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Abstract. This paper compares two neural network learning schemes in cross-
bar architecture, using memristive elements. Novel memristive crossbar archi-
tecture with dense synaptic connections suitable for online training was de-
veloped. Training algorithms and simulations of the two proposed learning 
schemes, winner adjustment training (WAT) and multiple adjustments training 
(MAT) are presented. Tests performed using MNIST handwritten character 
recognition benchmark dataset confirmed the functionality of proposed learn-
ing schemes. Proposed learning schemes were compared accounting for noise, 
device variations and multipath effects. The proposed learning schemes im-
prove available neural network learning schemes.  
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1 Introduction 

Memristors, first hypothesized by Chua 40 years ago [1], are elements relat-

ing charge and magnetic flux and change their resistance based upon the 

input current or voltage. Resistance switching in Titanium dioxide (TiO2) was 

first recognized as related to the memristor characteristics in 2008 [2] and 

sparked considerable interest in their potential applications, including neural 

networks [3 – 6]. Later work has shown the existence of memristor charac-

teristics in WO3 [7] and other metal oxides like ZrO2, NiO, Nb2O5, HfO2, and 

CeOx [8].  

The ability to perform on-line training and scale the architecture to a large 

system are the major evaluation criterion of memristive architectures in neu-

ral network applications.  The goal of this work is to make memristive on-line 

learning feasible in high density crossbar architectures. Specifically, we pro-
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pose a neural network organization and two training scheme, suitable for 

high density architectures with interconnection weights that can be easily 

controlled during the network operation.   

Neural networks using high-density crossbar architecture have been pro-

posed in earlier work [9 – 11]. The architecture proposed in [9] is easily scal-

able as it is based on a simple crossbar structure with memristors formed at 

the junctions. But [9] lacks in details regarding mechanism for training the 

memristors in the crossbar architecture, probably due to its emphasis on 

fabrication of memristors. [10] proposes a neural crossbar architecture, pro-

vides a training scheme and shows its application to design of fault tolerant 

circuits using supervised learning. A related design in [11], shows application 

of a crossbar architecture using memristors for handwritten character recog-

nition. Unlike [11] our approach uses neither lateral inhibition among the 

output neurons nor homoeostasis at the output neurons to dynamically ad-

just their thresholds. This decreases the circuitry needed and results in a 

more compact architecture. 

2 Memristor Characteristics 

Memristors change their resistance as a function of the flux applied to their 

terminals and remember their “state” when the flux is removed.  Fig. 1 

shows a physical model of the memristor as described in [2]. It consists of 

titanium dioxide (TiO2) and an oxygen poor TiO2-x layer, fabricated between 

platinum contacts. The titanium dioxide layer is considered the undoped 

region and has high resistance while the oxygen poor region is considered 

the doped region and has low resistance due to the oxygen vacancies acting 

as positive dopants. The effective resistance is the sum of the resistances of 

the doped and undoped regions:  

  ( )           (   ) (1) 

where the state variable  
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And RON and ROFF are the resistance of the doped region and undoped regions 

respectively. The memristor’s current and voltage are related through Ohm’s 

law, with memristance M(x) representing current resistance value.  

 

Fig. 1. (a) Memristor model according to [2] (b) memristor symbols used in this paper left-to-
right: traditional symbol, symbols used in this paper for p-type and n-type memristors. 

Memristor is an asymmetrical device and its properties depend on the direc-

tion of the current that passes between its terminals. Conductivity increases 

when a positive voltage is applied across the memristor (plus at doped re-

gion and minus at undoped region), otherwise its conductivity goes down.  

Thus both the voltage value and duration of the applied voltage are im-

portant, so the resistance is in effect a function of total flux as well as initial 

state of the memristor.  

Experiments and analysis performed following publication of [2] has fur-

thered the understanding of the memristor characteristics. For example, [12] 

predicted that the speed of switching ON was faster than switching OFF; ap-

plying ON-switching for sufficiently long time would turn the device OFF i.e., 

the switching polarity can be reversed. These devices have ohmic i-v charac-

teristics near the ON states and are non-linear towards the OFF states. 

Moreover, in [13] it was shown that increasing the applied current caused an 

exponential decrease in the required switching energy. The model from [2], 

used here, though limited is still a very good approximation of memristor 

characteristics and was used due to its simplicity and wide use in literature. 

Using a more detailed model, would not considerably affect either the algo-

rithm or the results presented here. 

