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Abstract—Wide neural networks were recently proposed as a less 
costly alternative to deep neural networks. In this paper, we analyze 
the properties of wide neural networks regarding feature selection 
and their significance. We compared the random selection of weights 
in the hidden layer to the selection based on radial basis functions. 
Wide neural networks were also compared with fully connected 
cascade networks. Feature significance was introduced as a measure 
to compare various feature selection techniques. Another 
performance measure introduced in this paper – incremental feature 
significance - determines the level of improvement that results from 
selecting only some features, which were added to the existing 
features, rather than replacing one set of features with another. In 
both cases, we can also estimate the number of features saved by 
replacing the original features with the selected ones for which 
recognition levels improve. This approach can be applied to wide 
networks that use different feature selection methods than those that 
are analyzed in this paper; like a k-nearest neighbor, an autoencoder 
etc.  

Keywords—Broad neural networks; feature significance; 
incremental feature significance. 

I. INTRODUCTION 
In 2018, Chen and Liu [1] presented wide neural networks 

(also known as broad neural networks) as an alternative to deep 
neural networks (DNN) that can be easier and faster trained. 
These networks had a structure of a single layer feedforward 
neural network with a large number of neurons in the hidden 
layer. They were characterized with good performance and 
much higher speed of training than deep neural networks. Wide 
neural networks are flat, so there is no problem with exploding 
or vanishing gradient descent (an advantage in comparison to 
DNN). 

Moreover, in flat neural networks, real features can be 
created as a group of combined weights and neurons influencing 
the results in the output layer. The question we try to answer in 
this paper is about the quality of features represented in wide 
neural networks. Can we say that one set of features is better 
than another one, and how to measure the feature quality? 

Properties of a single-layer feedforward neural network 
(nonlinear perceptron) as a general function approximator were 
investigated since 1980ies [2], [3]. A nonlinear perceptron uses 
a single hidden layer with a nonlinear transformation of the 
combination of the input signals in each hidden neuron to 
approximate an unknown function f(x). Each output of 
nonlinear perceptron combines outputs from the hidden layer 
neurons to produce an approximation function 

 f(𝑥) = ∑ 𝑎௞ ∙ 𝑔(𝑤௞𝑥 + 𝑏௞)௡௞ୀଵ    (1) 

where n is the number of hidden neurons, 𝑤௞𝑥 is the inner 
product of a weight vector 𝑤௞ ∈ Rୢ, and the input signal vector 𝑥 ∈ Rୢ , and  𝑎௞ , 𝑏௞ are scalars that can be obtained during the 
network training. Nonlinear transformation function 𝑔(. ) is a 
prespecified logistic function (e.g. sigmoidal or radial).  

Barron [4] has proved that the approximation error (a 
distance between a function to be approximated and the best 
approximation in a given class of approximating functions) for 
the nonlinear perceptron tends to zero with the integrated 
squared error rate of the order O(1/n)  where n is the number of 
neurons in the hidden layer. Leshno et al. [5] generalized this 
result proving that a nonlinear perceptron and other similar 
structures can approximate any continuous function to any 
degree of accuracy if and only if the network's activation 
function is not a polynomial. 

Practical results were developed by Igelnik and Pao [6] who 
introduced a Random Vector Functional Link Neural Network 
(RVFLNN) that was shown to be a universal approximator for 
continuous functions with the approximation error converging 
to zero at the rate of O(1/√n). RVFLNN used the neural 
network with one hidden layer that implemented the 
approximating function f୬(x). Like in the earlier works, this 
function was shown to approximate any function f ∈ C൫Iୢ൯ 
which is continuous on the standard hypercube Iୢ = [0; 1]ୢ ⊂Rୢ . From a practical point of view, it is important that the 
weights w୩ and coefficients b୩ were randomly selected from a 
given distribution and parameters a୩ were learned using simple 
quadratic optimization.   

