

A Comparative Study between Motivated Learning
and Reinforcement Learning

J. Graham and J. A. Starzyk
School of EECS

Ohio Univ., Athens, OH, USA
{jg193404, starzykj}@ohio.edu

Z. Ni and H. He
Electrical, Computer, and Biomed. Eng.

Univ. of Rhode Island, Kingston, RI, USA
{ni, he}@ele.uri.edu

T.-H. Teng and A.-H. Tan
School of Computer Engineering
Nanyang Technological Univ.,

Singapore
{thteng, asahtan}@ntu.edu.sg

Abstract— This paper analyzes advanced reinforcement learning
techniques and compares some of them to motivated learning.
Motivated learning is briefly discussed indicating its relation to
reinforcement learning. A black box scenario for comparative
analysis of learning efficiency in autonomous agents is developed and
described. This is used to analyze selected algorithms. Reported
results demonstrate that in the selected category of problems,
motivated learning outperformed all reinforcement learning
algorithms we compared with.

Keywords—motivated learning; reinforcement learning; goal
creation; pain signals; desired resources.

I. INTRODUCTION AND BACKGROUND
For over 20 years, reinforcement learning (RL) has

dominated machine learning techniques used in robots, multi-
agent systems, genetic algorithms, swarm intelligence and
optimal control systems. It uses cumulative rewards to learn
proper behavior in an environment depending on the result of
the action taken in a specific state of the environment.

One of the key assumptions in reinforcement learning is
that a reward is provided if the action/state are the same as
they were the last time the reward was given. However in
dynamic environments, particularly with other agents present,
this is not always the case.

A typical reinforcement learning algorithm assumes that
the resources that an agent needs to perform its actions are
available in sufficient quantities. This is not the case in
resource sharing and resource competition situations, where
there are not enough resources to perform all tasks, or where
there is a competition between agents for the limited amount
of resources.

In such problems, there is a need to coordinate tasks and
allocate resources to various tasks [1]. Existing approaches
that aim at multi-objective reinforcement learning [2], [3]
assume stationary operating conditions. Existing task
coordination strategies include resource sharing [4], learning
of coordination [5] and the use of set strategies [6]. More
recent works use learning approaches in non-stationary
environment, coordinating agents to perform joint actions [7],
[8], and performing coordination of work [9].

We argue that resource sharing and task coordination in a
dynamic environment is solved very effectively using a
motivated learning approach [10]. Motivated learning (ML)
was developed by Starzyk [11], [12] to address problems of
goal creation and goal management in embodied cognitive

agents. ML yields an internal reward system that motivates an
agent to act in a dynamically changing environment with
limited resources and potential adversarial actions by other
agents. In this work we compare our motivated learning
approach with several reinforcement learning algorithms in a
black box scenario. We describe how such a scenario is
obtained and how it is represented in the simulation
environment, and compare the obtained simulation results.

We limit ourselves to studying the problem of resource
sharing and task coordination, and evaluate the agent’s
activities in terms of the average reward that the agent receives
from the environment for its actions. An extension of the black
box scenario is planned to include actions by other agents that
can either cooperate or compete with the ML agent.

The rest of this paper is organized as follows. Section II
discusses advanced RL algorithms and introduces ML. Section
III compares ML and various implementations of RL to
demonstrate that ML performs better than any of the tested RL
algorithms. Section IV includes the conclusions and future
work.

II. ADVANCES IN REINFORCEMENT LEARNING

A. Advanced RL algorithms
Classical RL uses exact value functions and policies, and is

therefore limited to problems with small numbers of states and
possible actions. However, real world problems have sensory
inputs with a potentially infinite number of states, thus, they
require approximation of value functions and action policies to
be effective.

Modern RL uses approximate value iteration, policy
iteration, and policy search. For real-time applications non-
stationary RL was considered [13]. Many authors consider
variants of RL that include online algorithms, where data is
collected during system operation. In addition, advanced RL
algorithms also use policy gradient, actor-critic methods, and
simulation-based policy iteration.

Offline algorithms like fitted Q-iteration and least-squares
policy iteration use efficient approximation methods and can
better exploit the sensory and reward data than online
approximation algorithms such as gradient-based Q-learning
and approximate SARSA. However, modern applications in
robotics are increasingly relying on on-line learning even if
the approximation provided may be not optimum. The data
efficiency of online methods can be increased by various

means including stored transition samples and building a
model in model-learning methods [14].

