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Abstract — This paper presents an extension of active neural 
associative knowledge graphs (ANAKG) to their mini-column 
form where each symbol is represented several times. We 
demonstrate that this new associative memory organization 
preserves all properties of ANAKG memories like storage of 
knowledge based on spatio-temporal input sequences, while 
increasing recall quality, memory capacity, and its resolution for 
short-term memory recall. The implemented model combines 
ANAKG associative neuron idea with the idea of a hierarchical 
temporal memory that uses a mini-column form of symbol 
representation. Performed tests confirm our claims of higher 
resolution and higher memory capacity of the new associative 
knowledge graph. 

Keywords — associative semantic memory, associative neurons, 
associative connections, mini-column structure, knowledge 
representation. 

I. INTRODUCTION 
Semantic memory (SM) is a repository of knowledge in a 

cognitive system, and its structure gradually emerges from the 
learning process [1]. Neurons in the semantic memory build 
synaptic connections between associated concepts representing 
their relationships between each other and cognitive agent 
objectives [2].  

Classical neural network memory models such as associative 
memory networks [3] aim to provide content-addressable 
memory, capable of retrieving stored data from only a small 
input sample. Other solutions to retrieving the memory 
information include gradient based recurrent neural networks 
(RNN) [4]. These models are trained to predict the next input 
word after reading the first few words. In [5] authors proposed 
an unsupervised algorithm that learns fixed-length feature 
representations from variable-length pieces of texts. Similar to 
RNNs this algorithm is trained to predict words in a document 
given an input context. In [6] authors describe a new class of 
learning models called memory networks. Memory networks 
combine input content with dynamic knowledge base stored in 
long-term memory to predict the output. Memory networks 
represent the input information in the form of features and are 
capable of generalization to produce desired response. 

Recently researchers have focused on contextual question 
answering (QA) to satisfy popular demand on services based on 
voice recognition and large knowledge bases like Wikipedia. 
Direct approaches to QA like string matching are very 
ineffective, and solutions that include recursive neural 
networks like QANTA [7] are becoming popular. Neural 
Turing machines (NTM) combine the concept of neural 
network learning and classical Turing machines to retrieve 
context based input information [8]. NTMs can learn simple 
algorithms from training data and generalize them to non-
training data. Comparing to RNN long short-term memory [4] 
NTMs show better accuracy over longer sequences in recall and 
copy tasks. 

Semantic memory aggregates representation of the training 
data and forms a context searchable knowledge base. It is 
obtained by binding the semantic contexts for all trained objects 
and linking their neuronal representations together. The SM can 
be built using active neural associative knowledge graph 
(ANAKG) based on associative neuron models presented in [9]. 
The knowledge graphs are obtained dynamically by adding 
associative neurons and changing their synaptic connections 
based on the input sequences and activation levels of 
presynaptic and postsynaptic neurons. If the updated synaptic 
weights provide incorrect activations of postsynaptic neurons, 
then previously activated neurons create inhibitive connections 
to the incorrectly activated neurons. The gradual time-spread 
relaxation of ANAKG neurons enables them to represent 
sequences of objects in their previous contexts. 

An ANAKG based SM can associate distant time events in 
order to put them in a wider context. Moreover, the SM can 
trigger recalling processes automatically, taking into account the 
given context and semantic relations between objects 
represented in the neuronal graph structure. Semantic relations 
are automatically created on the basis of real relationships 
between objects presented to this memory in the form of 
sequential patterns. They are weighted according to the strength 
or the frequency of represented relations in their wider context 
comprising previous events. Such a strategy makes it possible to 
represent various concepts from different points of view and in 
different contexts, forming knowledge about them. Finally, the 



SM can generalize knowledge gained during the adaptation 
process based on presented training data. The ANAKG based 
SM can generate new responses according to the new contexts 
of recollection that were not previously taught [10]. The 
generalization is possible thanks to the association and 
aggregations of data, symbols, features, objects, and 
subsequences which typically occur in training data. 

In this paper, we present a generalization of ANAKGs to 
their mini-column form known as a lumped mini-column 
associated knowledge graph (LUMAKG). In LUMAKG, each 
symbol is represented several times following the idea of a mini-
column organization presented in [11]. LUMAKG uses the same 
pulsing neuron model as ANAKG and similar self-organization 
principles. The major difference is in its columnar organization 
and selection of synaptic connections between neurons.  