Recently Chen and Liu introduced broad learning systems 
(BLS) as an alternative structure to deep neural networks [1].  
The BLS was based on the idea of RVFLNN presented by 
Igelnik and Pao in [6]. Chen and Liu pointed out that deep neural 
networks require a very time-consuming training process due to 
a large number of weights in filters, layers, and gradient-based 
weight adjustment with many training epochs. The BLS is a flat 
network in which the input signals are amended by 
“enhancement nodes” to obtain a wide neural network structure. 
The incremental learning was used to add feature nodes as well 
as enhancement nodes. Incremental learning uses pseudoinverse 
and allows for incremental increases of neurons as well as 
training data without a need to repeat training for all data. They 
verified their approach on Modified National Institute of 
Standards and Technology data (MNIST) for classification of 
handwritten characters and NYU object recognition data 

2019 IEEE Symposium Series on Computational Intelligence (SSCI) 
December 6-9 2019, Xiamen, China 

978-1-7281-2484-1/19/$31.00 ©2019 IEEE 908



(NORB) for 3D object recognition. Weights of the enhancement 
nodes can either be randomly selected or trained. Chen and Liu 
used a sparse autoencoder approach to fine-tune initially random 
weights in order to obtain better features. They compared their 
test results with these of many classification methods including 
autoencoders [7],[8],[9], multilayer perceptrons [10],[11], 
extreme learning machines [12],[13], fuzzy restricted 
Boltzmann machines [14], and deep neural networks [15][16]. 
The BLS network obtained the accuracy of the results 
comparable to these reference methods but had the training time 
for the MNIST database from 3.6 to 7.3 times shorter than in 
extreme learning and fuzzy restricted Boltzmann machines and 
from 276 to 1543 times shorter than for autoencoders, multilayer 
perceptrons, and deep neural networks. Similar results were 
obtained for the NORB data, indicating that the method is much 
faster than the reference while maintaining their accuracy of 
classification. 

The importance of studying wide neural networks was 
recently emphasized in [17], where authors pointed out the need 
for a comprehensive understanding of the tradeoff between 
depth and width in neural networks. They provided a proof that 
a deep fully-connected ReLU NN with the width less or equal to 
(n+4) can approximate any Lebesgue integrable function in n-
dimensional R space with arbitrary precision. They pointed out 
the importance of proving lower and upper bounds to understand 
the tradeoff between width and depth of neural networks. Earlier 
works [18], [19] pointed out the existence of deep convolutional 
networks that cannot be realized by a wide shallow network if 
its width is less than the exponential bound of the depth of the 
convolutional network. No such equivalent result was 
established for wide networks. 

There are also other concepts of neural network structures 
(e.g. Fully Connected Cascade Networks (FCCN) or Cascade 
Correlation [20], [21]) that are neither wide nor deep. These 
networks freeze the already learned network structure before 
adding a new neuron that is connected not only to all inputs but 
also to all neurons of all previous layers. In this concept, each 
hidden layer consists of only a single neuron, so it is similar to 
the concept of BLS. We refer to such networks comparing their 
performance to the performance of wide networks. 

In this work, we examine in detail the convergence of 
RVFLNN approximation on the MNIST database [22]. In 
particular, we show that the convergence is slower than the 
claimed rate of 𝑂(1/√𝑛). It is essential to know this 
convergence rate since we can introduce and test different than 
random features for the better network organization and 
performance. On this ground, we introduced and tested the 
concept of feature significance. The introduced feature 
significance can be a tool that guides the development of wide 
neural networks. It is also possible that this kind of estimate of 
the future quality can help in designing better neural networks 
in general (including deep neural networks). 

II. WIDE NEURAL NETWORK ORGANIZATION 
The simplest form of the wide network organization based 

on a single layer feedforward neural network is shown in Fig. 1.  
In this figure, 𝑍ଵ is a 𝑘 × 𝑚 matrix of the input signals 𝑊ଵ  and 𝑊ଶ  that are weight matrices, 𝑌ଵ = 𝑍ଵ ∗ 𝑊ଵ is an input matrix to 

the hidden layer, 𝑍ଶ is determined through the sigmoidal 
transformation function of neurons in the hidden layer, so e.g. 𝑍ଶ = 𝑡𝑎𝑛ℎ(𝑌ଵ) or using another logistic function 𝑍ଶ = 𝜓(𝑌ଵ), 
and the neural network output is 𝑌ଶ = 𝑍ଶ ∗𝑊ଶ . 

