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Abstract— This paper analyzes advanced reinforcement learning 
techniques and compares some of them to motivated learning.  
Motivated learning is briefly discussed indicating its relation to 
reinforcement learning. A black box scenario for comparative 
analysis of learning efficiency in autonomous agents is developed and 
described. This is used to analyze selected algorithms. Reported 
results demonstrate that in the selected category of problems, 
motivated learning outperformed all reinforcement learning 
algorithms we compared with. 

Keywords—motivated learning; reinforcement learning; goal 
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I.  INTRODUCTION AND BACKGROUND 
For over 20 years, reinforcement learning (RL) has 

dominated machine learning techniques used in robots, multi-
agent systems, genetic algorithms, swarm intelligence and 
optimal control systems.  It uses cumulative rewards to learn 
proper behavior in an environment depending on the result of 
the action taken in a specific state of the environment.    

One of the key assumptions in reinforcement learning is 
that a reward is provided if the action/state are the same as 
they were the last time the reward was given. However in 
dynamic environments, particularly with other agents present, 
this is not always the case. 

A typical reinforcement learning algorithm assumes that 
the resources that an agent needs to perform its actions are 
available in sufficient quantities.  This is not the case in 
resource sharing and resource competition situations, where 
there are not enough resources to perform all tasks, or where 
there is a competition between agents for the limited amount 
of resources. 

In such problems, there is a need to coordinate tasks and 
allocate resources to various tasks [1].  Existing approaches 
that aim at multi-objective reinforcement learning [2], [3] 
assume stationary operating conditions. Existing task 
coordination strategies include resource sharing [4], learning 
of coordination [5] and the use of set strategies [6]. More 
recent works use learning approaches in non-stationary 
environment, coordinating agents to perform joint actions [7], 
[8], and performing coordination of work [9]. 

We argue that resource sharing and task coordination in a 
dynamic environment is solved very effectively using a 
motivated learning approach [10]. Motivated learning (ML) 
was developed by Starzyk [11], [12] to address problems of 
goal creation and goal management in embodied cognitive 

agents. ML yields an internal reward system that motivates an 
agent to act in a dynamically changing environment with 
limited resources and potential adversarial actions by other 
agents. In this work we compare our motivated learning 
approach with several reinforcement learning algorithms in a 
black box scenario. We describe how such a scenario is 
obtained and how it is represented in the simulation 
environment, and compare the obtained simulation results.  

We limit ourselves to studying the problem of resource 
sharing and task coordination, and evaluate the agent’s 
activities in terms of the average reward that the agent receives 
from the environment for its actions. An extension of the black 
box scenario is planned to include actions by other agents that 
can either cooperate or compete with the ML agent. 

The rest of this paper is organized as follows. Section II 
discusses advanced RL algorithms and introduces ML. Section 
III compares ML and various implementations of RL to 
demonstrate that ML performs better than any of the tested RL 
algorithms. Section IV includes the conclusions and future 
work. 

II. ADVANCES IN REINFORCEMENT LEARNING 

A. Advanced RL algorithms 
Classical RL uses exact value functions and policies, and is 

therefore limited to problems with small numbers of states and 
possible actions. However, real world problems have sensory 
inputs with a potentially infinite number of states, thus, they 
require approximation of value functions and action policies to 
be effective.  

Modern RL uses approximate value iteration, policy 
iteration, and policy search. For real-time applications non-
stationary RL was considered [13]. Many authors consider 
variants of RL that include online algorithms, where data is 
collected during system operation. In addition, advanced RL 
algorithms also use policy gradient, actor-critic methods, and 
simulation-based policy iteration. 

Offline algorithms like fitted Q-iteration and least-squares 
policy iteration use efficient approximation methods and can 
better exploit the sensory and reward data than online 
approximation algorithms such as gradient-based Q-learning 
and approximate SARSA. However, modern applications in 
robotics are increasingly relying on on-line learning even if 
the approximation provided may be not optimum. The data 
efficiency of online methods can be increased by various 



 

 

means including stored transition samples and building a 
model in model-learning methods [14]. 

