A Hybrid Self-organizing Neural Gas Based Network

James Graham and Janusz A. Starzyk"

Abstract—This paper examines the neural gas networks
proposed by Martinetz and Schulten [1] and Fritzke [2] in
an effort to create a more biologically plausible hybrid
version. The hybrid algorithm proposed in this work retains
most of the advantages of the Growing Neural Gas (GNG)
algorithm while adapting a reduced parameter and more
biologically plausible design. It retains the ability to place
nodes where needed, as in the GNG algorithm, without
actually having to introduce new nodes. Also, by removing
the weight and error adjusting parameters, the guesswork
required to determine parameters is eliminated. When
compared to Fritzke’s algorithm, the hybrid algorithm
performs admirably in terms of the quality of results it is
slightly slower due to the greater computational overhead.
However, it is more biologically feasible and somewhat more
flexible due to its hybrid nature and lack of reliance on
adjustment parameters.

I. INTRODUCTION

The neural gas network is a biologically inspired
ontogenic network. It is an unsupervised network that
operates on a few central principles. A certain number of
neurons or nodes (usually two) are selected by how far
they are from an input signal. They are then adjusted
according to a fixed algorithm/schedule determined by the
algorithm’s designer. The networks discussed in this
paper are referred to as “neural gas” structures because of
their similarity to the original neural gas network as it was
first proposed by Martinetz and Schulten, in 1991 [1], and
later expanded upon by Bernd Fritzke [2], [3]. Fritzke has
produced several articles detailing many variations of
neural gas networks and their properties.

Since then, there has been an increasing interest in
neural gas related research as an alternative to Kohonen
self-organizing maps [4] as evidenced by a number of
papers that took advantage of the neural gas flexibility to
fit various topologies. For example, Montes et. al.
presented a hybrid ant-based clustering algorithm that
made use of growing neural gas networks [5]. Also,
Rodriguez presented an application of the growing neural
gas model for automatically building statistical models of
non-rigid objects such as hands [6]. Another example of
research based on the growing neural gas network is the

TAuthors are with the School of Electrical Engineering and
Computer Science, Ohio University, Athens, OH, USA. (email:
James.Graham. | @ohio.edu and starzyk@bobcat.ent.ohiou.edu.
This work was supported in part by a grant form AFOSR

978-1-4244-1821-3/08/$25.00©)2008 IEEE

work done by Cheng and Zell [7] which presents a double
growing neural gas network for disease diagnosis. In the
double network, the network’s growth is accelerated by
doubling the number of neurons that are inserted during
each insertion stage. Other examples of the applications
of neural gas networks includes a method for training
vector quantizers by Rovetta and Zunino [8], a method for
assessing the stability of electric power systems from
Rehtanz and Leder [9], and a hierarchical neural gas
network for pattern recognition by Atukorale and
Suganthan [10].

While the preceding articles give a good overview of
the applications of growing neural gas networks, they do
not offer comparisons to other neural network types. The
paper by Heinke and Hamker [11] addresses this issue by
comparing the growing neural gas network with such
networks as the growing cell structures network (GCS),
fuzzy ARTMAP (fuzzy predictive adaptive resonance
theory) , and the standard multilayer perceptron network
(MLP). They tested four different real world data sets
with the four types of networks with varying results. No
network type performed significantly better than the
others on all four of the data sets. However, they
concluded that when taking performance, convergence
time, and dependence on parameters into account the
networks could be ranked in the following order: GNG,
GCS, MLP, and fuzzy ARTMAP. On the other hand,
when there are linear boundaries between classes, fuzzy
ARTMAP and MLP networks tend to perform better.