 
Fig. 1 Single layer feedforward neural network 

In RVFLNN networks, 𝑊ଵ  is randomly generated, and 𝑊ଶ is 
learned by using pseudoinverse 𝑊ଶ = 𝑝𝑖𝑛𝑣(𝑍ଶ) ∙ 𝑌஽     (2) 

where Yୈ  is a desired value of the output signal Yଶ, so Yଶ 
obtained from the output of the neural network is a k × o matrix.  
If the hidden layer has n neurons then Wଵ is an m × n matrix, 
and Wଶ is an n × o matrix. Thus, according to the theory of 
RVFLNN networks, any continuous output function (desired 
values) can be approximated, and the approximation error is 
converging to zero at the rate of O(1/√n). If using these 
networks for classification problems, the desired output is a class 
indicator, and if each output neuron represents a single class, we 
can code this fact by assigning the value 1 if the input sample is 
from a given class and 0 otherwise. In such a case, the output is 
not a continuous function, and we would like to test what is the 
convergence rate in this case.   

Consider four matrices 𝑍ଵ௞×௠, 𝑊ଵ௠×௡, 𝑊ଶ௡×௢, and 𝑌ଶ௞×௢ 
representing signals and weights from Fig. 1. We say that the 
input matrix 𝑍ଵ  consists of k examples of m input features each. 
Thus, the network has m input features, n neural features and o 
output features. Our study is devoted to neural features. Thus, 
when we use the term “feature” we mean a neural feature.  

A. Test of the Wide Neural Network with Random Weights  
In order to determine the error convergence rate, we tested 

many RVFLNN neural networks on the MNIST data [22] 
varying the number of neurons in the hidden layer. The MNIST 
dataset consists of a number of handwritten digits collected from 
Census Bureau employees and 500 high-school students.  Every 
digit is stored as a gray-scaled image with the size of 28×28 
pixels. The digits have been normalized and centered in the 
image plane. The whole data set was divided into a training set 
containing 60 000 images and a test set of 10 000 images.  

In our test, each input image was transformed into a vector 
of 784 pixel values scaled from -1 to 1, and desired outputs were 
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written as 10 element vectors representing digits from 0 to 9. 
The k-th element of the output vector had value 1 if the training 
data represented digit k-1 and was -1 otherwise. Thus the input 𝑍ଵ was a 60000 × 784 training matrix, and the desired output 𝑌஽ was a 60000 × 10 matrix with elements equal to 1 and -1. 
The 784 × 𝑛 weight matrix 𝑊ଵ had randomly generated weights 
of uniform distribution from -1 to 1. 𝑌ଵ = 𝑍ଵ ∙ 𝑊ଵ was computed 
from the input data as a 60000 × 𝑛 matrix. The logistic function 
used was 𝜓(𝑌ଵ) = 𝑡𝑎𝑛ℎ(𝑌ଵ), therefore 𝑍ଶ = tanh (𝑌ଵ). Also, 
the 𝑛 × 10 weight matrix 𝑊ଶ  was calculated from  𝑊ଶ =𝑝𝑖𝑛𝑣(𝑍ଶ) ∙ 𝑌஽.   

Table I shows the mean values of the testing error rates and 
their standard deviations for the neural network sizes changing 
from 2 to 6000 neurons in the hidden layer. The results were 
obtained by averaging 20 runs with randomly generated weight 
matrices 𝑊ଵ .  

TABLE I.  TESTING ERROR OF WIDE NEURAL NETWORKS AS A FUNCTION 
OF THE NUMBER OF FEATURES (HIDDEN NODES). 

When the random weights were generated in the range -0.1 
to 0.1, the results of testing with random weights were better.  
These results show that weight normalization is important for 
better performance. 

TABLE II.  TESTING ERROR AS A FUNCTION OF THE NUMBER OF 
FEATURES FOR RANDOM WEIGHTS FROM -0.1 TO 0.1 INTERVAL. 

