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Abstract — This paper presents a fast self-organization of 

neural network structure using a new simplified pulsing model of 

neurons. These neurons incorporate the concept of time while 

simplifying many functional aspects of spiking models. This model 

is attractive because it is computationally very efficient. It allows 

for fast association of experimental data using conditional 

plasticity rules built-in neurons. It can be used for the 

representation of sequential and non-sequential data in neural 

network architectures. It also allows for the creation of synaptic 

connections that represent similarity, sequence, proximity, or 

defining dependencies between data and objects. Thus, this model 

can be used to develop complex neural graph structures for 

knowledge representation and retrieval. Such neural structures 

can be further used for fast search of related data or objects, 

clustering, classification, recognition, data mining, knowledge 

exploration, data retrieval, as well as for various cognitive tasks. 

Keywords — spiking neurons, associative pulsing neurons, 

associative models, computational complexity, self-organization. 

I. INTRODUCTION 

In computational intelligence, we usually use the second 
generation of neuron models based on the continuous nonlinear 
activation functions and artificial neural networks that are 
trained using various optimization criteria and gradient descent-
based methods. The third generation of neuron models [6] [7] 
[16] incorporate the concept of time and try to model biological 
neurons more precisely in order to discover and understand 
internal information processes that are substantial to understand 
how the knowledge is formed in the brain and how the 
intelligence works [4] [6] [7] [22]. Today, we have many third 
generation spiking models, e.g. integrate-and-fire (IF), leaky 
integrate-and-fire (LIF), exponential integrate-and-fire (EIF) 
models as well as conductance-based spiking neuron models [6] 
[11] [16] [19]. These models are biologically more faithful, but 
also more complex and more difficult to use for various practical 
computational tasks than the second generation of neuron 
models. On the other hand, some experiments have shown that 
certain aspects of the biological platform are unnecessary to 
achieve desired functionality expected from artificial neural 
networks [6] [8] [9] [20]. 

This paper introduces a new model of neurons (named as 
associative pulsing neurons or APNs) which incorporates the 
concept of time-related associative abilities of real neurons. The 
presented model expands the model introduced by Horzyk in [8] 
and [9] and shows how it is used in fast self-organization of 

associative neural network structures. APNs do not intend to 
precisely model membrane potentials, transduction of stimuli, 
and electrochemical nonlinear excitation changes of the 
neuronal states which are observed in real neurons. Instead, they 
use the main features of the biological neurons based on the 
accumulation of charges over time and changing synaptic 
connections between neurons to self-organize. This idea was 
demonstrated on a group of connected neurons extracting 
knowledge from data [14] [23].  

Moreover, in neurobiology-based signal processing, there 
are two competing approaches to explain neuron 
communication: through a rate of pulses or through temporal 
differences between pulses [16]. In this paper, temporal 
differences between neuron activations are used to influence the 
strength of the synaptic connections to postsynaptic neurons. 
APNs simulation uses a simple event-driven approach which 
makes this neuron model very efficient developing and using 
large networks of neurons. Activations of various neurons occur 
at different times which is crucial for the interpretation of what 
is processed and what results.  

The main objective of this paper is to describe fast self-
organization and simulation of neural networks built of APNs. 
Such networks have both good associative and temporal storage 
properties making them good candidates for associative short-
term memories. They can sort, cluster, recognize, and classify 
data [10], extract knowledge from input sequences [8], and make 
new associations [24] to store findings. In this paper, a novel 
neural network model based on temporal patterns of activations 
and associative pulsing neurons is presented. Dynamics of the 
model is described in detail so that it can be easily reproduced. 
Future research will compare storage properties of APN 
networks to recurrent LSTM networks [25] and to cortical 
structures of hierarchical temporal memories [26]. 

II. RECEPTORS, NEURONS, AND SENSORY INPUT FIELDS 

A. Receptors and Sensory Input Fields 

Receptors of various kinds play a very important role in real 
neuronal systems. They supply those systems with external data 
which frequent or unique combinations must be associated and 
remembered to satisfy needs of the system in future interactions 
with its environment. The receptors are placed in various 
sensory input fields (SIFs) which represent different features or 
parameters of modeled objects, their sequences, or routines in 



the neural system. The observed objects can stimulate the 
receptors with different strength for various periods of time. The 
strength depends on the receptor placement in its SIF or the 
similarity of the input data to the value(s) represented by the 
receptor, i.e. the value(s) to which the receptor is most sensitive. 
The receptors stimulate special neurons (called sensory neurons) 
which are charged over time depending on how long the input 
data are presented on the SIFs and how much the input data are 
close to the data ranges represented by receptors. If the 
stimulation lasts long enough, then some sensory neurons 
achieve their firing thresholds at various time and start to 
stimulate other connected neurons. The sensory neurons are 
automatically created and connected to receptors, but the 
connections to other neurons are conditionally dependent on the 
plasticity rules built in these neurons as described in [10]. Real 
neurons, as well as APNs, have no external supervisor to train 
them correctly to process data, so the incoming data, their 
frequency of various combinations as well as their uniqueness 
have to adapt neurons to associate objects correctly and proceed 
to control various tasks. 