Bertsekas reviewed a number of techniques that use policy
iteration and least-squares policy evaluation [15]. He
compared various RL methods with respect to policy
evaluation using temporal difference and aggregation. He also
reviewed off-line algorithms with respect to the use of matrix
inversion and iterative methods. In his work, he focused on
convergence, policy oscillation and singularity of these
techniques. The conclusions of his comparative study are
tentative and regard selected aspects like regular behavior,
better error bounds, and exploration-related difficulties.

Inverse reinforcement learning (IRL) is based on the
imitation of expert actions to learn a reward function [16]. A
model-free IRL discussed in [17] generalized imitation
learning, minimizes the relative entropy between state-action
trajectories. This is very useful in learning direct policy by
observation in problems where learning the value function is
non-trivial. IRL is useful in robotics and helps in
understanding the choice of action by a demonstrator [18]. A
review of IRL methods is provided in [19].

While RL had spectacular successes in many robotic
applications, where the system could learn complex control
functions to successfully operate in a stationary environment
(like modeling human strategy in the ping pong game [18], or
autonomous helicopter control [20]), we believe that RL
methods can be further improved to consider special
situations. According to Coelho et al. [21] RL methods tend to
learn very slowly, which leads to their poor performance in
dynamic environments. This is the type of environment where
motivated learning can be very useful.

For dynamic environments, a typical reward function that
is used in RL is augmented by an intrinsic reward that is only
known to the agent. Several implementations of this concept
were developed, including artificial curiosity proposed by
Schmidhuber [22], intelligent adaptive curiosity developed by
Oudeyer et al. [23], or intrinsic hierarchy of skills proposed by
Barto et al. [24]. RL enhanced with curiosity based learning
performed better than random exploration typically used to
support RL. Also, active learning [25] using these ideas
maximizes the expected information gain and improves the
learning speed by concentrating exploration where there is
greater uncertainty in the internal model. In active learning, a
machine can achieve higher learning efficiency by actively
choosing the data from which it learns. Motivated learning
takes ideas of intrinsic motivation a step further, such that
specific goal oriented motivations are developed and internally
managed by the ML agent, giving it large autonomy and
improved performance in a dynamic environment.

B. Motivated learning
In motivated learning (ML), a learning agent develops

internal motivations and related goals based on its perceived
successes or failures during its interaction with the
environment. Internal motivations, created either by external
rewards or other motivations, may dominate over the
externally set goals (and rewards). Once created, the
motivations are persistent and are responsible for all (except

curiosity based) actions of the agent. In our implemented
version of motivated learning, motivations are triggered by
biases and internal pain signals that compete for the machine’s
attention, providing a natural mechanism for goal competition
and scheduling.

ML is closely related to RL as it uses RL to learn how to
satisfy its motivations. The developed bias system evaluates
the importance of environmental stimuli to check how they
relate to its goals. This allows the agent to self-supervise and
self-organize its exploratory and motivated learning activities.
We can represent our ML schema as shown on Fig. 1. This
schema corresponds to the motivated hierarchical
reinforcement learning MHRL(I) model [26], but it differs in
how the system motivations are established.

Fig. 1 ML agent interacting with the environment.

In the organization presented in Fig. 1, individual biases Bi
are established depending on the success or failure of system
response A generated by the RL block. ML sets individual
goals providing the RL block with the sensory information S
together with the intrinsic reward Ri and an internal motivation
to act Mi.

In our motivated learning algorithm, bias signals are used
to determine the level of pain or need associated with a
particular concept (resource availability or an action
performed by another agent). In this work we limit discussion
to resource related motivations and learning. Biases indicate
the likelihood of running out of resources needed or of facing
a hostile action by another agent. There are several ways in
which bias can be calculated.

If the ML agent needs to maintain a resource at a certain
level, a bias signal that reflects how difficult it is to obtain this
resource is used. The agent must first use the resource to learn
if the resource is desired or undesired. The resource bias signal
depends on the amount of the resource and its
desired/undesired status as follows:

𝐵 𝑠! = − 1 + 𝛿! ∗ 𝑙𝑛𝐴 𝑠! + 1 + 2 ∗ 𝐴(𝑠!) (1)

where

𝐴 𝑠! = !!!! !!
!!!! !!

 (2)

represents the availability of resource 𝑠! , Rc is a current
resource amount, and Rd is a desired resource amount
established by the ML agent during learning. (The
implementation used in this work simply sets Rd equal to the

initial environment state.) 𝜀 is a small positive number to
prevent numerical overflow, and 𝛿! = 1 when the resource is
desired, 𝛿! = −1 when it is not desired, and 𝛿! = 0 otherwise
(when the character of the resource is unknown).