3 Design of Neural Networks 

To be compatible with neural network learning schemes the memristor con-

ductance values are normalized to [0-1] interval and are used to represent 



weights of synaptic connections. For simplicity only excitatory neurons are 

considered here. A simple two layer neural network is shown on Fig. 2 (a).  In 

this network neuron N is a postsynaptic neuron and it receives inputs from n 

presynaptic neurons x1,… xn. Here, for convenience, we assume that the out-

put of an excitatory neuron is Vout = 1 V when activated and Vout = 0 V other-

wise. 

 

Fig. 2. (a) Two layer feed forward neural network; (b) Memristors connected to a neuron’s 
input. 

Fig. 2 (b) shows an input to a neuron N in a crossbar architecture with a 

number of memristor elements connected to its input line. When the neuron 

N’s input in Fig. 2 (b) is charged to the voltage Vy above a threshold value Vth, 

the neuron fires and sets its feedback output voltage to Vyf for a short period 

of firing time Tf, regulated by adjusting load capacitance Clarge. Thus, with 1 

volt on the active input Vi the corresponding memristor increases its con-

ductance (weight) whereas the inactive input (Vi =0 V) reduces its conduct-

ance. Here Vy can be obtained from 

    ∑
    

∑  
 ∑     (3) 

where  

    
  

∑  
 (4) 

3.1 Neural Network Training 

According to Hebbian learning, in a simple feedforward neural network, ex-

citatory links increase their weights when both presynaptic and postsynaptic 

neurons fire.  We adopt this rule to the memristor circuit with different 



schemas of weight adjustment and resulting training algorithms. Neural net-

work training in crossbar architecture algorithm is as follows.  

Neural network training in crossbar architecture. 

1. Select s random training data and use them to assign initial weights to the 

output neurons. 

2. For all training samples repeat 3 - 6. 

3. Compute similarity between training data and neuron weights using (3) 

and obtain input excitations of the output neurons Vy. 

4. Sort all output neurons excitations Vy to determine dynamic threshold val-

ue Vth for the neurons’ input excitation Vy. 

5. Provide training feedback value Vyf  = 1 V to all output neurons y with Vy < 

Vth and provide training feedback value Vyf = 0 V to all output neurons y 

with Vy > Vth. That is, if the output neuron, N, fires, it uses feedback to re-

duce its input potential Vyf to zero.  Thus with 1 volt on the active input Vi, 

the corresponding memristor increases its conductance (weight). Howev-

er, if N does not fire, then it changes its input potential Vyf to 1 V for a pe-

riod of firing time Tf. This produces a negative flux across memristor con-

nected to the inactive input with Vi = 0 V reducing its conductance 

(weight). Neuron’s firing time is regulated by adjusting its load capacitance 

Clarge. 

6. Adjust memristor weights using     (      )  ( ).   ( ) is the in-

crement of     per unit voltage applied across the memristor.     is the 

provided feedback signal      ̅   . The resulting weight adjustments 

are a result of the memristor voltage polarization. For instance if the input 

voltage        and         memristor weight is lowered and when 

       and        , it increases. 

Two versions of the neural network training algorithm are used.  They differ 

by the way a threshold value is established in step 4 of the algorithm.  The 

first version known as multiple adjustments training (MAT) uses median 

value of Vy to establish the threshold and at every step of the training cycle 

up to 50% of memristor values are adjusted upwards and up to 50% down-

wards.  This balances off total amount of flux that each memristor receives. 

According to Step 6 the adjustment upwards takes place only when Vy = 0 V 



and Vi > 0 V and the adjustment downwards takes place only when Vy =1 V 

and Vi < 1 V.  

MAT requires additional circuits to adjust threshold Vth dynamically.  Its ad-

vantage is that training of memristors can be performed in dense crossbar 

architecture since no additional switches are required to select which 

memristors need to be adjusted upwards or downwards. Instead, memris-

tors’ control is done by adjusting threshold and feedback voltages only.  

The second version known as winner adjustment training (WAT) selects a 

single winner that is most similar to the training sample.  Thus Vth is equal to 

the winning neuron’s Vy. Subsequently, all memristor connections are open 

except for the winning neuron, and the feedback voltage Vyf is set to 0.5 V. 

Thus, memristors of the winning neuron connected to inputs higher than 0.5 

V are adjusted upwards and those lower that 0.5 V are adjusted downwards, 

moving neuron in the direction of the input data.  

For compactness of the neural network design it is desirable that no ele-

ments other than memristors at the crossbar junctions are added to the 

crossbar architecture. This is the main advantage of the proposed approach. 

WAT requires only a winner-take-all circuit, thus it is easier to implement in 

hardware than MAT.  However, since all memristors of losing neurons must 

be disconnected during training, WAT crossbar architecture must contain 

switching transistors in series with memristors to implement synaptic con-

nections. All memristors in a single column (one output neuron) can be con-

trolled by the same control signal, simplifying wiring of the control signals.  