Biological receptors [17] are not sensitive to a wide variety 
of input stimuli, but they are most sensitive to very limited 
ranges (rods and cones in retina) harmonics (hearing receptors) 
or subsets (olfactory or taste receptors) of input stimuli [12] [15]. 
Moreover, receptors are connected to dedicated neurons (called 
here sensory neurons) which are charged by stimuli coming 
from these receptors. If the receptors are stimulated long and 
strong enough, then the connected sensory neurons achieve their 
firing threshold levels, fire, and send appropriate signals to the 
higher parts of the nervous system [12] [15]. The fact, that 
various receptors charge various combinations of neurons, 
allows for plastic adaptation of neurons which fire at the same 
time or in close succession of each other. Such neurons reinforce 
existing connections or create new connections to neurons in 
their proximity [12] [17]. Neurons together with connections 
and their parameters reproduce important relations which allow 
for association of various features, objects, classes, and routines 
in nervous systems. 

Generally, real neurons use their plastic connections both for 
data transfer and as modifiers of a data processing algorithm, not 
like contemporary microprocessors which use data buses only to 
transfer data. In the APN model, the results of neuronal 
computations can be extracted from the speed, frequency, and 
succession of spikes of activated neurons and from their 
connections which define what kind of information these 
neurons represent. The APNs focus on functional dependencies 
between neurons and ability to represent various concepts in the 
form of combinations of input stimuli over time [5] [13]. Each 
APN represents these spatiotemporal combinations of input 
stimuli that charge it to its firing threshold. Therefore, a firing 
APN communicates to other connected neurons information that 
it has just recognized an object, class, or activity represented 
these spatiotemporal combinations. The output result produced 
by an APN can be a part of other spatiotemporal combinations 
represented by other (higher order) neurons [28]. Each 
spatiotemporal combination can consist of stimuli coming from 
different APNs as well as from receptors representing input data. 
Input data sensed by receptors can be of various kinds. They can 

represent different features describing some objects as well as 
represent already processed data, names of objects or classes.  

B. Receptors and Associative Pulsing Neurons 

Each receptor �����  is defined as a graph element in the neural 

structure which is placed in a sensory input field (SIF), it is 
sensitive to the presented values on its SIF, and is charging a 

single connected sensory neuron  �����  with a different strength 

(1) according to the presented input data (Fig. 1-2). If input data 

are symbolic or boolean then each receptor �����  is sensitive only 

to a single value (if ��� = �
��  then ����� = 1 ) which it 

represents and is insensitive to all other values (else ����� = 0). 

When input data are numerical (integer or float) then receptors 

are mostly sensitive to a single represented value ����  and less 

sensitive to other values according to the following formula: 

 ����� =
��
�1 − ����������

���        �� ��� > 0
����� �

�����������������      �� ��� = 0 (1) 

where the �����  is receptor’s ��  stimulation strength,  ���   is an 

input value presented on the SIF, ����  is a value represented by 

the receptor ����� , and ���  is a current range of values of the 

attribute �� defined as: 

 ��� = ��� �� − ���!��  (2) 

where ���!�� = "�#$����%  and ��� �� = "��$����%  are the 

current minimum and maximum values of the attribute ��. 

A sensory neuron ����� that does not represent the stimulated 

input value ���   fires with some delay according to the relative 

difference between receptor value ����and value ��� . The period 

of time which passes from the receptor stimulation to the 
sensory neuron firing determines the degree of similarity 

between these values. Moreover, the input value ���  will cause 

the receptor �����  to activate the connected sensory neuron �����  

less frequently with larger difference between the values ���  

and ���� . While the external stimulus is presented on the SIF 

(Fig. 1-2) the stimulated receptor �����  is continuously 

stimulating and charging the connected sensory neuron �����  with 

the strength (1). The sensory neuron �����  achieves its pulsing 

thresholds after time &����  specified in (3) when this neuron is 

solely stimulated by this receptor long enough: 

 &���� =
�'
�
'�

���
(��������������)                  �� ��� > *���� − ���*
∞                                        �� ��� = *���� − ���*
1 + -��������

���� -                    �� ��� = 0                    
 (3) 



  

Fig. 1. Neural state changes according to the continuous input stimulus of the 

receptor ����  and the forwarded pulses after activation of neurons, where A, B, 

and C phases illustrate associated state changes shown in Fig. 3. 