II. LUMAKG ORGANIZATION AND PRINCIPLES 
The columnar organization of associative memory was first 

proposed by J. Hawkins et al. [11] where they introduced 
cortical learning algorithms in which mini-columns were used 
to store sequential information in hierarchical temporal memory 
(HTM). Since then HTMs were further developed, and their 
properties were analyzed and tested. In [12] using mini-column 
model, the authors show that it is able to continuously learn a 
large number of temporal sequences using an unsupervised 
learning neural network model. HTM was shown to have similar 
accuracy as another state of the art sequence learning algorithms 
like echo state networks [13] or long short term memory [14], 
however, they also show some drawbacks like larger sensitivity 
to temporal noise than the long short term memory [12]. 
ANAKG memories do not have this drawback of HTM 
networks as they can tolerate temporal noise. Thus improving 
ANAKG by introducing a mini-column structure to its 
architecture provides a better associative memory capable of 
storing spatio-temporal relations between data.  

 ANAKG uses a pulsing neuron model that uses spatio-
temporal relationship between data, similar to the popular 
spiking neuron models [15]. Spiking neurons are biologically 
motivated and produce patterns similar to biological neurons. 
Several computationally efficient models of spiking neurons 
have been developed [16]. Networks of spiking neurons 
spontaneously self-organize into groups and generate patterns of 
polychronous activity, and this property is believed to be 
necessary for cognitive neural computations, symbol grounding, 
attention, and consciousness [17]. ANAKG achieves similar 
properties to spiking neurons by using a much simpler neuron 
model and self-organization principles [18]. LUMAKG 
maintains these properties of ANAKG while increasing its recall 
quality, memory capacity, and resolution. 

Following HTM organization, we replace each neuron in the 
ANAKG with a small mini-column. Each mini-column has five 
neurons, and all mini-column neurons represent one unique 
symbol (e.g. a single word). While the neurons in a mini-column 
all represent the same symbol, the inputs, outputs, and their 
synaptic connections (weights) are different for each neuron. 
Using the principles from HTM [11], the inputs and outputs are 
distributed across the neurons in the mini-column so that 
multiple sequences can be represented using the same set of 
mini-columns. Individual neurons in each mini-column use the 

ANAKG algorithm to obtain associative connections and their 
weights.   

Like in HTM, LUMAKG mini-columns have three output 
states, active from feed-forward input (can be input from the 
sensor), active from lateral input (representing a prediction), and 
inactive. Thus, LUMAKG cells/neurons can fire even without 
sensory input stimulation. In the predictive mode, neuron’s 
activation from the lateral input is used to complete the 
sequence. During learning of new sequences, prediction and 
input activation should match for learning (changing synaptic 
weights) to take place.  

The LUMAKG network structure is obtained dynamically. 
New mini-columns and synaptic connections are added each 
time a new input sequence is provided to the network. 
Specifically, if a new symbol is observed, a new mini-column is 
added, and at least one of its neurons is linked to another mini-
column. Organizing principles of LUMAKG are as follows: 

A. Duplicate each symbol five times to form individual 
symbol mini-columns. 

B. If a node in a mini-column is activated above the 
threshold from associative connections, it is called to 
be in a predictive mode.  

C. An input activates either all nodes in a given mini-
column that are in the predictive mode or the whole 
mini-column if no node is in a predictive mode. 

D. Activated nodes that were in a predictive mode are in 
predicted activation (PA). 

E. An activated mini-column without any node in a 
predictive mode has all nodes in unpredicted 
activation (UA). 

F. Synaptic connections weights are changed between 
activated nodes in predecessor and successor mini-
columns.  

III. LUMAKG ALGORITHM AND ITS ILLUSTRATION 
The LUMAKG algorithm was defined on the basis of the 

general organizing principles described in the previous section: 

I. Read the consecutive elements of the input sequence to 
activate corresponding mini-columns: 

1. Check if the symbol from the input sequence is represented 
by a mini-column.  

2. If not add a new mini-column; all nodes of this new mini-
column are in unpredicted activation. 

II. Establish predecessor-successor nodes in all activated 
mini-columns in the input sequence: 

3. For each consecutive activated mini-column, activate 
nodes in the mini-column that corresponds to the input 
symbol, according to point C of the organizing principles. 
Typically, the first activated mini-column has no PA 
nodes, unless it is considered in a broader context of 
associative learning. Thus typically, all nodes in the first 
activated mini-column are in unpredicted activation.  