Depending on the level of the bias signal and importance
of a particular resource to the agent, ML generates an internal
pain signal (equivalent to a negative reward). Rd is used as a
normalizing factor for the resource level. If 𝑅! 𝑠! = 𝑅! 𝑠!
the corresponding resource pain is zero for a desirable
resource, and for an undesirable resource the smaller the
𝑅! 𝑠! , the smaller the resource pain. Pain reaches significant
levels when the agent lacks a desired resource or has too much
of an undesired one.

Using the bias signal, the pain value related to this bias is
obtained from:

 𝑃 𝑠! = 𝐵 𝑠! ∗ 𝑤!"(𝑠!) (3)

where wbp is the weight between bias and a given pain. This
weight is computed incrementally based on pain change
signals that resulted from the action taken as follows:

 𝑤!" =

𝑤!" + ∆!! ∗ α! − 𝑤!" 𝑖𝑓 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑝𝑎𝑖𝑛 𝑐ℎ𝑎𝑛𝑔𝑒𝑑
𝑤!" ∗ 1 − ∆!! 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑤𝑎𝑠 𝑛𝑜 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑝𝑎𝑖𝑛
𝑤!" ∗ 1 − ∆!! 𝑖𝑓𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑝𝑒𝑟𝑐𝑒𝑝𝑡 𝑤𝑎𝑠 𝑛𝑜𝑡 𝑢𝑠𝑒𝑑

 (4)

where αb sets the ceiling for wbp, Δb- sets the potential rate of
decline for wbp weights, and Δb+ sets the rate of potential
increase for wbp weights. The default values for these
parameters are 0.5, 0.00001, and 0.2, respectively.

A ML agent’s motivations are to reduce its pains below a
threshold. Pain reduction in ML is equivalent to a reward in
RL, but once a pain is reduced the agent does not need to act
on it until it again increases above threshold. A current goal is
selected based on a dominant pain signal, and it represents an
intended action that the agent wants to perform.

The ML agent must choose which of the currently
activated goals it must implement first. For clarity, let us
define a goal as the intended action to reduce a specific pain,
and an action as the motor action taken in an attempt to meet
the goal. A simple ML agent chooses the goal with the greatest
pain value and the best chance to reduce this pain. This simple
approach can be improved as demonstrated in [27]. However,
in the case of the Black Box scenario described in III-B, this is
moot since the RL agents cannot use additional information
needed (without appropriate modifications).

Once a goal is selected and an action performed, a RL
mechanism is used to learn useful actions. As a result of this
action a new intrinsic reward signal is obtained by the ML
agent, which in turn generates a bias signal for or against a
specific action or a resource used.

III. COMPARISION TO REINFORCEMENT LEARNING

A. Compared algorithms
In this section, we compare our Motivated Learning

algorithm with several reinforcement learning algorithms,
including classical methods like Q-learning, SARSA(𝜆), and
hierarchical reinforcement learning but also more advanced
algorithms like NFQ, Explauto, and TD-FALCON. For fair
comparison, we set the reinforcement learning algorithms in
the same environment and with the same parameters and
testing conditions. Please note that we have attempted to
optimize the parameters of the tested algorithms to make the
comparison as fair as possible. None of the algorithms have
any pre-encoded knowledge of the environment, and each of
them receives the same information. This includes the ML,
which was given no hidden parameters or information about
the environment. The reinforcement learning algorithms are
detailed as follows:

Q-learning: Q-learning is one of the traditional reinforcement
learning algorithms and can be used to acquire optimal control
strategies from delayed rewards. The agent usually has no
prior knowledge of the effect of its actions on the environment
(e.g. it has no model to work with). There are several
variations of Q-Learning, such as Delayed Q-learning, Greedy
GQ, etc. Here, we implement the Q-learning algorithm from
[28] with the discount factor 𝛾 = 0.9 and learning rate
𝛼 = 0.7.

SARSA(𝜆): The SARSA algorithm considers the transitions
from state-action pair to state-action pair, and is a standard
example of a temporal difference (TD) learning algorithm.
SARSA(𝜆) combines the Monte Carlo and dynamic
programming ideas [29]. It updates reward estimates based on
the other learned estimates, without waiting for a final
outcome. It differs from the original SARSA with the
inclusion of the trace decay (𝜆) parameter, which affects the
distribution of reward. (Larger 𝜆 leads to a larger proportion of
the reward credit being given to more distant states when there
are multiple cycles between rewards.) The discount factor,
learning rate, and trace decay parameters are set to 𝛾 = 0.9,
𝛼 = 0.4, and 𝜆 = 0.9.