 The time differences in achievement of pulsing thresholds 
by various sensory neurons are crucial for the next neuronal 
processes defined in the following section and for input data 
processing. The sensory neurons not only stimulate other 
connected neurons but they also automatically associate close 
values and similar objects by creating connections between 
neurons representing these objects as described in [10]. 

Sensory neurons are connected if their receptors represent 
orderable or neighbor data. The conditional plasticity rules are 
used for the creation of connections between such sensory 
neurons [10]. In real neural networks, connection weights and 

the sensitivity of sensory neurons to input values are adapted 
over time, whereas the APN model allows to quickly calculate 
weights of connections between sensory neurons directly from 
similarity of values represented by the connected sensory 

neurons in view of its feature range ���: 

 ./0��� ,/02�� = 1 − �������2�� �
���  (4) 

where ����  and �3��  are mostly sensitive by the receptors �����  

and ��2��  stimulating connected sensory neurons �����  and ��2�� . 

 

Fig. 2. Synaptic dependencies between receptors, sensory and object neurons. 

The lower part of the figure shows time domain state and activation levels for 

object neurons 435, 436, and 437 and sensory neurons ���5��  , ���� , and ���5�� . Only 

the sensory neuron ����  is directly stimulated by the receptor ���� and fires most 

often. The other neurons responses are based on their stimulation strength 

through associative weighted connections. Object neuron 435  fires more 

frequently than object neurons 436  and 437  because it is directly and more 

strongly connected to the most active neuron ���� , however the object neuron 436  fires earlier than the object neuron 437  since it has stronger synaptic 

connection from the sensory neuron ����  to ���5��  than to ���5�� . 



The sensory neurons �����  can also be connected to object 

neurons 43  representing objects defined by combinations of 

input values or other objects. The APN model calculates weights 

of these connections directly after the 8����
  number of times the 

given value is used to define various objects: 

 ./0��� ,92:; = 5
<0��� (5) 

The reciprocal connections from the object neurons 43 to the 

sensory neurons �����  representing the defining values are 

typically equal one: 

 .92:; ,/0��� = 1 (6) 

The weights (4)-(6) do not need to be stored in the connections 
because they can always be calculated very fast for all outgoing 
connections before a given neuron fires. One can save a lot of 
memory and avoid updating their values when the ranges of 

values ���  or the number of connections 8����  change in time.  

The thresholds of all sensory neurons ����� are always equal 

one ( =/0��� = 1) . The pulsing thresholds =92  (7) of object 

neurons 43 are defined as the sum ?92  (8) of the weights of all 

connections coming from the sensory neurons �����  if this sum is 

less than one because the defining combination of the input 
stimuli representing an object represented by the object neuron 
should be able to activate it: 

 =92 = @1          �� ?92 ≥ 1?92     �� ?92 < 1  (7) 

 ?92 = ∑ ./0��� ,92/0���  (8) 

III. EVENT DRIVEN SIMULATION WITH APNS 

In reference to previous works of many researchers [1] [2] 
[3] [6] [8] [9] [11] [16] [18] [19] [20] [21], the associative 
pulsing neuron (APN) is a new model of neurons which 
incorporates the concept of time, as well as spiking models, and 
plasticity of real neurons, which expands the adaptivity of the 
neural network. This is similar to spiking models, but unlike 
them the APNs also enable automatic conditional association of 
objects represented by this kind of neurons as proposed in [8]. 
APNs have built-in plastic mechanisms which enable them to 
connect conditionally. These mechanisms connect neurons 
which are frequently active in the similar time. In this way, 
newly created object neurons connect to recently activated 
sensory neurons, representing combinations of training samples. 
The plasticity conditions always take into account the time 
elapsed between activations of APNs to connect neurons and 
determine connection weights as described in [10]. 