Bertsekas reviewed a number of techniques that use policy 
iteration and least-squares policy evaluation [15]. He 
compared various RL methods with respect to policy 
evaluation using temporal difference and aggregation. He also 
reviewed off-line algorithms with respect to the use of matrix 
inversion and iterative methods.  In his work, he focused on 
convergence, policy oscillation and singularity of these 
techniques.  The conclusions of his comparative study are 
tentative and regard selected aspects like regular behavior, 
better error bounds, and exploration-related difficulties.  

Inverse reinforcement learning (IRL) is based on the 
imitation of expert actions to learn a reward function [16]. A 
model-free IRL discussed in [17] generalized imitation 
learning, minimizes the relative entropy between state-action 
trajectories. This is very useful in learning direct policy by 
observation in problems where learning the value function is 
non-trivial. IRL is useful in robotics and helps in 
understanding the choice of action by a demonstrator [18]. A 
review of IRL methods is provided in [19]. 

While RL had spectacular successes in many robotic 
applications, where the system could learn complex control 
functions to successfully operate in a stationary environment 
(like modeling human strategy in the ping pong game [18], or 
autonomous helicopter control [20]), we believe that RL 
methods can be further improved to consider special 
situations. According to Coelho et al. [21] RL methods tend to 
learn very slowly, which leads to their poor performance in 
dynamic environments.  This is the type of environment where 
motivated learning can be very useful.  

For dynamic environments, a typical reward function that 
is used in RL is augmented by an intrinsic reward that is only 
known to the agent.  Several implementations of this concept 
were developed, including artificial curiosity proposed by 
Schmidhuber [22], intelligent adaptive curiosity developed by 
Oudeyer et al. [23], or intrinsic hierarchy of skills proposed by 
Barto et al. [24].  RL enhanced with curiosity based learning 
performed better than random exploration typically used to 
support RL. Also, active learning [25] using these ideas 
maximizes the expected information gain and improves the 
learning speed by concentrating exploration where there is 
greater uncertainty in the internal model. In active learning, a 
machine can achieve higher learning efficiency by actively 
choosing the data from which it learns. Motivated learning 
takes ideas of intrinsic motivation a step further, such that 
specific goal oriented motivations are developed and internally 
managed by the ML agent, giving it large autonomy and 
improved performance in a dynamic environment. 

B. Motivated learning 
In motivated learning (ML), a learning agent develops 

internal motivations and related goals based on its perceived 
successes or failures during its interaction with the 
environment. Internal motivations, created either by external 
rewards or other motivations, may dominate over the 
externally set goals (and rewards). Once created, the 
motivations are persistent and are responsible for all (except 

curiosity based) actions of the agent.  In our implemented 
version of motivated learning, motivations are triggered by 
biases and internal pain signals that compete for the machine’s 
attention, providing a natural mechanism for goal competition 
and scheduling.   

ML is closely related to RL as it uses RL to learn how to 
satisfy its motivations. The developed bias system evaluates 
the importance of environmental stimuli to check how they 
relate to its goals. This allows the agent to self-supervise and 
self-organize its exploratory and motivated learning activities. 
We can represent our ML schema as shown on Fig. 1. This 
schema corresponds to the motivated hierarchical 
reinforcement learning MHRL(I) model [26], but it differs in 
how the system motivations are established. 

 
Fig. 1 ML agent interacting with the environment. 

In the organization presented in Fig. 1, individual biases Bi 
are established depending on the success or failure of system 
response A generated by the RL block. ML sets individual 
goals providing the RL block with the sensory information S 
together with the intrinsic reward Ri and an internal motivation 
to act Mi.  