Hierarchical RL: We used a variant of the MAXQ algorithm
from [30] adopted to implement the hierarchical reinforcement
learning (HRL) algorithm, where the goals are split into
subgoals and subtasks. The size of the state space is reduced
and the learning efficiency is improved. In HRL, the agent
constructs a set of policies that need to be considered during
reinforcement learning. The MAXQ value function is assumed
to represent the value function of any given hierarchy. The
target Markov decision process (MDP) is decomposed into
smaller MDPs The parameters for the algorithm were set as
𝛾 = 0.9, and 𝛼 = 0.4.

Dyna-Q+: The Dyna-Q+ algorithm includes direct
reinforcement learning, model learning and planning [29]. It is
believed that Dyna-Q+ can deal with changing environments
better than other RL algorithms. It generates an action based
on direct reinforcement learning and then updates both a Q

table as well as its model. During the planning process, the Q-
planning algorithm randomly chooses samples from state-
action pairs that have already been visited. In this case, the
model will never be queried with a pair about which it has no
information. The parameters are set the same as those in Q-
learning, with discount factor 𝛾 = 0.9 and learning rate
𝛼 = 0.7.

Explauto: Explauto [31] is a framework for the
implementation for active and online sensorimotor learning
algorithms. Explauto cognitive architecture is composed of a
the sensorimotor model, which iteratively learns forward and
inverse models from experience, and an interest model which
makes the choices about where to explore in the environment.
In our tests with Explauto we used its built-in
DiscreteProgress interest model configured to match our
environment with other parameters left at their default values.

TD-FALCON: This algorithm [32] incorporates a temporal
difference algorithm with a family of self-organizing neural
networks known as the Fusion Architecture for Learning and
Cognition (FALCON). (TD-FALCON has some similarities
to SARSA.) Based on the Adaptive Resonance Theory and
using evaluative feedback from the environment, TD-
FALCON works by learning the value functions of the state
action space estimated using Q-Learning. The learned value
functions are then used to determine the effective actions.

NFQ RL: NFQ (neural fitted Q iteration) is a batch RL
learning FQI (fitted Q iteration) method [33]. FQ implements
a dynamic scaling heuristic that can be seamlessly integrated
into neural batch RL algorithms, which use a fixed set of a
priori-known transition samples, e.g. offline learning. Fitted
Q-iteration can be viewed as approximate value iteration
applied to action-value functions.

B. Black Box scenario
To compare the aforementioned algorithms, we designed a

“black box” environment that would present state and reward
information to the RL or ML algorithm and receive a response
in the form of an action to take. This action would then be
presented to the environment, which would adjust itself
accordingly and respond with a reward value ranging from 0-1
depending on the action and the current state of the
environment. We show the results of the comparison of these
algorithms in the next section.

The environment is an 8-level hierarchy of “resources” that
depend on each other for restoration, similar in structure to the
basic scenario presented in [10]. In this scenario, there is a
single “primitive” need, which can be resolved by the correct
action, which consumes a specific resource. This specific
resource gets depleted over time and needs yet another
action/resource combination to restore, and so on up to the
“top” level of the resource hierarchy, which is not depleted.

In the “black box” scenario each potential primitive
reward 𝑅! that can be received from the environment,
increases gradually after each iteration until it reaches its
maximum level 𝑅!"

 𝑅!(𝑖) = 𝑚𝑖𝑛 𝑖!! ∗ 𝑅!",𝑅!" (5)

where 𝑖 is current iterative step (time elapsed), 𝑖!! is the
iterative step from the last time 𝑅! was awarded to the agent,
and 𝑅!" is the rate of change of this primitive reward. After
the reward is received, 𝑖!! is set to 0. Rp is only awarded to the
agent if it performs a beneficial action to reduce the primitive
need. If plotted, the potential reward function would look
somewhat like a sawtooth plot with peaks varying in range
from 0 to 𝑅!", with the exception that once the line reached
𝑅!" it would remain there until it dropped due to the reward
being given.