Spikes of neurons in the neural network result in activation 
of effectors that represent the output conclusions or actuators 
that act on the environment. The output defined by the series of 
spikes may be reinforced, represented by object neurons, 
remembered, and used in the future if the similar context will be 
observed again. The context is defined by the internal or external 
stimulation of the selected subset of neurons and/or receptors. 
The same frequently used contexts charge the same neurons and 
recall the same or similar sequences of spikes in all neurons. The 
neurons which most frequently spike/pulse and their most 
frequently stimulated effectors represent the strongest 
associations with the input context and can be treated as an 
answer of the neural network. Since APNs can quickly calculate 
connection weights, neuronal activities can be remembered in 
the contexts of the data combinations which initiated the 
stimulations and spikes. This lets us to associate data defining 
classes of objects, similarities between them, their proximity in 
space and time. The APN model is computationally very 
efficient because it updates neurons only in the moments of time 
when they switch their internal states, uses simple linear 
equations, and does not need to solve differential equations 
typically used in spiking neuron models. Moreover, all internal 
processes are efficiently managed by the discussed in this 
section internal process queue (IPQ), which is created for each 
neuron, and all IPQs are triggered by events managed by the 
global event queue (GEQ). In the GEQ, all events of all neurons 
are sorted during simulation of this model and executed in 
proper order in the simulation time. The discrete moments of 
updating neuronal states and their activation levels together with 
periods of time necessary to perform each process allow for 
successful simulation of parallelism of all processes in the neural 
network which further increases its computational efficiency. 

This section describes how event-driven simulation of a 
network consisting of APNs and connected receptors is 
performed and how synaptic connections are modified during 
the neural network self-organization and learning process. 

A. Simulation Algorithm: APN State Related Processes 

The APNs can be in one of the seven states shown in Fig. 3. 
These states are charging, discharging, relaxing, pulsing, 
absolute refraction, relative refraction, and resting. Stimuli 
coming from other neurons charge or discharge a postsynaptic 

neuron for the period of time DEF, here arbitrarily set to 1, but 
with a different strength. Receptors can also charge neurons with 
different strength for as long as the input data are presented on 
their SIFs. Input stimuli coming from various sources can 
naturally overlap in time (as shown in the upper part of Fig. 3), 
but APNs always add and combine overlapping stimuli 
transforming them into a sequence of successive internal 
processes (shown in the bottom part of Fig. 3). 

Each new external excitation or inhibition stimulus is 
combined with the overlapped charging or discharging 
processes of the IPQ of the stimulated neuron. Each process in 

the IPQ is defined as G� = H��, &� , D� , I� , J�), where �� defines 

a process type as charging (CH), discharging (DC), relaxation 

(RX), absolute refraction (AR), or relative refraction (RR), &� 
indicates the time when the process starts, D� is the duration of 

the process, I� is the strength of the process defining the positive 



or negative change of the neuronal activation level when this 

process is finished without interruption, and J�  is a pointer to 

the event K! = H&� + D� , J!<) in the GEQ that watches for the 
moment of time (&� + D�) when this process will finish. The 

neuron pointed by J!< must be updated at the time (&� + D�), and 
its process must be switched to the next one. During the update, 
the neuronal state and the activation level are usually changed. 

The pointer J�  allows to quickly remove the outdated event K!  

if the process G�  is interrupted and must be changed. The 

strength I�  is positive for all charging and relative refraction 
processes and negative for all discharging and relaxation 
processes. Pulsing (P) of a neuron is not an internal time-span 
process added to an IPQ or watched by a GEQ. Pulsing is a 
moment in which the neuron fires and triggers stimulation of 
other connected neurons, adds an AR process to the IPQ, and 
can conditionally start plasticity processes which can change its 
threshold, connection weights, and conditionally connect or 
disconnect this neuron to other neurons. Plasticity processes 
which connect sensory neurons representing similar values were 
already described in [10]. In [8], [24], and [27] plasticity 
processes, which allow connecting neurons to represent 
sequential objects, are described. If a neuron is in the resting 
state it has no process in its IPQ. 

 

Fig. 3. External stimuli, activation level changes, and neuronal states over time. 

A state diagram on the bottom of the figure shows transitions between neuronal 

states that start various internal processes of an associative pulsing neuron Oj. 

B. Simulation Algorithm: Time Progression 

All processes stored in the IPQ are sorted by their starting 
time and never overlap in time. When a new external stimulus 
comes, the neuron must combine it with processes in the IPQ if 
the stored processes overlap with this stimulus in time. The 

external stimulus is defined as � = H&
, D
, I
) , where &
  

indicates the time when the stimulus comes, D
  is the duration 

of this stimulus, and I
  is its strength that can be positive or 
negative depending on its excitatory or inhibitory character. 