In our motivated learning algorithm, bias signals are used 
to determine the level of pain or need associated with a 
particular concept (resource availability or an action 
performed by another agent). In this work we limit discussion 
to resource related motivations and learning. Biases indicate 
the likelihood of running out of resources needed or of facing 
a hostile action by another agent.  There are several ways in 
which bias can be calculated. 

If the ML agent needs to maintain a resource at a certain 
level, a bias signal that reflects how difficult it is to obtain this 
resource is used. The agent must first use the resource to learn 
if the resource is desired or undesired. The resource bias signal 
depends on the amount of the resource and its 
desired/undesired status as follows:  

𝐵 𝑠! = − 1 + 𝛿! ∗ 𝑙𝑛𝐴 𝑠! + 1 + 2 ∗ 𝐴(𝑠!)  (1) 

where 

𝐴 𝑠! = !!!! !!
!!!! !!

    (2) 

represents the availability of resource 𝑠! , Rc is a current 
resource amount, and Rd is a desired resource amount 
established by the ML agent during learning. (The 
implementation used in this work simply sets Rd equal to the 



 

 

initial environment state.) 𝜀  is a small positive number to 
prevent numerical overflow, and 𝛿! = 1  when the resource is 
desired, 𝛿! = −1 when it is not desired, and 𝛿! = 0  otherwise 
(when the character of the resource is unknown).  

Depending on the level of the bias signal and importance 
of a particular resource to the agent, ML generates an internal 
pain signal (equivalent to a negative reward). Rd is used as a 
normalizing factor for the resource level. If 𝑅! 𝑠! = 𝑅! 𝑠!  
the corresponding resource pain is zero for a desirable 
resource, and for an undesirable resource the smaller the 
𝑅! 𝑠! , the smaller the resource pain. Pain reaches significant 
levels when the agent lacks a desired resource or has too much 
of an undesired one.  

Using the bias signal, the pain value related to this bias is 
obtained from: 

 𝑃 𝑠! = 𝐵 𝑠! ∗ 𝑤!"(𝑠!)     (3) 

where wbp is the weight between bias and a given pain. This 
weight is computed incrementally based on pain change 
signals that resulted from the action taken as follows: 

 𝑤!" =

  
𝑤!"   +   ∆!!   ∗ α!   −   𝑤!"       𝑖𝑓  𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑  𝑝𝑎𝑖𝑛  𝑐ℎ𝑎𝑛𝑔𝑒𝑑
𝑤!" ∗ 1 − ∆!!                                     𝑖𝑓  𝑡ℎ𝑒𝑟𝑒  𝑤𝑎𝑠  𝑛𝑜  𝑐ℎ𝑎𝑛𝑔𝑒  𝑖𝑛  𝑝𝑎𝑖𝑛
𝑤!" ∗ 1 − ∆!!                       𝑖𝑓𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑  𝑝𝑒𝑟𝑐𝑒𝑝𝑡  𝑤𝑎𝑠  𝑛𝑜𝑡  𝑢𝑠𝑒𝑑

    (4) 

where αb sets the ceiling for wbp, Δb- sets the potential rate of 
decline for wbp weights, and Δb+ sets the rate of potential 
increase for wbp weights. The default values for these 
parameters are 0.5, 0.00001, and 0.2, respectively. 

A ML agent’s motivations are to reduce its pains below a 
threshold. Pain reduction in ML is equivalent to a reward in 
RL, but once a pain is reduced the agent does not need to act 
on it until it again increases above threshold.  A current goal is 
selected based on a dominant pain signal, and it represents an 
intended action that the agent wants to perform. 

The ML agent must choose which of the currently 
activated goals it must implement first. For clarity, let us 
define a goal as the intended action to reduce a specific pain, 
and an action as the motor action taken in an attempt to meet 
the goal. A simple ML agent chooses the goal with the greatest 
pain value and the best chance to reduce this pain. This simple 
approach can be improved as demonstrated in [27]. However, 
in the case of the Black Box scenario described in III-B, this is 
moot since the RL agents cannot use additional information 
needed (without appropriate modifications). 

