

  Hunger -     primitive 
Thirst -         primitive 
Sweet tooth -  primitive 
Bee sting -    primitive  

pain 
pain 
pain 
pain 

  

Any  Curiosity -     primitive pain  Curiosity 

4.1 Simulation Implementation 

Based on this scenario, we created a simulation in NeoAxis. The NeoAxis 3D Engine is 
an integrated development environment for 3D projects of any type and complexity.  
The environment is intended for use in such areas as the creation of video games, devel-
opment of simulators, and development of virtual reality and visualization software.  
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It includes a full set of tools for fast and logical development of modern 3D projects. We 
created 3D models of resources and characters, and animations of characters in Autodesk 
3ds Max. Fig. 3 presents sample resources and character’s models. Some animations 
were captured by Kinect, which provides also full-body 3D motion capture, facial recog-
nition and voice recognition capabilities. The agent logic was written in C++ with use of 
the Boost library. The simulation environment was implemented in C#. 

           

                            a)                                               b) 

Fig. 3. a) Resources: apple, ball, banana, bucket, bowl, cup, b) Characters: agent, bug, bee 

Based on the presented simulation scenario, we created a simulation map with all  
resources and characters mentioned in Fig. 1. During creation of the simulation envi-
ronment, we set the desired level for each resource. We implemented NACs and their 
actions (both types, i.e. desired and undesired). We also implemented agent actions on 
resources from Table 1. Fig. 4 presents such a map with resources and NACs.  

 

Fig. 4. Simulation map 

Multiple simulation tests proved that the ML agent was able to use the nonspecific 
formative processes to develop resource and NAC action based motivations, and was 
able to successfully learn how to manage its needs in a dynamic environment. To our 
knowledge no other cognitive agent can learn how to manage its resources and learn 
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how to respond to other characters’ attacks.  We challenge anyone in the machine 
learning community to try a simpler version of such scenario - Autonomous Learning 
Challenge - described on http://ncn.wsiz.rzeszow.pl/?p=39. 

The simulation window presented in Fig. 5 shows: in the left top corner - a list of 
resources available to the agent and their quantities; in the top center - the current task 
performed by the agent; at top right - a list of abstract and primitive pains and their 
levels; bottom left - the state of agent's memory.  

 

 

                           a)     b) 

Fig. 5. Simulation window with a list of resources, current task, pains, and memory. a) the 
agent starts its learning process, b) the agent learned all actions. 

When the simulation starts, the agent may interact only with three resources (Bowl, 
Mug, Honey) to satisfy its primitive pains (Hunger, Thirst, Sweet-tooth, Curiosity). 
This situation is presented in Fig. 5 a). The memory window in this screenshot is al-
most grey, indicating that the agent has learned very little. After some time in simula-
tion, the agent’s knowledge increases. It introduces new abstract pains, and discovers 
new applications for resources. As a result, the agent is able to keep its pain under 
control and keep resources at satisfied levels. Its memory indicates that it learned how 
to maintain resources and control the NAC related pains. After satisfying all pains 
(i.e., keeping their levels below threshold), the agent goes to rest on a mattress. Multi-
ple tests proved that in less than half an hour of real time simulation, the agent was 
able to learn all useful actions and keep its pains under control. 

5 Conclusions 

This paper examines how motivations in a motivated agent are formed and how they 
can become increasingly abstract. We examined our earlier work and the recent 
changes we have made to introduce actions by non-agent characters (NACs), and 
determined how this work could be extended.  The agent must learn increasingly 
abstract behaviour interacting with its environment and communicating with other 
agents.  We posit that this can be done via the use of nonspecific formative processes 
by giving the agent the ability to reason about the cause and effect of its actions on 
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itself, the environment, and other agents. We also suggest that higher level motiva-
tions can only develop when the environment is sophisticated enough to stimulate and 
support further growth of the agent’s mental powers.  Brooks stated 20 years ago that 
intelligence cannot develop without environment. We append this by stating that the 
development is mutually dependent.  Developing agents change their environment, 
and this change is necessary for further growth in the complexity of agents’  
motivations. 
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