The duration D
  for the receptor stimulus is set to infinity 
because we do not know how long the receptor will stimulate 
the connected sensory neuron. Such a receptor stimulation is 

interrupted in the moment when the external stimulus is 
removed from the SIF. Therefore, the external receptor stimuli 
cannot be combined with the internal stimuli coming from 
neurons and are not represented in the IPQ. If the external 
stimulation overlap with processes stored in the IPQ, then they 
are temporarily combined to determine the expected pulsing 
threshold time that is watched out by an appropriate event in the 
GEQ. The temporal combinations assume the addition of the 
external receptor stimulus to all subsequent processes of the 
IPQ until this stimulus is stopped. If the receptor stops 
stimulating the sensory neuron or changes the stimulation 
strength, then the expected time of the event is recalculated and 
the associated event is updated. Hence, when the receptor 

stimulation �EF = H&
 , D
 , I
)  is present, it is temporarily 
combined with the current internal process G� =H��, &� , D�, I� , J�)  creating a temporal process G�L =H��, &
 , D� , I� + I
 , J�). Next, it is checked whether during the 

temporal process G�L the pulsing threshold can be achieved in 

the same way as for the internal process G� , and the event 
watching the moment of activation or the moment of the end of 
this process is determined according to what will be earlier. 

The IPQ is empty when the neuron is in its resting state 
(RS). New discharging processes during a resting state or a 
relative refraction process have no influence on this state or this 

refraction process. However, a new charging process G� =HMN, &/ , D/, I/, J�)  defined by the internal neuronal charging 

stimulus �EF = H&
 , D
, I
) is simply added to empty IPQ. If the 
queue contains a relaxation process, then this process is 

interrupted, the neuron updates its actual activation level OP� in 

the interruption time &/  determined by the new stimulus, the 
IPQ is completely emptied, and a new process of charging or 
discharging is added. Moreover, we have to check whether the 
neuron can achieve its firing threshold during the calculation of 
its next internal process before it is added to the IPQ and 
watched by the GEQ. We check this by the evaluation of the 

inequality OP� + I/ > =  for the currently added charging 

stimulus �EF = H&
 , D
, I
). If the inequality is true, then we 
have to shorten the time of the defined new process because the 

achievement of the firing threshold will come faster (&/Q =
&
 + D
 ∙ S� �
� ) than the end H&
 + D
) of this stimulus. In the 

similar way, we have to check, whether the neuron can achieve 
its resting state before the end of the discharging process. In this 

case, we have to check the inequality OP� + I/ < 0  for the 

currently discharging stimulus �TE = H&
, D
, I
) . If this 
inequality is true, then the time of the defined new process will 

come faster (&U/ = &
 + D
 ∙ � �
� ) than the end H&
 + D
) of this 

stimulus. In other cases, the new event contains the time (&
 +D
) when the new charging or discharging process is expected 

to finish. The internal activation level of a neuron OP�  in the 

moment &
  of the interruption caused by a new stimulus � =H&
, D
, I
) is updated according to: 

 OP� = OPV + IW ∙ P��PVXV  (9) 



where &W  defines a starting time of the currently running process GW  in the considered neuron which is interrupted at the time &
, 

and DW  is an expected duration of the interrupted process GW . 

Fig. 4 presents how the current sequence of processes GW and G5 are changed to a new sequence of processes GWL, G5Y , and G6L 

at the interruption time &
 = &Z  as a result of the new 

discharging external stimulus �Z = H&Z, DZ, IZ).  The 

interruption stops the currently running process GW, updates the 
neuronal internal activation level (9), and modifies the 

unexecuted part of the GW process and all subsequent processes 

in the IPQ which overlap in time with the new stimulus �Z. 

If the IPQ contains a relative refraction process (RR), then it 
can be interrupted only by a new excitation external stimulus. 
If so, the neuron updates its actual activation level (9) in the 

interruption time &
 , and combines the new charging process G� = HMN, &/, D/, I/, J�) with the rest of the relative refraction 
process updating the IPQ. If the queue contains an absolute 
refraction process (AR), then all external stimuli are ignored, 
and no action is undertaken.  

C. Simulation Algorithm: Process Concatenation 

If a new stimulus � = H&
, D
, I
)   arrives and the IPQ 
contains one or more charging and discharging processes GW =H�W, &W, DW, IW, JW) , G5 = H�5, &5, D5, I5, J5)  etc., then the 

currently running process GW is interrupted, the neuron updates 

its internal activation level (9), and the new stimulus �   is 

combined with the remaining part of the interrupted process GW, 

and a new process G\W described by (10) is created. �Z is also 
combined with the subsequent process (11) or processes (12) 
and (13) in the IPQ that overlap with this new stimulus in time. 

As a result, the old processes GW, G5  etc. overlapping with the 

new stimulus �  are removed from the IPQ, and the events 

pointed by JW and J5  are removed from the GEQ as well (Fig. 

4). In Fig. 4, new processes G\W, G\5, G\6 etc. are calculated, and 
an updated events of the new processes are added to the GEQ. 

An example of these new processes G\W , G\5, and G\6   resulting 

from adding new stimulus �Z = H&
Z, D
Z , I
Z) are illustrated on 
the bottom right part of Fig. 4. 