4. Find the first mini-column with a PA node. If no such 
column exists choose a node in the last mini-column with 



a minimum number of outgoing connections and treat it as 
a PA node. Name this first mini-column with PA node FPA 
(first predicted activation) mini-column.  

5. Starting from the predecessor mini-column to FPA:  
a. Choose a node in this mini-column that has a link to the 

PA node in FPA and treat it as a PA node. 
b. If no such node exists, choose a node in the predecessor 

mini-column with the minimum number of outgoing 
connections and treat it as a PA node. This establishes a 
link between the two PA nodes.  

Repeat this step for the new PA node, selecting a node in 
its predecessor mini-column with the minimum number of 
outgoing connections and treating it as a PA node, until no 
predecessor mini-column is found. 

6. Starting from the successor mini-column to FPA repeat 
until no more successor mini-column is found: 
a. If the successor mini-column has a PA node, link the 

two PA nodes and move to the successor mini-column.  
b. If the successor is a UA mini-column, choose a node in 

this mini-column with the minimum number of 
outgoing connections and treat it as a PA node. Link the 
two PA nodes and move to the successor mini-column.  

III. Update synaptic weights in the synaptic connections 
between all predecessor successor nodes: 

7. The algorithm updates all the synaptic weights between all 
PA nodes in predecessor and successor mini-columns 
according to rules developed for ANAKG [9]. 
 

Since the LUMAKG algorithm has a convoluted process of 
modifications of synaptic connections, we use an example to 
illustrate this algorithm. For simplicity, we assume that a PA 
node makes a single prediction and that at most a single PA node 
is activated in any mini-column. While the algorithm is not 
limited to such cases, these assumptions will simplify an 
example illustration of how the LUMAKG algorithm works. For 
simplicity of graphical illustration, a mini-column is represented 
by a single node with double lines as shown in Fig. 1. 

 
Fig. 1. A mini-column and its simplified symbol 

The corresponding synaptic connections start at various 
nodes in the mini-column as we can observe in Fig. 1. In 
particular, the predecessor nodes are hidden in the simplified 
symbol, so we cannot see which of the mini-column neurons is 
the predecessor node. This can be observed only in the full view 
of the resulting structure as shown in Fig. 7. 

Let us assume that the sequence A, B, C, D, E was inputted 
to the LUMAKG memory and activated the corresponding mini-
columns as shown in Fig. 2. 

 
Fig. 2. Activated mini-columns. 

Out of these activated mini-columns, only mini-column D 
had a PA node. According to step 5 of the LUMAKG algorithm, 
we name D the FPA mini-column and move to step 6. In the 
predecessor mini-column C, we choose the node that linked to 
the PA node in D and name it as a new PA node. Next, we move 
to the predecessor mini-column C and according to step 6.b. 
choose a node in mini-column B with a minimum number of 
outgoing connections and treat it as a PA node.  

This establishes a new link between B and C as shown by a 
dashed line in Fig. 3. 

 
Fig. 3. A new connection between UA mini-column B and a PA node in mini-
column C. 

The selected node in B with the minimum number of 
outgoing connections is treated as a new PA node, and the 
algorithm moves back to mini-column A. Applying step 6.b. 
again we choose a node in A with the minimum number of 
outgoing connections and link it to the PA node in B as shown 
in Fig. 4. 

 
Fig. 4. A new connection between UA mini-column A and a PA node in mini-
column B. 

Since there is no predecessor to A, we move back to mini-
column D. Since there is no PA node in mini-column E, then 
according to 7.b. we choose the node in mini-column E with the 
minimum number of outgoing connections and treat it as a PA 
node. This establishes the link between the two PA nodes in 
mini-columns D and E as illustrated in Fig. 5 and we move to 
mini-column E. 

 
Fig. 5. A new connection between PA node in UA mini-column D and a 
selected node with the minimum number of outgoing connections in mini-
column E. 

Since there is no successor mini-column to E, the LUMAKG 
algorithm moves to 8 and modifies the synaptic weights between 



all PA nodes in established predecessor and successor mini-
columns according to the ANAKG algorithm [9]. 

 
Fig. 6.a. Activated mini-columns. 