Once a goal is selected and an action performed, a RL 
mechanism is used to learn useful actions. As a result of this 
action a new intrinsic reward signal is obtained by the ML 
agent, which in turn generates a bias signal for or against a 
specific action or a resource used. 

III. COMPARISION TO REINFORCEMENT LEARNING 

A. Compared algorithms 
In this section, we compare our Motivated Learning 

algorithm with several reinforcement learning algorithms, 
including classical methods like Q-learning, SARSA(𝜆), and 
hierarchical reinforcement learning but also more advanced 
algorithms like NFQ, Explauto, and TD-FALCON. For fair 
comparison, we set the reinforcement learning algorithms in 
the same environment and with the same parameters and 
testing conditions. Please note that we have attempted to 
optimize the parameters of the tested algorithms to make the 
comparison as fair as possible. None of the algorithms have 
any pre-encoded knowledge of the environment, and each of 
them receives the same information. This includes the ML, 
which was given no hidden parameters or information about 
the environment.  The reinforcement learning algorithms are 
detailed as follows: 

Q-learning: Q-learning is one of the traditional reinforcement 
learning algorithms and can be used to acquire optimal control 
strategies from delayed rewards. The agent usually has no 
prior knowledge of the effect of its actions on the environment 
(e.g. it has no model to work with). There are several 
variations of Q-Learning, such as Delayed Q-learning, Greedy 
GQ, etc. Here, we implement the Q-learning algorithm from 
[28] with the discount factor 𝛾 = 0.9  and learning rate 
𝛼 = 0.7. 

SARSA(𝜆): The SARSA algorithm considers the transitions 
from state-action pair to state-action pair, and is a standard 
example of a temporal difference (TD) learning algorithm. 
SARSA( 𝜆 ) combines the Monte Carlo and dynamic 
programming ideas [29]. It updates reward estimates based on 
the other learned estimates, without waiting for a final 
outcome. It differs from the original SARSA with the 
inclusion of the trace decay (𝜆) parameter, which affects the 
distribution of reward. (Larger 𝜆 leads to a larger proportion of 
the reward credit being given to more distant states when there 
are multiple cycles between rewards.) The discount factor, 
learning rate, and trace decay parameters are set to 𝛾 = 0.9, 
𝛼 = 0.4, and 𝜆 = 0.9. 

Hierarchical RL: We used a variant of the MAXQ algorithm 
from [30] adopted to implement the hierarchical reinforcement 
learning (HRL) algorithm, where the goals are split into 
subgoals and subtasks. The size of the state space is reduced 
and the learning efficiency is improved.  In HRL, the agent 
constructs a set of policies that need to be considered during 
reinforcement learning. The MAXQ value function is assumed 
to represent the value function of any given hierarchy. The 
target Markov decision process (MDP) is decomposed into 
smaller MDPs The parameters for the algorithm were set as 
𝛾 = 0.9, and 𝛼 = 0.4. 

Dyna-Q+: The Dyna-Q+ algorithm includes direct 
reinforcement learning, model learning and planning [29]. It is 
believed that Dyna-Q+ can deal with changing environments 
better than other RL algorithms. It generates an action based 
on direct reinforcement learning and then updates both a Q 



 

 

table as well as its model. During the planning process, the Q-
planning algorithm randomly chooses samples from state-
action pairs that have already been visited. In this case, the 
model will never be queried with a pair about which it has no 
information. The parameters are set the same as those in Q-
learning, with discount factor 𝛾 = 0.9  and learning rate 
𝛼 = 0.7. 