In the experiment, 𝑅!! = 1and𝑅!" = 𝑆!"#$/𝑆!"# , where
𝑆!"# is the initial value of the primitive reward generating
resource, and 𝑆!"#$ is its rate of decline. We varied 𝑆!"#$ for
the tested algorithms to see how they perform under varying
levels of pressure. For instance, if 𝑆!"# = 40 and 𝑆!"#$ = 1, it
will take 40 iterations for the resource to deplete (and make
the maximum reward available). Higher values of 𝑆!"#$ will
mean it will take less time for the resource to be depleted.
However, since the resources are connected in a hierarchy, it
will also mean that the agent will have to learn the next
resource in the chain more quickly, hence the aforementioned
increase in pressure.

The received rewards are averaged and normalized using

𝐴𝑣𝑒 𝑅!!"#(𝑖) =
!
! !!(!)!

!!!
!
!!!

!!"!
!!!

 (6)

where i indicates the current time step, n is the number of
primitive resources, and 𝑅!" is the rate at which the rewarding
resource p is depleted.

C. Reinforcement Learning Results
In the following tests, unless otherwise stated, each plot

shows the results of 25 averaged tests, each test running for
10,000 iterations. As expected, for all the algorithms, a greater
𝑆!"#$ yields lower performance, since the algorithm has less
time to explore and is under more pressure to perform. This is
observed most noticeably in the Q-Learning, SARSA and HRL
algorithms.

In Fig. 2, we observe that the ML algorithm performs well
(and maintains near perfect performance until it hits an 𝑆!"#$ of
about 16, at which point its performance starts to fall off.

This is because at this point it began to have difficulty
maintaining the primitive resource, while also maintaining the
other resources. It simply ran out of time to perform the
required actions due to the high rate of decrease in the
primitive resource and the associated higher demand on higher
level resources, and its reward capability suffered as a result.
However, ML is able to perform with higher SRate and greater
overall reward than any of the other algorithms tested here.

Figs. 3-6, present the results from the Q-Learning,
SARSA, HRL and Dyna-Q+ algorithms. Note, that beyond
the first few hundred iterations, the results for each algorithm
are similar to each other. This is likely because all three

algorithms share the same basic process and have difficulty
performing properly once the known solution toward
generating their reward is no longer available and they have to
rely on random attempts.

Fig. 2. Combined Results from the ML algorithm for different values of 𝑆!"#$.

Fig. 3. Combined Results from the Q-Learning algorithm for different 𝑆!"#$.

Fig. 4. Combined Results from the SARSA algorithm for different 𝑆!"#$.

Fig. 5. Combined Results from the HRL algorithm for different values of 𝑆!"#$.

Fig. 6. Combined Results from the Dyna-Q+ algorithm for different values of
𝑆!"#$.

Fig. 7 shows the results from the Explauto algorithm, which
performs similarly (although slightly worse), to the Q-
Learning, SARSA, HRL and Dyna-Q+ algorithms. This is
likely due to it being more oriented toward sensorimotor based
RL learning rather than the type of RL hierarchy we are dealing
with here.

Fig. 7. Combined Results from the Explauto algorithm for different 𝑆!"#$.

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

N
or

m
al

iz
ed

 R
ew

ar
d

4
10
12
14
16
20
24

0 2000 4000 6000 8000 100000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iteration

N
or

m
al

iz
ed

 R
ew

ar
d

1.0
2.0
4.0
8.0

0 2000 4000 6000 8000 100000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iteration

N
or

m
al

iz
ed

 R
ew

ar
d

1.0
2.0
4.0
8.0

0 2000 4000 6000 8000 100000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iteration

N
or

m
al

iz
ed

 R
ew

ar
d

1.0
2.0
4.0
8.0

0 2000 4000 6000 8000 100000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iteration

N
or

m
al

iz
ed

 R
ew

ar
d

1.0
2.0
4.0
8.0

0 2000 4000 6000 8000 100000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iteration

N
or

m
al

iz
ed

 R
ew

ar
d

1.0
2.0
4.0
8.0

Fig. 8 shows the results from an implementation of TD-
FALCON in our environment. TD-FALCON is actually one of
the better performing algorithms in our tests. Like the
preceding algorithms, its performance tends to decrease with
the increase of 𝑆!"#$. Only the NFQ algorithm seems to exceed
its performance, and only then at higher values of 𝑆!"#$.

Fig. 8. Combined Results from the TD-FALCON algorithm for different values
of 𝑆!"#$.