Fig. 6 shows an example view of the mini-column structure 
that corresponds to the processed input sequence at the 
beginning (Fig. 6.a.) and at the end (Fig. 6.b.) of step II of 
LUMAKG algorithm. In each mini-column, gray color is used 
to represent PA neurons that will have their synaptic connection 
weights changed according to [9]. 

 
Fig. 6.b. Activated mini-columns with added links. 

After application of the ANAKG algorithm to modify 
weights between the selected PA nodes, we will get all the 
updated links as shown in Fig. 7. 

 
Fig. 7. Modified synaptic connections for the input sequence. 

IV. COMPARATIVE TESTS OF LUMAKG 
Tests were performed to observe the efficiency of learning, 

memory capacity, and learning resolution for LUMAKG 
sequential memory in comparison with ANAKG memory. Tests 
of both methods were performed on the same equipment and 
using the same software environment. In fact, LUMAKG was 
based on a modified ANAKG tool.    

A. Resolution of Recalled Sentences 
The first test is used to compare the resolution of recalled 

sentences using ANAKG and LUMAKG. To test the recall 
resolution, the memories ANAKG and LUMAKG, were self-
organized on an input file containing the following sentences 
from The Golden Bird tale from Grimm’s Fairy Tales [19]: 

1. The king had a beautiful garden, and in the garden 
stood a tree. 

2. The tree bore golden apples, apples that were always 
counted. 

3. About the time when the apples grew ripe, it was 
found that every night one apple was gone. 

4. The king was angry at an apple going missing every 
night. 

5. The king ordered his gardener to keep watch all night 
under the tree. 

6. The first day the gardener asked his eldest son to 
keep watch. 

7. About midnight he fell asleep, and in the morning 
another of the apples was missing. 

8. The second day the gardener asked his second son to 
keep watch. 

9. At midnight he too fell asleep, and in the morning 
another of the apples was missing. 

Note that special characters, e.g. commas, periods, etc., were 
discarded and not used in training the memories. After the 
memories had been created, their associative properties and 
recall resolution were tested and compared with results obtained 
from ANAKG. Several sequences related to nine training 
sequences were used as inputs to both memories, and their 
recalls were observed. The results are shown in Table 1. 

TABLE 1. INPUT AND OUTPUT SEQUENCES GENERATED BY ANAKG AND 
LUMAKG. 

Input sequence ANAKG 
memory 
output 

LUMAKG 
memory output 

Desired output 

What did the 
king had? 

The king had a 
beautiful 
garden 

The king had  
a beautiful 
garden 

The king had a 
beautiful 
garden 

What stood in 
the garden? 

Stood a in the 
tree the 
garden 

Stood in the 
garden stood a 
tree 

In the garden 
stood a tree 

Why was the 
king angry? 

Was the king 
angry at an 
apple missing 

Was the king 
was  
angry at an 
apple missing 

The king was 
angry at an 
apple going 
missing 

What were 
always 
counted? 

Were always 
counted 

Were always 
counted 

Apple that 
were  
always 
counted 

What did the 
king order his 
gardener? 

the king his 
gardener 

The king was 
his gardener to 
keep watch 

The king 
ordered his 
gardener to 
keep watch 

What was 
missing in the 
morning? 

Was missing in 
the morning 
another of the 
apple was 

Was missing in 
the morning 
another of the 
apple was 
missing 

In the morning  
another of the 
apple was 
missing 

 
The results show that LUMAKG provides more meaningful 

answers than ANAKG (boldface rows in Table 1) considering 
what was stored in the network as a result of the training 
sequence. The inputs sentences used in this test were not 
specifically tailored to benefit one method over another. As we 



can see, in no case ANAKG provided answers more meaningful 
than LUMAKG.  

B. Testing a Large Data Set 

The next test involved comparing the performance of 
LUMAKG and ANAKG memories when the number of 
sentences in the training set is increased. The two memories 
were trained with the complete story (The Golden Bird) that had 
over 2500 words, with over 500 unique words in 78 training 
sentences. The same input sequences were then applied to both 
networks. The results are shown in Table 2.  

The results show, similar to Test 1, that the answers provided 
by LUMAKG are more meaningful than those provided by 
ANAKG. Note that while there is some decrease in quality of 
LUMAKG answers the decrease is more profound in the case of 
ANAKG memory. This shows the robustness of LUMAKG 
memory that is a result of the applied mini-column structure and 
related associative learning. 

TABLE 2. INPUT AND OUTPUT SEQUENCES FOR LARGER NUMBER OF TRAINING 
INPUT SEQUENCES. 