Number 
of 

features 𝑛 

4 8 16 32 64 128 256 

Testing 
error rate 

in % 

72.23 61.87 48.38 35.09 23.73 16.59 11.95 

Standard 
deviation 

2.31 2.75 1.74 1.69 0.56 0.40 0.36 

Number 
of 

features 𝑛 

500 1000 2000 3000 4000 5000 6000 

Testing 
error rate 

in % 

8.53 5.69 3.66 2.70 2.14 1.74 1.38 

Standard 
deviation 

0.20 0.07 0.05 0.04 0.04 0.03 0.02 

Results were only slightly different when the random 
weights were generated in the interval from -0.01 to 0.01.  

What is unexpected in these results is that even a single layer 
of the feedforward neural network with only two hidden nodes 
gives better than chance recognition (90% error). It contains 

only 20 trained weights. In addition, a linear perceptron with all 
the weights trained by pseudoinverse gives 14.22% error, so the 
network with 250 hidden neurons which gives better accuracy 
(error 12.1%) is easier to train since it computes pseudoinverse 
of the 60000 × 250 matrix rather than the 60000 × 784 matrix 
required for the linear perceptron.  

All the tests were performed on a personal computer Intel-
i5-7400, 3.0 GHz CPU, with 8 GB memory using MATLAB.  

We can approximate the classification error obtained in 
Table II by the following function: 𝑓(𝑛) = ଶ.ସ଺√௡ା଻   (3) 

The constants 2.46 and 7 were obtained experimentally to 
match the error level for 2 hidden nodes and get a good fit to 
results obtained in the wide neural networks with the increasing 
number of hidden nodes in all random features experiments.  
This function is compared to the results obtained in the 
experiments with the random selection of weights, as shown in 
Fig. 2. 

 
Fig. 2 Testing error as a function of the number of hidden nodes with 

randomly selected weights. 

B. Test of the Wide Neural Network with Radial Basis 
Functions  

Next, we tested MNIST data recognition using a new set of 
features based on radial basis functions (RBF) to determine the 
interconnection weights from the input data to hidden neurons.  
To obtain RBF for individual hidden neurons, we first generated 
their input weights as equal to the coordinates of the randomly 
selected training data. Each hidden neuron had a logistic 
function described by: 𝑓(𝑥) = 𝑒ష೏(ೣ,ೢ)మమ∙഑మ    (4) 

where x is the input data vector, w is the vector of weights of the 
hidden neuron, d(x, w) is the distance between the input data 
and a hidden neuron, where weights are obtained from 𝑑(𝑥,𝑤) = 𝑚𝑎𝑥┬ (൫‖𝑥 − 𝑤‖ − 𝑑̅ + 2 ∙ 𝜎൯, 0) (5) 

and dത  is the mean value of norms of differences between weights 
of hidden neurons (or coordinates of selected training data 
vectors) for all pairs of hidden neurons 

0 100 200 300 400 500

10

20

30

40

50

60

70

80

Error as a funtion of the size of hidden layer

Number of neurons

Er
ro

r i
n 

%
 

Number of 
features 𝑛 4 8 16 32 64 128 256 

Testing 
error rate 

in % 
78.02 69.90 59.26 49.93 36.86 23.67 16.19 

Standard 
deviation 3.44 3.28 3.85 2.73 2.02 0.87 0.44 

Number of 
features 𝑛 500 1000 2000 3000 4000 5000 6000 

Testing 
error rate 

in % 
12.54 8.55 5.71 4.35 3.47 2.88 2.54 

Standard 
deviation 0.23 0.15 0.14 0.11 0.09 0.08 0.05 
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𝑑̅ = ∑ ‖௪೔ି௪ೖ‖௡∙(௡ିଵ)௡௜,௞ୀଵ,௜ஷ௞    (6) 
and 𝜎 is the standard deviation of such norms. 

Notice that the values dത  and σ are calculated only once after 
the random selection of training data points. During testing, each 
hidden neuron calculates its own logistic function value based 
on the distance of the input data x to its weights vector w.   

To obtain statistics needed for the RBF function, we 
calculated the mean of norms of the differences between weights 
and their standard deviations for a various number of hidden 
neurons. The results were surprisingly stable across these 
numbers, as we can see in Table III.  

TABLE III.  DIFFERENCE BETWEEN WEIGHTS OF HIDDEN NEURONS USED 
IN THE SELECTION OF FEATURES BASED ON THE RADIAL BASIS FUNCTION.  