Interestingly, the NFQ algorithm tends to perform better
than (most of) the other RL methods when the 𝑆!"#$ is
increasing (see Fig. 9). However, the algorithm’s performance
is not very consistent. The reason for this inconsistency is
likely the oscillation observed in Fig. 10 among the individual
runs and the large confidence interval of ±0.123. The
confidence intervals of Q-Learning, SARSA, HRL, Dyna-Q+,
TD-FALCON, Explauto and ML for 𝑆!"#$ = 8.0 are 0.0034,
0.0035, 0.0034, 0.0031, 0.0326, 0.0026 and 0.0013,
respectively.

Fig. 10 gives an ‘inside’ view of the NFQ algorithm’s
results by showing performance results for all 25 runs. It can
be observed that the algorithm appears to oscillate between
good and bad performance (or two bands), while appearing to
gradually improve overall.

Fig. 9. Combined Results from the NFQ algorithm for different values of 𝑆!"#$.

For example, using the legend as a guide, run 10 is the
highest of the lower performing band of runs, however, run 12
is the 2nd worst run of all of them. Run 16 has the highest
average reward at the 10,000th iteration. So while time does
seem to bring improvement to the performance, it is not very
consistent.

Fig. 10. Individual results of the NFQ algorithm with 𝑆!"#$ = 8.

In Fig. 11 we directly compare our Motivated Learning
algorithm against the reinforcement learning algorithms. TD-
FALCON is better than Dyna-Q+, Dyna-Q+ performs slightly
better than HRL, SARSA, or Q-learning, and Explauto with
NFQ are the worst. However, ML outperforms all of them. ML
appears better suited to operate in the hierarchically structured
environment we provided due to the way it creates additional
needs.

Fig. 11. Comparison of Reinforcement Learning algorithms’ average reward
performance to Motivated Learning with 𝑆!"#$ = 1.0.

Figs. 12-14 compare the algorithms using rate value 𝑆!"#$
set at 2,4, and 8, respectively. We can observe that as the rate
of change of the primitive reward 𝑆!"#$ increases, the advantage
of TD-FALCON over other RL algorithms diminishes, while
NFQ performance improves.

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

Iteration

N
or

m
al

iz
ed

 R
ew

ar
d

1.0
2.0
4.0
8.0

0 2000 4000 6000 8000 100000

0.2

0.4

0.6

0.8

1

Iteration

N
or

m
al

iz
ed

 R
ew

ar
d

1.0
2.0
4.0
8.0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

N
or

m
al

iz
ed

 R
ew

ar
d

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

0 2000 4000 6000 8000 100000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

No
rm

al
ize

d
Re

wa
rd

Q−learning
SARSA(h)
HRL
Dyna−Q+
TD−FALCON
NFQ
Explauto
ML

Fig. 12. Comparison of Reinforcement Learning algorithms’ average reward
performance to Motivated Learning with 𝑆!"#$ = 2.0.

Fig. 13. Comparison of Reinforcement Learning algorithms’ average reward
performance to Motivated Learning with 𝑆!"#$ = 4.0.

Although NFQ seems to perform better that other RL
algorithms if the resource decline rate is higher than 4, we can
observe its gradual decline with the increasing number of
iterations. Fig. 15 shows the comparison between ML, NFQ,
TD-FALCON, and Q-Learning methods for 𝑆!"#$ = 4.0 with
20,000 iterations. We see that both advanced RL methods
eventually fall below Q-learning, which indicates that in a
longer run they are not capable of maintaining their advantage
over other RL algorithms in this testing scenario. However,
the ML algorithm was able to continue operating without
declining performance

With these results we have shown that the Motivated
Learning algorithm performs favorably against several
common reinforcement learning algorithms. The results
support our assertion that ML outperforms RL in complex
environments, particularly, when an agent needs to discover
the relations between several different “resources” and is only
provided feedback in terms of the environment state and a
single “reward” signal.

Fig. 14. Comparison of Reinforcement Learning algorithms’ average reward
performance to Motivated Learning with 𝑆!"#$ = 8.0.

Fig. 15. Comparison of NFQ and Q-Learning at 20,000 iterations with
𝑆!"#$4.0.

The Black box scenario is open to anyone wishing to
conduct their own experiments at:

http://ncn.wsiz.rzeszow.pl/autonomous-learning-challenge/

Please feel free to run the experiment yourself and let us know
if your results are better than what we reported.

IV. CONCLUSION
In this paper we argued that a Motivated Learning

approach is able to effectively solve resource sharing and task
coordination in a dynamic environment. This is because a ML
agent’s internal reward system motivates it to act effectively in
a dynamically changing environment with limited resources
and respond to potential adversarial actions by other agents.
We compared our motivated learning approach with several
RL algorithms using a black box scenario. We obtained results
in the form of reward values provided to the agents. Using
different resource settings we showed that our ML algorithm
was able to perform well even when running into time
constraints.