Input 
sequence 

ANAKG  
memory 
output 

LUMAKG  
memory output 

Desired output 

What did the 
king had? 

What did the 
king had 

What did the 
king had a 
beautiful 
garden 

The king had a 
beautiful 
garden 

What stood in 
the garden? 

What stood in 
the garden 

What stood in 
the garden 

stood a tree 

In the garden 
stood a tree 

Why was the 
king angry? 

Why should 
was the king 

angry at 

Why should 
was the king 
angry at an 

apple 

The king was 
angry at an 
apple going 

missing 
What were 

always 
counted? 

What were 
always counted 

What were 
always counted 

Apple that were 
always counted 

What did the 
king order his 

gardener? 

What did the 
king his 

gardener 

What did the 
king his 

gardener to 
keep watch 

The king 
ordered his 
gardener to 
keep watch 

What was 
missing in the 

morning? 

What was 
missing in the 

morning 

What was 
missing in the 

morning 
another of the 

apple 

In the morning 
another of the 

apple was 
missing 

 

C. Network Response Quality Measures 

A variety of heuristics and evaluation measures for various 
information retrieval and related tasks have been proposed and 
studied, e.g. answer scoring and/or ranking [20], passage 
retrieval algorithms [21], and evaluating search engines [22]. 
These evaluation measures require the use of tools such as 
parsers, and consequently are not well suited for evaluation of 
the responses generated by the ANAKG and LUMAKG 
memories. Consequently, here we make use of Levenshtein 
distance [23], and a new distance measure called reciprocal 
word position based on the evaluation metrics from [24].   

Levenshtein Distance Quality Measure 

The quality of results obtained from ANAKG and 
LUMAKG memories were first measured by comparing them to 
desired output using Levenshtein distance [23]. Since we are 
interested in sequences of words rather than individual 
characters, the Levenshtein distance measured the number of 
words that must be deleted, inserted, or substituted in order to 
transform the source sentence to a target sentence. Each word 
had a unique symbol in the associative memories and sequences 
of such symbols represented the output from each memory.  

The Levenshtein distance between two strings a and b (of 
lengths u and v respectively) is given by (1): 

 𝑑𝑑𝑎𝑎,𝑏𝑏(𝑖𝑖, 𝑗𝑗) =

⎩
⎪
⎨

⎪
⎧
𝑚𝑚𝑚𝑚𝑚𝑚(𝑖𝑖, 𝑗𝑗)                                     𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚(𝑖𝑖, 𝑗𝑗) = 0

𝑚𝑚𝑚𝑚𝑚𝑚

⎩
⎪
⎨

⎪
⎧𝑑𝑑𝑎𝑎,𝑏𝑏(𝑖𝑖 − 1, 𝑗𝑗) + 1                   
𝑑𝑑𝑎𝑎,𝑏𝑏(𝑖𝑖, 𝑗𝑗 − 1) + 1                    
𝑑𝑑𝑎𝑎,𝑏𝑏(𝑖𝑖 − 1, 𝑗𝑗 − 1)                    
𝑑𝑑𝑎𝑎,𝑏𝑏(𝑖𝑖 − 1, 𝑗𝑗 − 1) + 1�𝑎𝑎𝑖𝑖≠𝑏𝑏𝑗𝑗�

𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (1) 

where 𝑑𝑑𝑎𝑎,𝑏𝑏(𝑖𝑖, 𝑗𝑗) is the distance between the first i and j elements 
of a and b respectively. Here we represent each word in a 
sentence as a symbol and in computing the Levenshtein distance 
measure and comparing two sentences, we compare two stings 
of symbols. The Levenshtein distance was applied to the results 
of Test I that used only 9 training sentences and Test II that used 
78 training sentences. In both cases we tested the networks 
responses to the same set of inputs and network output 
sequences were compared with the desired responses. The 
results are shown in Table 3. 

TABLE 3. LEVENSHTEIN DISTANCE TO THE DESIRED OUTPUT IN BOTH TYPES OF 
MEMORIES. 

 
As we can see, all the results obtained from LUMAKG were 

either better or the same as those obtained from ANAKG. Both 
types of associative memories showed that they could provide a 
reasonable output given a limited training data set. However, 
LUMAKG has a promise to significantly increase both the 
resolution and storage capacity of the associative knowledge 
graphs and become a foundation for the semantic memory 
capable of remembering episodes, making associations and 
accumulating of knowledge. Both memories require only a 
single presentation of the input data to learn. 