If the interrupted process ends earlier than the new stimulus 

or at the same time, i.e. when  &W + DW ] &
 + D
, then we add 

the remaining part (IW ∙ XV�HP��PV)XV ) of the interrupted process GW 

to the overlapping part (I
 ∙ XV�HP��PV)X� ) of the new stimulus � 

defining a new process G\W in the following way (Fig. 4): 

 G\W = H�̂W, &
, DW − H&
 − &W), ÎW, ĴW) (10) 

where ÎW = IW ∙ XV�HP��PV)XV + I
 ∙ XV�HP��PV)X�  is the combined 

strength of the new process G\W . The remaining part  

(I
 ∙ X��_XV�HP��PV)`X� ) of the new stimulus signal value is added 

to the next subsequent process G5 of the IPQ in a similar way.  

 

Fig. 4. The illustration of the operation that combines the new stimulus S3 with 

the processes P1 and P2 in the IPQ and the result of this operation. 

If there is no subsequent process in the IPQ then we add this 
remaining part to the IPQ as a new subsequent process: 

 G\5 = _�̂5, &W + DW, D
 − _DW − H&
 − &W)`, Î5, Ĵ5` (11) 

where Î5 = I
 ∙ X��_XV�HP��PV)`X�  is the combined strength of the 

new process G\5. In the above defined processes (10) and (11), �̂W 
and �̂5 determine the charging (CH) or discharging (DC) types 

of the new processes G\W  and G\5  fixed after the types and the 

resultant strength of the old processes GW  and G5  combined with 
the new stimulus �, i.e. if Î! ≥ 0, then �̂! = MN else �̂! = aM, 

where # ∈ c0,1d (Fig. 4). 

 If there are subsequent processes G5 , G6  etc. in the IPQ  
then they must be combined with the remained part  (I
 ∙ X��_XV�HP��PV)`X� ) of the new stimulus �. The new stimulus 

can end at the same time (9), after (9), or before (10) the end of 

the subsequent process G5. Depending on the situation we use 
either equation (9) or (10): 

 G\5 = (�̂5, &5, D5, I5 + IW ∙ XeX� , Ĵ5) (12) 

 G\5 = _�̂5, &5, Df5, Î5, Ĵ5` (13) 

where Df5 = D
 − _DW − H&
 − &W)` is a new duration of G\5 and 

Î5 = I5 ∙ X��_XV�HP��PV)`Xe + I
 ∙ X��_XV�HP��PV)`X�  is a new strength. 

Moreover, if the new stimulus ends after the subsequent 

process G5  then it is necessary to recurrently combine the 

remaining part (I
 ∙ X��_XV�HP��PV)`�XeX� )  of it with the next 

subsequent processes G6 , GZ  etc. if they exists or add this 
remaining part to the IPQ in a similar way as was described for 

the processes GW and G5 (10)-(13). 



D. Simulation Algorithm: Managing Simulation with the GEQ 

Thanks to the linear time-domain approximation of the 
applied stimuli, all neuronal processes can be easily combined 
with new stimuli. As a result, new processes combining new 
stimuli with the overlapping processes from the IPQ replace the 
overlapping ones as shown in Fig. 4. Each charging process is 

checked for a possibly reaching the pulsing threshold =  and 
each discharging process is checked for a possibly reaching the 
resting state in order to correctly add the new event to the GEQ. 
If one of these states can be achieved, then the expected pulsing 
or resting moment is computed, and an appropriate event is 
added to the GEQ.  The GEQ will watch out for this moment in 
the event driven simulation in order to finish the currently 

running process GW , update the neuronal activation level and 
trigger the next process or remain in the resting state. The 
anticipated time moment of such an event can change in future 
after another external stimulus that can come before the process 
is finished and this watching event is triggered. If it happens, 
the outdated event is removed from the GEQ, and a new one is 
added due to the new situation. If the pulsing moment comes, 
then all processes in the IPQ of the pulsing neuron are removed, 

and a new absolute refraction process PAR is added to the IPQ. 

The AR process G� = Hg�, &hU , DhU , IhU, JhU) changes the 

APN activation level to OPij�Xkl = −=  and its duration DhU 

is preset to 1, where &hU  is the time when the neuron achieved 

its pulsing threshold, IhU = −2 ∙ =, and JhU  is a pointer to the 
event in the GEQ where the absolute refraction process of this 
neuron ends. Each new external excitation stimulus always 
interrupts charging, discharging, relaxation, and relative 
refraction processes or a resting state of a neuron. Each new 
external inhibition stimulus can interrupt only charging, 
discharging, and relaxation processes. The absolute refraction 

process cannot be interrupted by any stimulus. The relaxation 
and relative refraction processes are dependent on the actual 
internal state of the neuron when these processes start, on the 

pulsing threshold θ of this neuron, and on the assumed 

maximum relaxation period, e.g. JUn = 10 , or the assumed 

maximum relative refraction period, e.g. JUU = 5 respectively. 