Number 
of features 𝑛 

4 8 16 32 64 128 256 512 1024 

Mean 
norm of 

difference  

20 19.3 20.3 20.8 20.5 20.4 20.1 20.3 20.2 

We used the average mean for all dimensions equal to dത =20.2 and the standard deviation σ = 3.74 to design radial basis 
functions for hidden neurons (equations (4) and (5)). When the 
radial basis functions were used in structuring wide neural 
networks, the performance increased (classification errors were 
reduced), as shown in Table IV. 

TABLE IV.  CLASSIFICATION ERRORS FOR WIDE NETWORKS WITH RADIAL 
BASIS FUNCTIONS. 

Number of 
features 𝑛 

4 8 16 32 64 128 256 

Testing 
error rate in 

% 

70.03 54.43 41.52 26.39 17.62 
 

11.98 
 

7.52 

Standard 
deviation 

3.82 
 

2.72 2.69 
 

1.53 0.61 
 

0.40 0.20 

Number of 
features 𝑛 

500 1000 2000 3000 4000 5000 6000 

Testing 
error rate in 

% 

5.44 3.85 2.64 2.03 1.69 1.36 1.15 

Standard 
deviation 

0.10 0.05 0.04 0.04 0.03 0.02 0.02 

These results are partially illustrated in Fig. 3 by green * 
points. As we can see, results are more accurate than the results 
for a random selection of features. Thus, this is a better selection 
of features for wide neural networks. 

B. Test of the FCC Deep Neural Network with Random 
Weights 

Wide neural networks are characterized by fast learning and 
an easy to design architecture. Another approach which 
promised similar advantages is a fully connected cascade. We 
conducted a speed-accuracy test on a Fully Connected Cascade 
(FCC) to discover if the computation time investment into more 
layers pays off. We did not expect an overall accuracy increase 
of the models, compared to the wide networks, due to the  
Universal Approximation Theorem [3]. 

 
Fig. 3 Comparison of error functions for the random and RBF selections 

We checked how the test accuracy converges with the increase 
in the number of FCC layers. We used an FCC network structure 
shown in Fig. 4. 

 
 Fig. 4. FCC trained on MNIST  

In Fig. 4, each hidden neuron is connected to all input nodes, 
all hidden neurons of the higher number, and all outputs. The 
number of hidden neurons is gradually increasing, effectively 
changing the number of layers (network size) and network 
complexity. 

The networks of various sizes were trained with the 
Levenberg-Marquardt (LM) nonlinear optimizer, aimed to 
minimize the mean squared output error (MSE). In order to 
make the test results of FCC network in agreement with the MSE 
error, we scaled the output vector 10 times. This improved the 
recognition stability of the test results, and classification results 
are shown in Table V.  
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TABLE V.  CLASSIFICATION ERRORS AND TRAINING TIMES OF THE FCC 
NETWORK 

Number of layers 1 2 3 4 5 6 7 8 9 10 

Number of weights 
in thousands  

7.9 8.6 9.4 10.1 10.8 11.6 12.3 13.0 13.8 14.5 

Test error rate in % 8.0 8.5 8.6 8.4 8.2 7.9 8.0 16.9 8.9 17.8 

MSE in % 23 23 23 23 23 23 23 24 23 24 

Training time [h] 28 28 30 24 28 59 50 51 72 92 

Epochs 18 28 30 24 28 27 19 23 21 33 

LM is the second-order training method. In practice, the second-
order derivatives matrix inversion should be computed every 
time the weight will change. As we can see, the training of this 
network is very slow. The fastest training time was 24h. Thus, 
we conclude that the LM method is not suitable for practical 
problems of this size. Moreover, the FCC was not designed to 
be deep in the sense of today standards. 

A Modified Cascade (MC) network (without connections 
marked by the dotted line in Fig. 4) is notably more compact, 
thus faster. Table VI presents the results of this modification. An 
error converges to ~ 9% in deeper networks with a standard 
deviation of 1%. Comparing to results presented in Table V, 
training time (here in minutes) is significantly smaller. 