Input sequence 
ANAKG LUMAKG 

Test 
I 

Test 
II 

Test 
I 

Test 
II 

What did the king had? 0 5 0 2 
What stood in the garden? 6 5 1 2 
Why was the king angry? 3 8 2 6 

What were always counted? 2 2 2 2 
What did the king order his 

gardener? 
4 6 1 3 

What was missing in the 
morning? 

3 8 2 5 



The desired outputs in the above test share some 
words/symbols with the input sequence. This is a consequence 
of forming grammatically valid sentences or sequence of words. 
However, multiple grammatically valid sentences that represent 
the same answer can possibly be generated, thus potentially 
limiting the usefulness of the Levenshtein distances measured 
above. The above distance measures can be improved by 
disregarding the words/symbols from the input sequence that are 
present in the desired output and the outputs from the ANAKG 
and LUMAKG memories. The main reason for such omission is 
that neurons associated with these words are directly activated 
by the input sequence, so their removal simplifies assessment of 
the network generated response. The resulting outputs are shown 
in Tables 4 and 5. The results of applying the Levenshtein 
distance measure to the resulting output sequences so obtained 
are shown in Table 6 and show that performance of LUMAKG 
was the same or better than that of ANAKG. These results also 
show that while both ANAKG and LUMAKG can provide 
reasonable responses when trained with a small dataset the 
performance of LUMAKG is considerably better when there are 
a large number of sequences in the training set.   

Reciprocal Word Position 

A difficulty in evaluating responses or answers of semantic 
memories, like those based on ANAKG and LUMAKG, is the 
difficulty in determining what is the correct response from 
associative spatio-temporal memory? Thus, Levenshtein 
distance while a good measure of text similarity is, in this case, 
limited. Hence, we designed a new quality measure called 
reciprocal word position (RWP).  

RWP measures user’s effort in extracting the desired 
response from the output generated by the semantic memory. 
RWP is calculated as follows:  

Compare the positions of all the words in the desired output to 
those in the actual memory output,  

a) if the positions are the same the word gets a weight of 1; 
b) if the positions are different by ‘n’ words the word gets a 
weight of 1/(n+1);  
c) if a word does not exist it gets a weight of 0;  
d) RWP equals to the sum of the weights of all the words in 
the desired sequence divided by the maximum of the number 
of words in the desired and actual outputs. 
 

The measure is normalized since the lowest value is 0 and 
the highest is 1 and a higer value of RWP indicate better match 
between the sequences.   For example, assume the desired output 
is “likes cold water” and the generated answer is “cold water 
likes”. Then the second and third words from the desired output 
are shifted by one position, whereas the first word is shifted by 
two positions in the generated output, and the resulting RWP is 
(1/2+1/2+1/3)/3 = 4/9. 

 

 

TABLE 4. INPUT SEQUENCES AND OUTPUT SEQUENCES, DISREGARDING INPUT 
SYMBOLS, GENERATED BY ANAKG AND LUMAKG. 

Input sequence ANAKG 
memory 
output 

LUMAKG 
memory output 

Desired output 

What did the 
king had? 

a beautiful 
garden 

a beautiful 
garden 

a beautiful 
garden 

What stood in 
the garden? 

a tree a tree a tree 

Why was the 
king angry? 

at an apple 
missing 

at an apple 
missing 

at an apple 
going missing 

What were 
always 
counted? 

  Apple that 

What did the 
king order his 
gardener? 

 was to keep 
watch 

to keep watch 

What was 
missing in the 
morning? 

another of 
apple 

another of 
apple 

another of 
apple 

TABLE 5. INPUT SEQUENCES AND OUTPUT SEQUENCES, DISREGARDING INPUT 
SYMBOLS, FOR LARGER NUMBER OF TRAINING INPUT SEQUENCES. 

Input 
sequence 

ANAKG  
memory 
output 

LUMAKG  
memory output 

Desired output 

What did the 
king had? 

 a beautiful 
garden 

a beautiful 
garden 

What stood in 
the garden? 

 stood a tree a tree 

Why was the 
king angry? 

should at should at an 
apple 

at an apple 
going missing 

What were 
always 

counted? 