It can be noticed that each IPQ typically consists only of a 
few processes, and each neuron has maximum one event in the 
GEQ which watches out its most recent predicted update time 
associated with its currently running processes. Thus, the GEQ 
consists of a number of events equal to the number of non-
resting neurons in the whole network. 

Each APN in the neural network is defined as a node in the 
associative neuronal graph structure that can have many input 
and output connections. Connections are always directed, but 
they can also connect neurons mutually. Each output stimulus of 
APNs is equal to one and is transferred to the postsynaptic 
neuron by the weight ranging from 0 to 1 or from 0 to -1 
respectively for excitatory or inhibitory connection (Fig. 3). 
Most of the time, neurons can be charged with the exception of 
absolute refraction periods. They can be discharged only if their 

activation level are positive (O > 0), so a neuron cannot be 
discharged during relative refraction processes when the 

activation level is negative (O < 0). 

The APN neurons have been implemented and used to 
represent various training data sets in such a way that receptors 
represented unique attribute values of all samples. Each receptor 
was connected with a sensory APN that was charged to the 
pulsing level (activation threshold) for a different period of time 
dependently on the strength with which the connected receptor 

 
Fig. 5. Neural network structure automatically created for Iris data using plasticity rules for sensory associative pulsing neurons (squares) representing 

unique input values and for object associative pulsing neurons (circles) which can be used for recognition or classification as shown above. 



was stimulating it. The activated neurons generated pulses 
which according to the connection weights were stimulating 
connected object APNs. Such kind of neuronal graph can be 
further used to classify training samples if not all input values 
are given. As a result, stimulated sensory APNs stimulate 
connected object APNs, and they stimulate back all sensory 
APNs which are not in the absolute refraction period. Thus, we 
finally achieve activation of the selected sensory neurons and 
the object neuron and classification as shown in Fig. 5. 

IV. CONCLUSIONS 

This paper introduced event-driven simulation with 
associative pulsing neurons, which allows for fast inference 
about similarities, clustering, recognition, and classification of 
objects on the basis of the speed and frequencies of pulses 
produced by the APNs. The presented approach uses linear 
approximation of internal neuronal processes, which enables 
efficient management of these processes using a queue, in which 
processes are sorted by the starting time. The simulated network 
may update neurons in discrete sparse moments when the 
processes must be switched or new external stimuli come to 
influence neuronal states. The presented APN model is very fast 
because all internal operations take constant time. Only addition 
of new events to the GEQ (implemented as a sorted list) takes 
logarithmic time of the number of neurons which are not in their 
resting states. This makes the formation of the associative neural 
network structure and its simulation very efficient. 

The important finding is that the network with such neurons 
uses time and frequency of spikes to formulate its answer about 
found relations between objects and features which define them. 
Even more important finding is that spatial correlation can be 
treated exactly in the same manner as correlation over time, 
establishing a causal relationship in both time and space 
domains. Effectively, sequential succession over time and 
spatial associations use the same mechanism to trigger 
activations in the developed associative pulsing neural network.  

Comparing to spiking neuron models, APN neurons 
simulation is much faster due to the linear approximations of all 
internal processes and constant processing time of all internal 
operations and many other when APNs interact. APN neurons 
show additional useful properties not observed in spiking neuron 
models. They can change their thresholds (i.e. sensitivity to 
input stimuli) if neurons are frequently activated, which results 
in better clustering properties, and they display fatigue, that 
make them resistant to repeated stimuli over a short period of 
time [24]. The APN can also automatically and conditionally 
create and reconfigure connections, so the associative pulsing 
neural networks are self-organizing. We are currently 
investigating other properties of APN in combination with the 
mini-column concept to increase the resolution of semantic 
memories using these models [26]. 

ACKNOWLEDGMENT 

This work was supported by a grant from the National 
Science Centre of Poland DEC2016/21/B/ST7/02220 and by 
AGH 11.11.120.612. 

REFERENCES 

[1] B.J. Baars. A Cognitive Theory of Consciousness. Cambridge, UK: 
Cambridge University Press, 1988. 

[2] G.A. Carpenter, S. Grossberg. Adaptive resonance theory. In The 
Handbook of Brain Theory and Neural Networks, M. Arbib (Ed.), MIT 
Press, Cambridge, MA, 2003, pp. 87–90. 

[3] L. Deuker et al. Memory Consolidation by Replay of Stimulus-Specific 
Neural Activity. Jour. of Neuroscience, vol. 33(49):19373–19383, 2013. 