4 Benchmark Testing 

In benchmark testing neural network has its memristive weights adjusted 

according to either WAT or MAT algorithm. We investigated test results for 

WAT and MAT training using MNIST [14] handwritten character database. 

Neural network with 784 inputs and 80 outputs was constructed and trained 

using 1280 data points. Once training was completed and memristor values 

were adjusted, we applied a new set of 10,000 test data from the MNIST 

database. The average test performance over 25 runs was 73.2% with stand-



ard deviation of 1.8% for WAT and 69.9% with standard deviation of 1.6% for 

MAT.  

4.1 Analysis for Robustness 

To test the robustness of the learning schemes we performed analysis to 

determine the effect of multipath, input noise, and memristor manufacturing 

tolerances. Memristors are not connected directly to ideal voltage sources 

but use drivers with nonzero resistance hence neural network training and 

testing will be subject to multipath effects. To estimate this we simplify our 

analysis to the one in which the input signals correspond to the input digit 

intensity and the feedback signal in the neural network training is obtained 

with Vy connected to a voltage source (0 V or 1 V) through a fixed conduct-

ance Gs.  In such circuit, deviation of Vy from its ideal value (0 V or 1 V) will 

depend on the input signal as follows: 

    
∑        
  
     

∑      
  
   

 
 (5) 

where mc is the number of memristors in this category (either winners or 

losers). In case Vs = 1 we use (3) for memristors of losing neurons, and in this 

case deviation of the feedback voltage     form a desired value equals 

          
∑   (    )
  
   

∑      
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where ml is the number of memristors that are in the losing neurons. For Vs = 

0 we use (3) for memristors of winning neurons, and in this case     equals 

        
∑     
  
   

∑      
  
    

 (7) 

where mw is the number of memristors that are in the winning neurons. Due 

to similar deviations on the driver side memristor training will be subject to a 

significant noise. In the worst case this noise is uncorrelated, so we tested 

how such noise will affect testing performance. It was observed that, for 

driver conductance range of 10 µS to 100 mS, the performance in both test-

ed methods (MAT and WAT training) did not suffer.  



To analyze the robustness of learning schemes the test data was corrupted 

with uniform noise signal. The analysis was performed using a single layer 

neural network with 784 inputs and with 250 output neurons.  Fig. 3 shows 

the test results and shows that the recognition rate is better than chance 

even for noise to signal ratios of 10 (for this dataset the chance level is 10%). 

The last test of robustness performed used Monte-Carlo analysis to test the 

ability of the proposed neural network learning scheme to handle process 

variations leading to changes in nominal values of all memristors. While 

memristors fabricated on different dies will have significant deviations from 

their nominal values, crossbar memristors are fabricated on the same die 

and will have memristance parameters tracking each other. 

   

Fig. 3. Correct recognition performance on 10000 test data with various noise levels. 

    

Fig. 4. Correct recognition performance in Monte Carlo analysis. 

Absolute changes in memristive conductivity are not important as long as the 

ratio in (4) remains unchanged. Critical for neural network performance are 

local variations within the same die which are small and correlated, thus 

their effect on the performance of a neural network will be also small.  
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We performed 100 tests, each starting from the same training data set 

(based on 2000 randomly selected digits) and the same 10,000 test data 

points but with memristor characteristics randomly varied within specified 

tolerance. The neural network had 300 output neurons. The tolerances on 

memristor parameters were increased from 0.5% until 100% of their nominal 

values. Fig. 4 shows the test results. Results show that recognition perfor-

mance for WAT quickly goes down, so the network is more sensitive to varia-

tions in memristor parameters that it was to the input noise. However, since 

typically, within the same die, the memristances do not vary more than 5% (a 

reasonable assumption for medium size dies with present manufacturing 

capabilities [15]), the loss of the recognition performance is small.  There is 

no observable loss in performance in MAT training even at larger tolerances. 

5 Conclusion 

In this paper, we presented two memristor training schemes in the crossbar 

organization such that neural network interconnection weights can be easily 

implemented and controlled during the network operation. We performed 

simulations to test the proposed neural network learning schemes consider-

ing multipath effects, device variations and noisy test data. The results 

showed that the proposed approach is compact, tolerant to noise and device 

variations, and is can be trained online. The results obtained verified correct 

adjustment of memristor values for the selected training data.  In this work, 

the focus was on developing neural network learning schemes for crossbar 

architecture, rather than on specific data bases or advanced neural network 

application. The proposed solution improves available in the literature train-

ing methods for memristive neural networks.  
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