  Apple that 

What did the 
king order his 

gardener? 

 to keep watch to keep watch 

What was 
missing in the 

morning? 

 another of apple another of 
apple 

 

TABLE 6. LEVENSHTEIN DISTANCE TO THE DESIRED OUTPUT, DISREGARDING 
INPUT SYMBOLS, IN BOTH TYPES OF MEMORIES. 

 

 

Input sequence 
ANAKG LUMAKG 

Test 
I 

Test 
II 

Test 
I 

Test 
II 

What did the king had? 0 3 0 0 
What stood in the garden? 0 2 0 1 
Why was the king angry? 1 5 1 3 

What were always counted? 2 2 2 2 
What did the king order his 

gardener? 
3 3 1 0 

What was missing in the 
morning? 

0 3 0 0 



TABLE 7. RWP TO THE DESIRED OUTPUT, DISREGARDING INPUT SYMBOLS, IN 
BOTH TYPES OF MEMORIES. 

 

The results applying RWP measure to the ANAKG and 
LUMAKG memory outputs from Tables 4 and 5 are shown in 
Table 7. These results also show that the performance of 
LUMAKG based semantic memory is equal to or better in all 
cases than ANAKG based semantic memory and its relative 
recall quality over ANAKG increases as the memory size 
increases. 

D. Computational Complexity 
The third type of tests was performed to determine 

computational complexity of LUMAKG memory in comparison 
to ANAKG memory. We tested the time needed to create the 
associative memory as a function of the number of objects. The 
results for a data set of all stories in Grimm’s Fairy Tales are 
shown in Fig. 8-9. Fig. 8 shows the change in the number of 
unique objects (unique words) as the number of all objects (all 
words in all sentences) in the dataset increases. Neurons 
represent unique words in the neural knowledge graphs. As 
more input sequences are entered into the system, more mini-
columns were previously introduced, and the rate of increase of 
unique objects slows down. Fig. 9 shows the learning time for 
both ANAKG and LUMAKG as a function of all objects in the 
data set. We see that computational cost for LUMAKG is 
between 30-40% higher than for ANAKG. Tests were 
performed on a general purpose laptop (i5-4300M CPU, 2.6 
GHz, 8GB RAM).  

 
Fig. 8. Results for a large data set: number of neurons in ANAKG and mini-
columns in LUMAKG as a function of the number of learned objects. 

The number of neurons in LUMAKG memory is k times 
larger than in ANAKG memory, where k is the number of 
neurons in each mini-column (in our tests k=5). However, the 
number of synapses does not grow as fast since the number of 
associative links between all neurons corresponds to the number 
of transitions between various words. They are just spread over 
the larger number of neurons. Although the training time is 
greater for LUMAKG than for ANAKG due to the need of 
finding predecessor and successor for each element of the 
training sequence, the quality of results points to better 
properties of LUMAKG graphs, which make them more suitable 
to develop short term associative memories. 

 

 
Fig. 9. Results for a large data set: learning times in ANAKG (lower curve) and 
LUMAKG (upper curve) as a function of the number of learned objects. 

V. CONCLUSIONS 
Presented in this paper LUMAKG memory supports 

continuous on-line learning, self-organization without 
supervised learning, context based predictions, and is capable of 
recognizing time-domain sequences correctly. LUMAKG 
shows better ability to recall sequences stored in the memories 
than ANAKG to which it was compared. Using Levenshtein 
distance and another quality measure, we also show that 
LUMAKG memory has higher capacity and better resolution for 
short term memory recall. Future work is to extend LUMAKG 
to a distributed representation of all symbols stored in the 
memory which will significantly increase its storage capacity. 
Further studies will also be performed on a larger training data 
sets and a larger number of the test sequences to obtain a 
statistically sound assessment of the network properties. The 
effect of varying the number of neurons in minicolumns on 
performance will also be studied. ANAKG memories and its 
derivatives are new types of memories that are under intensive 
investigation. Their properties are explored with a final goal to 
use them as basic models for self-organization of the semantic 
memories. 
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Input sequence 
ANAKG LUMAKG 

Test 
I 

Test 
II 

Test 
I 

Test 
II 

What did the king had? 1 0 1 1 
What stood in the garden? 1 0 1 1/3 
Why was the king angry? 7/10 1/10 7/10 3/10 

What were always counted? 0 0 0 0 
What did the king order his 

gardener? 
0 0 3/8 1 

What was missing in the 
morning? 

1 0 1 1 
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