Explauto: Explauto [31] is a framework for the 
implementation for active and online sensorimotor learning 
algorithms. Explauto cognitive architecture is composed of a 
the sensorimotor model, which iteratively learns forward and 
inverse models from experience, and an interest model which 
makes the choices about where to explore in the environment.  
In our tests with Explauto we used its built-in 
DiscreteProgress interest model configured to match our 
environment with other parameters left at their default values.  

TD-FALCON: This algorithm [32] incorporates a temporal 
difference algorithm with a family of self-organizing neural 
networks known as the Fusion Architecture for Learning and 
Cognition (FALCON).  (TD-FALCON has some similarities 
to SARSA.) Based on the Adaptive Resonance Theory and 
using evaluative feedback from the environment, TD-
FALCON works by learning the value functions of the state 
action space estimated using Q-Learning. The learned value 
functions are then used to determine the effective actions.  

NFQ RL: NFQ (neural fitted Q iteration) is a batch RL 
learning FQI (fitted Q iteration) method [33]. FQ implements 
a dynamic scaling heuristic that can be seamlessly integrated 
into neural batch RL algorithms, which use a fixed set of a 
priori-known transition samples, e.g. offline learning. Fitted 
Q-iteration can be viewed as approximate value iteration 
applied to action-value functions. 

B. Black Box scenario 
To compare the aforementioned algorithms, we designed a 

“black box” environment that would present state and reward 
information to the RL or ML algorithm and receive a response 
in the form of an action to take.  This action would then be 
presented to the environment, which would adjust itself 
accordingly and respond with a reward value ranging from 0-1 
depending on the action and the current state of the 
environment. We show the results of the comparison of these 
algorithms in the next section.  

The environment is an 8-level hierarchy of “resources” that 
depend on each other for restoration, similar in structure to the 
basic scenario presented in [10]. In this scenario, there is a 
single “primitive” need, which can be resolved by the correct 
action, which consumes a specific resource.  This specific 
resource gets depleted over time and needs yet another 
action/resource combination to restore, and so on up to the 
“top” level of the resource hierarchy, which is not depleted.  

In the “black box” scenario each potential primitive 
reward   𝑅!   that can be received from the environment, 
increases gradually after each iteration until it reaches its 
maximum level 𝑅!"  

  𝑅!(𝑖) = 𝑚𝑖𝑛 𝑖!! ∗ 𝑅!",𝑅!"    (5) 

where 𝑖  is current iterative step (time elapsed), 𝑖!!  is the 
iterative step from the last time   𝑅! was awarded to the agent, 
and 𝑅!"  is the rate of change of this primitive reward. After 
the reward is received, 𝑖!! is set to 0. Rp is only awarded to the 
agent if it performs a beneficial action to reduce the primitive 
need. If plotted, the potential reward function would look 
somewhat like a sawtooth plot with peaks varying in range 
from 0 to 𝑅!", with the exception that once the line reached 
𝑅!" it would remain there until it dropped due to the reward 
being given. 

In the experiment, 𝑅!! = 1and𝑅!" = 𝑆!"#$/𝑆!"# , where 
𝑆!"#  is the initial value of the primitive reward generating 
resource, and 𝑆!"#$ is its rate of decline. We varied 𝑆!"#$ for 
the tested algorithms to see how they perform under varying 
levels of pressure.  For instance, if 𝑆!"# = 40 and 𝑆!"#$ = 1, it 
will take 40 iterations for the resource to deplete (and make 
the maximum reward available).  Higher values of 𝑆!"#$ will 
mean it will take less time for the resource to be depleted.  
However, since the resources are connected in a hierarchy, it 
will also mean that the agent will have to learn the next 
resource in the chain more quickly, hence the aforementioned 
increase in pressure. 

The received rewards are averaged and normalized using 

𝐴𝑣𝑒  𝑅!!"#(𝑖) =
!
!   !!(!)!

!!!
!
!!!

!!"!
!!!

   (6) 

where i indicates the current time step, n is the number of 
primitive resources, and 𝑅!" is the rate at which the rewarding 
resource p is depleted.  