0 2000 4000 6000 8000 100000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

No
rm

al
ize

d
Re

wa
rd

Q−learning
SARSA(h)
HRL
Dyna−Q+
TD−FALCON
NFQ
Explauto
ML

0 2000 4000 6000 8000 100000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

No
rm

al
ize

d
Re

wa
rd

Q−learning
SARSA(h)
HRL
Dyna−Q+
TD−FALCON
NFQ
Explauto
ML

0 2000 4000 6000 8000 100000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

No
rm

al
ize

d
Re

wa
rd

Q−learning
SARSA(h)
HRL
Dyna−Q+
TD−FALCON
NFQ
Explauto
ML

0 0.5 1 1.5 2
x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

No
rm

al
ize

d
Re

wa
rd

Q−Learning
NFQ
TD−FALCON
ML

We plan to extend the black box scenario’s complexity by
including actions by other agents (that can either cooperate or
compete with the agent under test). Another addition to the
scenario may be the concept of “space” in order to find objects
in the environment. While our ML implementations handle
actions by other agents as well as finding objects in the
environment, both features were not included in the black box
scenario. This is to keep the black box scenario as compatible
as possible with the various RL algorithms.

Acknowledgements: We would like to acknowledge C.
Moulin-Frier, and M. Riedmiller for their aid at helping
generate data using their reinforcement learning algorithms.
This research was supported by The National Science Centre,
grant No. 2011/03/B/ST7/02518.

REFERENCES
[1] T.-H. Teng, A.-H. Tan, J. A. Starzyk, Y.-S. Tan and L.-N. Teow,

“Integrating Motivated Learning and k-Winner-Take-All to coordinate
Multi-Agent Reinforcement Learning,” in Proceedings of IAT, pp. 190-
197, Warsaw, August 2014.

[2] J. Perez, C. Germain-Renaud, B. Kegl, C. Loomis, “Multi-Objective
Reinforcement Learning for Responsive Grids,” Journal of Grid
Computing, vol. 8, no. 3, pp. 473-492, 2010.

[3] C.-K. Ngai and H.-C. Yung, “A Multiple Goal Reinforcement Learning
Method for Complex Vehicle Overtaking Maneuvers, IEEE Trans. on
Intelligent Transportation Syst., vol. 12, no. 2, pp. 509-522, June 2011.

[4] S. Sen and M. Sekaran, “Multi-agent coordination with learning
classifier systems,” Adaptation and Learning in Multi-agent systems, pp.
218- 233, 1996.

[5] H.-L. Guo and Y. Meng, “Distributed Reinforcement Learning for
Coordinate Multi-Robot Foraging,” Journal of Intelligent Robotic Syst.
vol. 60, pp. 531-551, 2010.

[6] V. Lesser, et all. “Evolution of the GPGP/TAEMS Domain-Independent
Coordination Framework,” Autonomous Agents and Multi-Agent
Systems, vol. 9, pp. 87-143, 2004.

[7] A. Burkov and B. Chaib-Draa, “Adaptive Play Q-Learning with Initial
Heuristic Approximation,” in Proc. of ICRA, 2007, pp. 1749-1754.

[8] F. S. Melo and M. Veloso, “Learning of coordination: exploiting sparse
interactions in multi-agent systems,” in Proc. of AAMAS, 2009, pp.
773-780.

[9] C. B. Excelente-Toledo and N. R. Jennings, “Using reinforcement
learning to coordinate better,” Computational Intelligence, vol. 21, no. 3,
pp. 217-245, 2005.

[10] J. A. Starzyk, J. T. Graham, P. Raif, and A-H.Tan, “Motivated Learning
for Autonomous Robots Development”, Cognitive Science Research,
v.14, no.1, 2012, pp. 10-25.

[11] J. A. Starzyk, Motivated Learning for Computational Intelligence, in
Computational Modeling and Simulation of Intellect: Current State and
Future Perspectives, IGI Publishing, ch.11, pp. 265-292, 2011.

[12] J. A. Starzyk, "Motivation in Embodied Intelligence," in Frontiers in
Robotics, Automation and Control, I-Tech Education and Publishing,
Oct. 2008, pp. 83-110.

[13] I. Szita, B. Takacs, and A. Lorincz, “ε-MDPs: Learning in varying
environ-ments”, J. of Machine Learning Research, vol. 3, pp. 145-174,
2002.