Included in this research are discussions on the
topology finding properties of neural gas networks and
their ability to automatically construct radial basis
function networks [2,3,12]. The basis for the neural gas
network is the traditional Self-Organizing Map (SOM)
originally proposed by Kohonen [4]. However, it differs
from the SOM in the way in which the neural network
topology is established. While in a SOM each neuron’s
neighborhood is fixed, in a GNG both the number of
neurons and their neighborhood change dynamically. This
produces networks capable of fitting any distribution of
the training data with great ease and accuracy. Yet, the
resulting mechanism is not biologically feasible and the
method requires setting a number of arbitrary parameters,
which makes its effective use difficult.

This paper proposes a form of hybrid of the standard
SOM and GNG networks. This is accomplished by taking

3806

the general structure of the SOM and adding properties of
the neural gas network. Specifically, the ability to insert
nodes/neurons where needed in the SOM. In Fritzke’s
neural gas network, the algorithm grows the network
every x cycles by inserting a new node between the two
nodes with the greatest error. The new algorithm
proposed in this work operates in a similar manner.
However, rather than adding a new neuron, it takes one
from the region of least error, where it is least needed.
This may have the effect of balancing the network and
potentially reducing the training time. Furthermore, the
proposed network adapts a less parameter dependent
model similar to the one created by Berglund [13],
although utilizing slightly different methods to achieve
the lack of parameters.

The next section presents Fritzke’s algorithm on which
the proposed algorithm is based. This is followed by
section three which presents the proposed hybrid
algorithm and compares it to Fritzke’s algorithm in detail.
Further comparisons to existing algorithms are presented
in section four, while section five presents testing results
for the proposed algorithm. The remaining sections
consist of a short discussion of future work and
conclusions.

II. BACKGROUND

Fritzke’s model differs from the standard neural gas
network largely because it grows itself. His algorithm
produced good results and served as a basis for the neural
gas algorithm proposed in this work. It was chosen due to
its ability to dynamically adjust itself and the relative

simplicity of its network structure. In general, the GNG is

a useful network type because it can easily depict
topological relations, and form separate clusters of data as
needed. Furthermore, insertion criterion can be arbitrarily
chosen, allowing for use with supervised learning
applications.

To make comparisons between the two methods easier,
Fritzke’s algorithm is described first. In his paper [2],
Fritzke described the growing neural gas method detailed
as follows:

Fritzke’s GNG Algorithm

1) Start with a set A of two units a and b at random
positions w, and w;, in R":

A={(a,b)}.

2) Generate an input signal & according to P(§) (the
probability density function of the training data).

3) Determine s; and s, (s;, s; € A), such that they
are the two nearest neighbors to &,

4) If it does not already exist, insert a connection
between s; and s,. Regardless, set the age of the
connection between the two to zero.

5) Determine the error delta for s; using:

AE, =[w, - &

6) Move s; and its direct topological neighbors
toward & by fractions €, and €,, with regard to
the total distance.

Aw, =g, (é‘ -w,)

Aw, =€, (E-w,)
7) Increment the age of all edges emanating from s,
8) Remove edges with age larger than a,,,. If this
results in units having no edges, remove them as
well.
9) If A signal generation iterations have occurred
execute this step:
a. Determine the unit ¢ with the maximum
error.
b. Place a new unit half way between ¢
and its nearest neighbor f.
c. Decrease the error of ¢ and f.

AEqvf = _aEqvf

d. Determine the error of r with:
E =05(E,+E,)

10) Decrease the error variable of all units:
AE, = —pE,

11) If the stopping criterion is not yet fulfilled
(number of iterations or some other performance

measure) return to step 2.

Such an algorithm produces a network of neurons
distributed over the field of training data, and has similar
properties to a SOM network. Namely, such a network
spreads its neurons over the areas that contain training
data which facilitates data clustering, labeling, and
classification tasks.

III. HYBRID SELF-ORGANIZING NN ALGORITHM

Fritzke’s algorithm was carefully examined and several
potentially undesirable features were noted. The
following algorithm was created as an attempt to address
the aforementioned undesirable features. The actual
changes to Fritzke’s approach and the reasons behind
them are discussed following the algorithm.