C. Reinforcement Learning Results 
In the following tests, unless otherwise stated, each plot 

shows the results of 25 averaged tests, each test running for 
10,000 iterations. As expected, for all the algorithms, a greater 
𝑆!"#$ yields lower performance, since the algorithm has less 
time to explore and is under more pressure to perform.  This is 
observed most noticeably in the Q-Learning, SARSA and HRL 
algorithms. 

In Fig. 2, we observe that the ML algorithm performs well 
(and maintains near perfect performance until it hits an 𝑆!"#$ of 
about 16, at which point its performance starts to fall off.   

This is because at this point it began to have difficulty 
maintaining the primitive resource, while also maintaining the 
other resources.  It simply ran out of time to perform the 
required actions due to the high rate of decrease in the 
primitive resource and the associated higher demand on higher 
level resources, and its reward capability suffered as a result. 
However, ML is able to perform with higher SRate and greater 
overall reward than any of the other algorithms tested here. 

Figs. 3-6, present the results from the Q-Learning, 
SARSA, HRL and Dyna-Q+ algorithms.  Note, that beyond 
the first few hundred iterations, the results for each algorithm 
are similar to each other.  This is likely because all three 



 

 

algorithms share the same basic process and have difficulty 
performing properly once the known solution toward 
generating their reward is no longer available and they have to 
rely on random attempts.  

 
Fig. 2. Combined Results from the ML algorithm for different values of 𝑆!"#$ . 

 
Fig. 3. Combined Results from the Q-Learning algorithm for different 𝑆!"#$ . 

 
Fig. 4. Combined Results from the SARSA algorithm for different 𝑆!"#$ . 

 
Fig. 5. Combined Results from the HRL algorithm for different values of 𝑆!"#$ . 

 
Fig. 6. Combined Results from the Dyna-Q+ algorithm for different values of 
𝑆!"#$ . 

Fig. 7 shows the results from the Explauto algorithm, which 
performs similarly (although slightly worse), to the Q-
Learning, SARSA, HRL and Dyna-Q+ algorithms.  This is 
likely due to it being more oriented toward sensorimotor based 
RL learning rather than the type of RL hierarchy we are dealing 
with here. 

 
Fig. 7. Combined Results from the Explauto algorithm for different 𝑆!"#$ . 
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Fig. 8 shows the results from an implementation of TD-
FALCON in our environment.  TD-FALCON is actually one of 
the better performing algorithms in our tests.  Like the 
preceding algorithms, its performance tends to decrease with 
the increase of 𝑆!"#$ . Only the NFQ algorithm seems to exceed 
its performance, and only then at higher values of 𝑆!"#$ .  

 
Fig. 8. Combined Results from the TD-FALCON algorithm for different values 
of 𝑆!"#$ . 

Interestingly, the NFQ algorithm tends to perform better 
than (most of) the other RL methods when the 𝑆!"#$  is 
increasing (see Fig. 9). However, the algorithm’s performance 
is not very consistent. The reason for this inconsistency is 
likely the oscillation observed in Fig. 10 among the individual 
runs and the large confidence interval of ±0.123. The 
confidence intervals of Q-Learning, SARSA, HRL, Dyna-Q+, 
TD-FALCON, Explauto and ML for 𝑆!"#$ = 8.0 are 0.0034, 
0.0035, 0.0034, 0.0031, 0.0326, 0.0026 and 0.0013, 
respectively. 

Fig. 10 gives an ‘inside’ view of the NFQ algorithm’s 
results by showing performance results for all 25 runs.  It can 
be observed that the algorithm appears to oscillate between 
good and bad performance (or two bands), while appearing to 
gradually improve overall.   

 
Fig. 9. Combined Results from the NFQ algorithm for different values of 𝑆!"#$ . 