[14] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng, “An application of

reinforcement learning to aerobatic helicopter flight,” in Advances in
Neural Information Processing Systems 19, B. Scholkopf, J. C. Platt,
and T. Hoffman, Eds. MIT Press, 2007, pp. 1–8.

[15] D. P. Bertsekas, “Approximate policy iteration: A survey and some new
methods,” Massachusetts Institute of Technology, Cambridge, US, Tech.
Rep. LIDS 2833, July 2010.

[16] P. Abbeel and A. Y. Ng,“Apprenticeship Learning via Inverse
Reinforcement Learning”, in Proc. of the Twenty-first Int. Conf. on
Machine Learning (ICML'04), pp. 1-8, 2004.

[17] A. Boularias, J. Kober, and J. Peters, “Relative entropy inverse
reinforcement learning," in Proceedings of the Artificial Intelligences
and Statistics (AISTATS), pp. 20- 27, 2011.

[18] K. Muelling, J. Kober, O. Kroemer, and J. Peters, “Learning to select
and generalize striking movements in robot table tennis," The Int.
Journal of Robotics Research, vol. 32, no. 3, pp. 263 -279, 2013.

[19] S. Zhifei and E. Joo, “A survey of inverse reinforcement learning
techniques," International Journal of Intelligent Computing and
Cybernetics, vol. 5, no. 3, pp. 293-311, 2012.

[20] J. A. Bagnell and J. C. Schneider, “Autonomous helicopter control using
reinforcement learning policy search methods” in IEEE Int. Conf. on
Robotics and Automation (ICRA), 2001.

[21] Coelho, J. A., Araujo, E. G., Huber, M., and Grupen, R. A., Dynamical
categories and control policy selection.Proceedings of IEEE
International Symposium on Intelligent Control, 1998, pp. 459–464.

[22] J. Schmidhuber, “Curious model-building control systems,” in Proc. Int.
Joint Conf. Neural Networks (IJCNN), pp. 1458–1463, Singapore, vol.
2, 1991.

[23] Oudeyer, P-Y., Kaplan, F., & Hafner, V. V. (2007). Intrinsic motivation
systems for autonomous mental development. IEEE Transactions on
Evolutionary Computation, 11, 265–286.

[24] A. Barto, A. Singh, S. & Chentanez, N, “Intrinsically motivated learning
of hierarchical collections of skills,” in Proc. 3rd Int. Conf. Development
Learn., pp. 112–119, San Diego,CA, 2004.

[25] M. Hasenjager and H. Ritter, “Active Learning in Neural Networks”.
Berlin, Germany: Physica-Verlag GmbH, Physica-Verlag Studies In
Fuzziness and Soft Computing Series, pp. 137–169, 2002.

[26] K. Merrick and M. L. Maher, Motivated Reinforcement Learning:
Curious Characters for Multiuser Games. Berlin: Springer, 2009.

[27] J. Graham, J.A. Starzyk, D. Jachyra, “Opportunistic Behavior in
Motivated Learning Agents”, to appear in IEEE Trans on Neural
networks and Learning Systems, 2015.

[28] T. M. Mitchell, “Machine Learning”, New York, NY, USA: McGraw-
Hill, 1997.

[29] R. S. Sutton and A. G. Barto, “Reinforcement Learning: An
Introduction”, MIT Press, Cambridge, MA, 1998.

[30] T. G. Dietterich, “Hierarchical Reinforcement Learning with the MAXQ
Value Function Decomposition”, Journal of Artificial Intelligence
Research, vol. 13, 227-303, 2000.

[31] C. Moulin-Frier, P. Rouanet, P.-Y. Oudeyer, “Explauto: an open-source
Python library to study autonomous exploration in developmental
robotics,” in Proc. International Conference on Development and
Learning, Genova, Italy, 2014.

[32] A.-H. Tan, N. Lu and X. Dan, “Integrating temporal difference methods
and self-organizing neural networks for reinforcement learning with
delayed evaluative feedback,” IEEE Trans. Neural Networks, vol. 19,
no. 2, pp. 230-244, Feb, 2008.

[33] T. Gabel, C. Lutz, M. Riedmiller, “Improved Neural Fitted Q Iteration
Applied to a Novel Computer Gaming and Learning Benchmark,” in
Proc. IEEE Symp. on Approximate Dynamic Programming and
Reinforcement Learning, Paris, 2011, pp. 279-286.