TABLE VI.  CLASSIFICATION ERRORS AND TRAINING TIMES OF THE MC 
NETWORK 

Number of layers 3 4 5 6 7 8 9 10 11 12 

Number of weights in 
thousands  

2.2 2.9 3.7 4.4 5.1 5.9 6.6 7.7 8.1 8.8 

Error rate in % 37 21 16 12 12 10 9 11 11 8 

MSE in % 23 23 23 23 23 23 23 24 23 24 

Training time [min] 3 5 14 28 36 45 57 65 93 96 

 

Overall, we did not find the FCC network to be competitive 
with wide networks of a similar level of complexity.  

First, FCC network has a delay proportional to the number 
of cascaded nodes. Second, the number of weights used is much 
larger to reach the same test accuracy, which increases the 
training time.  

III. FEATURE SIGNIFICANCE 
As we could observe using RBF features, the recognition 

error was systematically lower than in the case when hidden 
neurons had assigned random weights. The question is, how 
significant is this improvement?  

To be able to answer this question in quantitative terms, we 
introduce here a feature significance measure. The random 
selection of weights is used as a reference. Any feature selection 
method that gives better results than the random selection in 
lowering the recognition error should have the significance 
higher than 0, and those that give worse result should have the 
significance lower than 0. One way of measuring the feature 
significance will be to use the ratio of errors for the two methods 
compared (for a specific number of the hidden nodes). 

Let us define the feature significance using 𝑆௙ = ௘భ௘మ − 1   (7) 

where eଵis the classification error level obtained by the reference 
network, eଶ is the error level obtained by the second method 
with the same number of hidden neurons. 

For instance, the significance of the random weights 
selection vs. theoretical limit ଵ√୬ [6] is shown in Fig. 5.  As we 
can see, the significance increases for larger networks, which 
tells us that the classification error with a random selection of 
weights in the hidden layer decreases faster than  ଵ√୬ . 

 
Fig. 5 Significance of randomly selected weights vs. theoretically established 

limits of error convergence. 

Using significance, we can also compare one method to 
another.  For instance, if eଵ represents the errors obtained in the 
random selection of weights in the hidden layer and eଶ weights 
of neurons in the RBF approach, then the significance plot is as 
illustrated in Fig. 6.  

 
Fig. 6 Significance of RBF functions vs. randomly selected weights. 

The result confirms that all network sizes using the RBF are 
better than the networks that use randomly selected weights. 
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This happens despite the error reduction is defined as a function 
of the number of features in both these methods. 

Defining the significance of feature selection in a wide 
neural network using (7) is a quick and easy check if one method 
is better than another. The better method will have a 
systematically positive value of the significance measure and the 
bigger the significance measure, the better is the feature 
selection method.   

Another approach to defining the feature selection 
significance is to relate it to the number of nodes in the hidden 
layer of the worse method needed to obtain a similar accuracy 
of classification results as obtained by the better method. We can 
do it using theoretical limits of the approximation error as a 
function of the number of hidden nodes expressed as O(1/√n). 
Since e ~ O(1/√n), we can relate the number of nodes to the 
observed error level as n ~ O(1 e⁄ ) and define the feature 
selection significance as     𝑆௙ = ටቀ௘భ௘మቁଶ − 1  ~  ට௡మ௡భ − 1  (8) 

With this definition, at a larger number of hidden neurons in 
wide neural networks, the lesser method should increase the 
number of neurons in the hidden layer  ୬మି୬భ୬భ = (S୤)ଶ times to 
match the better method.   

Using this definition of feature significance, comparing the 
errors in the randomly generated weights of hidden neurons to 
those generated by RBF hidden neurons, we obtain the results 
shown in Table VII. 

TABLE VII.  % INCREASE IN THE NUMBER OF HIDDEN NEURONS IN 
RANDOM SELECTION IN COMPARISON TO THE RBF SELECTION. 

Number of 
features n 

4 8 16 32 64 128 256 

Required increase 
in  

6.4 29.2 35.8 76.8 81.4 91.8 153 

Number of 
features n 

500 1000 2000 3000 4000 5000 6000 

Required increase 
in  

146 118 92.2 76.9 60.3 63.7 44.0 

We can see that in the random selection of weights, the 
number of neurons needed to obtain an error that matches the 
one of RBF should be increased between 6-150%, which 
indicates large savings in the neural hardware and simulation 
time if RBF features are used to build wide neural networks. 