For example, using the legend as a guide, run 10 is the 
highest of the lower performing band of runs, however, run 12 
is the 2nd worst run of all of them. Run 16 has the highest 
average reward at the 10,000th iteration. So while time does 
seem to bring improvement to the performance, it is not very 
consistent. 

 
Fig. 10. Individual results of the NFQ algorithm with 𝑆!"#$ = 8. 

In Fig. 11 we directly compare our Motivated Learning 
algorithm against the reinforcement learning algorithms. TD-
FALCON is better than Dyna-Q+,  Dyna-Q+  performs slightly 
better than HRL, SARSA, or Q-learning, and Explauto with 
NFQ are the worst. However, ML outperforms all of them. ML 
appears better suited to operate in the hierarchically structured 
environment we provided due to the way it creates additional 
needs. 

 
Fig. 11. Comparison of Reinforcement Learning algorithms’ average reward 
performance to Motivated Learning with 𝑆!"#$ = 1.0. 

Figs. 12-14 compare the algorithms using rate value 𝑆!"#$ 
set at 2,4, and 8, respectively. We can observe that as the rate 
of change of the primitive reward 𝑆!"#$  increases, the advantage 
of TD-FALCON over other RL algorithms diminishes, while 
NFQ performance improves. 
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Fig. 12. Comparison of Reinforcement Learning algorithms’ average reward 
performance to Motivated Learning with 𝑆!"#$ = 2.0. 

 
Fig. 13. Comparison of Reinforcement Learning algorithms’ average reward 
performance to Motivated Learning with 𝑆!"#$ = 4.0. 

Although NFQ seems to perform better that other RL 
algorithms if the resource decline rate is higher than 4, we can 
observe its gradual decline with the increasing number of 
iterations. Fig. 15 shows the comparison between ML, NFQ, 
TD-FALCON, and Q-Learning methods for 𝑆!"#$ = 4.0 with 
20,000 iterations.  We see that both advanced RL methods 
eventually fall below Q-learning, which indicates that in a 
longer run they are not capable of maintaining their advantage 
over other RL algorithms in this testing scenario. However, 
the ML algorithm was able to continue operating without 
declining performance   

With these results we have shown that the Motivated 
Learning algorithm performs favorably against several 
common reinforcement learning algorithms. The results 
support our assertion that ML outperforms RL in complex 
environments, particularly, when an agent needs to discover 
the relations between several different “resources” and is only 
provided feedback in terms of the environment state and a 
single “reward” signal. 

 
Fig. 14. Comparison of Reinforcement Learning algorithms’ average reward 
performance to Motivated Learning with 𝑆!"#$ = 8.0. 

 
Fig. 15. Comparison of NFQ and Q-Learning at 20,000 iterations with 
𝑆!"#$4.0. 

The Black box scenario is open to anyone wishing to 
conduct their own experiments at: 

http://ncn.wsiz.rzeszow.pl/autonomous-learning-challenge/ 

Please feel free to run the experiment yourself and let us know 
if your results are better than what we reported.  

IV. CONCLUSION 
In this paper we argued that a Motivated Learning 

approach is able to effectively solve resource sharing and task 
coordination in a dynamic environment. This is because a ML 
agent’s internal reward system motivates it to act effectively in 
a dynamically changing environment with limited resources 
and respond to potential adversarial actions by other agents. 
We compared our motivated learning approach with several 
RL algorithms using a black box scenario. We obtained results 
in the form of reward values provided to the agents.  Using 
different resource settings we showed that our ML algorithm 
was able to perform well even when running into time 
constraints.  
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We plan to extend the black box scenario’s complexity by 
including actions by other agents (that can either cooperate or 
compete with the agent under test). Another addition to the 
scenario may be the concept of “space” in order to find objects 
in the environment.  While our ML implementations handle 
actions by other agents as well as finding objects in the 
environment, both features were not included in the black box 
scenario. This is to keep the black box scenario as compatible 
as possible with the various RL algorithms. 
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