Proposed Hybrid Algorithm

1) Generate a randomly positioned & connected
network of neurons of size A, with m>=1
connections per neuron. Set all edge ages to 1.
Set all node usage values to 0. Usage indicators
keep track of when a node was last used.

2) Generate an input signal § according to P(€).

3) Determine s; and s; (s, s, € A) such that they are
the two nearest neighbors to &,

4) If it does not already exist, insert a connection
between s; and s,. Regardless, increment the age

2008 International Joint Conference on Neural Networks (IJCNN 2008) 3807

5)

6)

7)

8)

9)

10)

3808

of the connection between the two, and set the
usage indicator the current cycle. (If a new
connection the age is one.)

a. If one of s;’s connections is more than
twice the mean distance of the two
shortest connections to s; then remove
it.

b. If removing the long connection
orphaned it, relocate it by moving it to
the area with max error by executing
steps 11-15.

Compute the relative force acting on all
topological neighbors of s;, Nj;.

2

po V=

-4
The force is proportional to the weighted square
of a distance between the data point and
coordinates of the network neuron represented
by the weight vector.
Move the neighborhood N,; toward & by
adjusting their position as:

E-w,), where

Aw, = k (
' log ((mean (age (i))/2 + 1)
mean(age(i)) is the average of all edge ages

connected to 1.
Increase the total error for each node in the

neighborhood by AE, = F; "Ws. - f"z

For the neighborhood of s; Increment all edge
ages, and update node usage indicators to the
current cycle number, where usage indicator
refers to the cycle in which a node was lasted
updated.
Check all neurons’ usage indicators. If a
neuron’s indicator has not been updated for uy.x
cycles then relocate it using step 10.
Every A iterations of signal generation execute
the following steps.
a. Remove unit s; with the minimum error
and adjust the errors of its topological
neighbors by adding AE =E F,

where F; is the relative force for the
neighborhood.

b. Insert s near the neighborhood of the
unit with maximum error, sq

N, [
N Ei wi

. Connect sy 10 s,
V Ei

usingw, =
ieNr‘/
(for sy set usage indicator uy to current
cycle and age to 1)
c. Find pair wise distance between r,q, and
Ny and remove the longest edge.
d. Compute relative force F; where i is an
element of Ny and compute error

E,= FEE, /2, then adjust errors of

ieN;

the neighborhood by: AE, =— L F,

2 1
11) Repeat the cycle, or return to the previous
location
Discussion

The main differences between the two methods are:

1) The hybrid method uses a pre-generated network
of a fixed size. This adheres to biologically
observed development of the brain where
learning results in modification of existing
connections and pruning of connections over the
fixed size network of neurons. Fig. 6 illustrates
such reduction of connections taking place in the
proposed algorithm.

2) Connections get “stiffer” with age in the hybrid
method, making their weight harder to change.

3) Error is calculated after the node position
updates rather than before.

4) Weight adjustment and error distribution is based
on “Force” calculations.

5) Connections are removed only under the
following conditions (instead of all the time).

a. When a connection is added, and there
is another connection of length 2x
greater than the average connection
length for the node.

b. When a node is moved and the number
of connections on the moved node is >1
(after attaching to its destination node)
its longest connection is removed.

Although Fritzke’s algorithm works exceptionally well
and is computationally efficient, it has several features
that are not particularly supportive of biologically based
neuron learning. This includes the way the network is
grown by inserting neurons and the conditions for
breaking connections in the existing network.
Specifically, in Fritzke’s algorithm a neuron is removed if
all of its edges have an age larger than a predefined
maximum value (Fritzke-8). However, this happens when
a node is used with high frequency by being close to
many data points. We consider this unnatural, as
connections in biological neurons frequently get stronger
with use and only the neurons that are not used tend to
loose their connections and die (be moved).

In the proposed method edges with larger age are less
plastic, resisting a change of position (weight). The age of
an edge is always increasing when a neuron’s weight is
adjusted (Hybrid-8), while in Fritzke’s algorithm the age
value is reset to zero each time associated neurons are the
two nearest neighbors to a training data point (Fritzke-4).
Another non-natural feature in Fritzke’s algorithm is the
unlimited growth of neurons in the network (Fritzke-9b).