[4] W. Duch. Brain-inspired conscious computing architecture. Journal of 
Mind and Behaviour, 26:1–22, 2005. 

[5] S. Franklin, T. Madl, S. D’Mello, and J. Snaider, LIDA: A Systems-level 
Architecture for Cognition, Emotion, and Learning. IEEE Trans. on 
Autonomous Mental Development, 6(1):19–41, 2014. 

[6] W. Gerstner and W. Kistler. Spiking Neuron Models Cambridge 
University Press, 2002. 

[7] D. Graupe. Deep Learning Neural Networks. World Scientific, 2016. 

[8] A. Horzyk. How Does Generalization and Creativity Come into Being in 
Neural Associative Systems and How Does It Form Human-Like 
Knowledge? Neurocomputing, Elsevier, 2014, pp. 238– 257. 

[9] A. Horzyk. Innovative types and abilities of neural networks based on 
associative mechanisms and a new associative model of neurons. Proc. Of 
Int. Conf. ICAISC 2015, Springer Verlag, LNAI 9119, 2015, pp. 26–38. 

[10] A. Horzyk, Neurons Can Sort Data Efficiently, Proc. of ICAISC 2017, 
Springer-Verlag, LNCS, Vol. 10245, 2017, pp. 64-74, DOI: 10.1007/978-
3-319-59063-9_6. 

[11] E. Izhikevich. Neural excitability, spiking, and bursting. Int. J. Bifurcat. 
Chaos, 10:1171–1266, 2000. 

[12] J.W. Kalat. Biological grounds of psychology. PWN, Warsaw, 2006. 

[13] J.E. Laird. Extending the Soar Cognitive Architecture. in Proc. of the First 
Conference on AGI, Memphis, Tenn, 2008, pp. 224–235. 

[14] D.T. Larose. Discovering knowledge from data. Introduction to Data 
Mining. PWN, Warsaw, 2006. 

[15] A. Longstaff. Neurobiology. PWN, Warsaw, 2006. 

[16] W. Maass. Networks of spiking neurons: The third generation of neural 
network models, Neural Networks, Vol. 10, Issue 9, Elsevier, 1997, pp. 
1659–1671. 

[17] J.Z. Nowak and J.B. Zawilska. Receptors and Mechanisms of Signal 
Transfer. PWN, Warsaw, 2004. 

[18] V.A. Nguyen, J.A. Starzyk, W-B. Goh, D. Jachyra. Neural Network 
Structure for SpatioTemporal Long-Term Memory. IEEE Trans. on Neur. 
Networks and Learning Systems, vol. 23, no. 6, June, 2012, pp. 971–983. 

[19] S. Ostojic and N. Brunel. From Spiking Neuron Models to Linear-
Nonlinear Models. PLoS Comput Biol 7(1): e1001056, 2011. 

[20] J.W. Pillow. Prediction and decoding of retinal ganglion cell responses 
with a probabilistic spiking model. J Neurosci 25: 11003–11013, 2005. 

[21] J.A. Starzyk, J. Graham. MLECOG - Motivated Learning Embodied 
Cognitive Architecture. IEEE Systems Journal, Vol. PP, Issue 99, pp. 1-
12, 2015. 

[22] R. Tadeusiewicz. New Trends in Neurocybernetics. Computer Methods 
in Materials Science, 10 (1): 1–7, 2010. 

[23] Sha Zongyao, Li Xiaolei. Mining local association patterns from spatial 
dataset, 7th Int.Conf. on Fuzzy Systems and Knowledge Discovery, 2010. 

[24] A. Horzyk, J.A. Starzyk, Basawaraj. Emergent creativity in declarative 
memories, IEEE Symposium Series on Computational Intelligence, 
Athens, Greece, Dec. 6-9, 2016. 

[25] S. Hochreiter and J. Schmidhuber. Long short-term memory, Neural 
Computation 1997, vol. 9: issue 8, pp. 1735-1780. 

[26] Hawkins, J. et al. 2016. Biological and Machine Intelligence. Release 0.4. 
Accessed at http://numenta.com/biological-and-machine-intelligence/. 

[27] A. Horzyk, J.A. Starzyk, J. Graham. Integration of Semantic and Episodic 
Memories, IEEE Transactions on Neural Networks and Learning 
Systems, 2017, DOI: 10.1109/TNNLS.2017.2728203 (in press) 

[28] A. Horzyk. Deep Associative Semantic Neural Graphs for Knowledge 
Representation and Fast Data Exploration Proc. of KEOD 2017, 
SCITEPRESS Digital Library, 2017 (in press)