IV. INCREMENTAL FEATURE SELECTION SIGNIFICANCE 
The question we asked next is this. Suppose that we already 

have a number of features n in a wide network and would like 
to add a specific number n୤ of new features that we believe are 
good features for a given problem. Thus, we wish to have an 
incremental significance measure that evaluates how many 
randomly generated features can be saved if the new features are 
used. The measure should tell us how much better is to use these 
new features than those randomly generated. The savings are 
specifically addressed to a subset of all features instead of 
replacing all features as we had in the previous case. 

We can extend the definition of feature significance (8) to 
include the incremental increase in the number of features used 
in wide neural networks as follows  

S୤ଵ = ඩ౛భమ౛మమିଵ౛యమ౛భమିଵ    (9) 

This definition is based on the rate of the change of errors if 
we use a selected group of new features instead of the same 
number of original features. In (9), eଵ is the error level produced 
by the network using only the original set of n features, eଶ is the 
error level produced by the network in which n୤ features were 
replaced by the new set of features, and eଷ is the level of 
estimated error for the original features with n୤ features 
removed. For simplicity of discussion, let us assume that the 
original features were randomly generated and the error level 
can be estimated from eଵ = O ቀ େ√୬ቁ   (10) 

We can estimate the number of original (random) features 
needed to get the testing error eଶ from eଶ = O ቀ େ√୬మቁ   (11) 

and error eଷ can be estimated from eଷ = O ൬ େඥ୬ି୬౜൰  (12) 

Using these estimates, we can compute incremental feature 
significance S୤ using 

S୤ଵ = ඩ౛భమ౛మమିଵ౛యమ౛భమିଵ = ඩ ౛భమ౛మమିଵ౤౤ష౤౜ିଵ = ඨቆ౛భమ౛మమିଵቇ(୬ି୬౜)୬ି(୬ି୬౜) =
                         ටቀୣభమୣమమ − 1ቁቀ ୬୬౜ − 1ቁ     (13) 

A. Example 
Let us illustrate the incremental feature selection 

significance with a simple example shown in Fig. 5. Let us 
assume that the error rate was eଵ = 0.26 for n=15 and when two 
random features were replaced by selected features (i.e. n୤ = 2) 
we got the error rate eଶ = 0.16. Using (3), we can calculate the 
incremental significance of these features as 𝑆௙ଵ = ටቀ௘భమ௘మమ − 1ቁ ൬ ௡௡೑ − 1൰ = 2.01  (14) 

In Fig. 7, the continuous line represents the theoretical error 
level estimated by 𝑂(1/√𝑛), on the vertical line, we have errors eଵ and eଶ, the top horizontal line intersects the curve O൫1 √n⁄ ൯ 
yielding the estimated error eଷ, and the bottom horizontal line 
intersects O൫1 √n⁄ ൯ giving an estimate of the number of random 
features nଶ that would yield the same level of the error level eଶ.  
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Fig. 7 Theoretical example to illustrate the effect of incremental addition of 

selected features over the set of random features. 

Using (10) and (11), we can estimate this number as nଶ = ୣభమୣమమ ∙ n = 39.61   (15) 
Thus, it would take more than twice the current number of 

random features (around 15) to reach the same error level 
(around 0.16). This theoretical result can be confirmed by 
inspecting Fig. 7. 

B. Incremental Significance of Selected Features 
To further explore the effect of incremental addition of 

features different than the existing ones, we designed a set of 
selected features (which we believed will be useful for 
handwritten digit recognition) by observing that in the 
handwritten digits, important information is included in the 
endpoints of each digit. Both the number of endpoints and their 
location are important.  

We designed a simple procedure that uses skeletonization to 
find the location of the endpoints in all data images. An example 
is shown in Fig. 8 for the handwritten digit 3. The location of the 
endpoints and their number is recorded and used as selected 
features. 

 
Fig. 8. Original digit image, its skeleton, and the location of its endpoints 

All endpoints are represented by their x and y coordinates on 
the scale from -1 to 1. This location information corresponds to 
the activation level of a hidden neuron (one hidden neuron per x 
or y coordinate of the endpoint). We limited the number of 
endpoints for each digit to be at most 5. Some digits had no 
endpoints at all, but some extra endpoints were created due to 
sloppy writing or as a result of the skeletonization algorithm, as 
illustrated in Fig. 9, where digit 6, that typically has one 
endpoint, here, had two of them. 

 
Fig. 9 Spurious endpoint in digit 6. 

The problem with the representation of the endpoints 
through their coordinates is that when the endpoint is near the 
center of the image then the value of its (x, y) coordinates is 
close to (0, 0), and effectively such endpoints do not influence 
the neural network response (since the corresponding hidden 
neurons are not activated). A better approach is to have each 
location counts. We can accomplish this by assigning two real 
values to x and y using the nonlinear transformation of each x 
and y coordinates. First, we normalize x and y within the [0 1] 
interval and then calculate a vector function 

 𝑓(𝑥) = ൤ 𝑐𝑜𝑠 (𝑥 ∙ 𝜋)𝑠𝑖𝑛(𝑥 ∙ 𝜋) ∙ 2− 1൨ 

Using this transformation, each coordinate value from [0, 1] 
interval will be transformed into a pair of values between -1 and 
1. This transformation will activate at least one of the hidden 
neurons describing where the end-points are. With this improved 
representation, each endpoint requires 4 hidden neurons. Thus 
for 5 endpoints, we add 20 hidden neurons.   

The question is how significant are these extra features 
represented by the coordinates of the endpoints. To answer such 
a question, we tested wide neural networks with various 
numbers of hidden neurons. This resulted in two types of errors, 
error eଵ which was obtained when all features of the hidden 
neurons were randomly generated, and error eଶ obtained in the 
networks in which 20 random features were replaced by 20 
features representing the endpoints. Next, we calculated the 
incremental significance measure S୤ଵ  using (13) and the number 
of saved neurons in the hidden layer if all features are based on 
the random selection from  ∆𝑛 = ௘భమ௘మమ ∙ 𝑛 − 𝑛   (17) 

The results are shown in Table VIII. 
TABLE VIII.  THE INCREMENTAL SIGNIFICANCE OF THE ENDPOINT 

FEATURES AND THE NUMBER OF SAVED FEATURES COMPARED TO RANDOM 
FEATURE SELECTION. 

As we can see, both the significance of the selected endpoint 
features as well as the number of random features needed to 
compensate for the lack of these features are increasing with the 
network size. 
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V. CONCLUSION 
This paper discussed the significance of the feature selection 

for wide neural networks. Obtained experimentally, the testing 
accuracy confirmed claims that the testing error decreases with 
the increasing number of hidden neurons, although there are 
significant differences in the performance of different feature 
selection methods for the same number of hidden neurons. We 
compared recognition accuracy on the MNIST database using 
two approaches: 1) randomly selected weights from the input 
layer to hidden neurons, and 2) weights based on radial basis 
functions. Both methods gave wide neural network structures 
without expensive iterative learning that characterize deep 
neural networks. It requires only a pseudoinverse to train the 
output layer that classifies the input data. However, the selection 
of weights using radial basis functions required a smaller 
number of hidden neurons to obtain a similar level of 
recognition accuracy. We also compared wide networks to 
connected cascades and demonstrated that these techniques, 
although their simplicity in construction, are not competitive 
with wide networks. 

To measure the quality of the applied feature selection 
method, we introduced two significance measures. The first 
measure compared two methods of feature selection applied to 
all hidden neurons. The second method allowed for incremental 
testing of selected features while leaving the remaining features 
without change. This second approach is particularly useful to 
test a smaller number of specifically selected features that may 
require special preprocessing of data to establish the features. 
In addition, we can translate the feature significance into the 
number of random features that would have to be added to the 
wide network in order to obtain a similar performance as the 
network with added (possible more elaborate) features.  

In future work, we want to explore tradeoffs between the 
number of hidden neurons in wide neural networks vs. width 
and depth of deep neural networks to better understand 
tradeoffs between the two parameters of modern neural network 
structures. 
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