2008 International Joint Conference on Neural Networks (IJCNN 2008)

While the algorithm (and the corresponding network
growth) can be stopped if user specified criteria are
matched (for instance the maximum number of iterations
or the average error level), it is not always desirable to
halt the network growth and learning at the same time.

However, in a biological network, resources for
learning, expressed through the number of neurons, are
pre-specified. Therefore, it is more desirable to find an
algorithm that minimizes the average matching error by
adjusting the interconnection strengths of the given set of
neurons, rather than adding neurons every A cycles of the
algorithm. The proposed method implements this natural
approach within a given network of neurons.

In Fritzke’s method a new node is placed halfway
between a node with the maximum error and its nearest
neighbor (Fritzke-9d). This is done regardless of the
amount of error in the general neighborhood of the node
with maximum error. In particular, the nearest neighbor’s
error may not be significant so the reduction of its error
value, as is done in Fritzke’s method, would not be very
useful. Other neighbors with a more significant error
would benefit more from such reduction. Thus, in the
proposed method the neuron being moved is placed in a
location determined by a weighted average of the
neighborhood’s neurons and weights are determined by
the amount of error in the neighboring neurons (Hybrid-
10).

Finally, another aspect of the Fritzke’s method that was
not found to be particularly appealing is the number of
parameters that need to be predefined, and somewhat
arbitrary decisions that are made about the amount of
error reduction. More specifically, the weight adjustment
in the nearest neighbor is proportional to g, (Fritzke-6)
with weights of its neighbors adjusted in proportion to €,;
both of which are arbitrary. In the proposed method,
weight adjustment in the neighborhood with the largest
error is computed in proportion to the relative force acting
on each node (Hybrid-5) and in inverse proportion to the
age of the edges connecting the node being adjusted
within the neighborhood (Hybrid-6). This weight
adjustment seems to be naturally linked to “forces” that
act on each neuron in the proposed algorithm, where the
relative force is greater whenever the distance to the
neighbor is smaller. In addition, the larger is the age of an
edge, the smaller is its weight adjustment. Such a natural
dependence on the number of times that a given edge was
adjusted (reflected by its age) is in direct correspondence
to edge stiffening in biological neurons that characterize
mature (trained) connections. Mature biological links are
less likely to change. This is in a striking contrast to
Fritzke’s algorithm where the “old” edges are removed
first.

Similar arbitrarily set parameters are used in Fritzke’s
algorithm to adjust the amount of error in the two neurons
closest to a data point (o) and amount of error in the
inserted neuron (Fritzke-9). In the proposed method, error

in the inserted node is computed based on the weighted
average of the errors in the neighborhood and the amount
of error in this node equals to the sum of the reduction in
error in the nodes of the associated neighborhood
(Hybrid-10d). In addition, Fritzke wuses automatic
reduction of errors in all nodes in proportion to yet
another arbitrary factor B (Fritzke-10). No such reduction
is used in the proposed method.

As previously mentioned the ability of the Hybrid
algorithm to move neurons from one location to another,
as needed, is a significant factor in its ability to adjust
itself. This feature was taken from the GNG algorithm
and adjusted to work in a non-growing network. For
example, consider a network of 50 nodes. According to
the hybrid algorithm, a network of 50 nodes will be
examined every 50 iterations to find the nodes with the
most and the least amount of accumulated error. To help
illustrate this function of the algorithm, we ran the
algorithm with 50 nodes and data structure as described in
section 5. After the first 50 iterations the maximum error
was 1.4481 for node 9 and 0 for node 6. The error of zero
at this point reflects how young the network is (at the
beginning of the training cycle). Node 6 has likely not
been used yet. Normally, node 6 would have its error
distributed to its neighbors, however, since it has no error
it is moved into position around node 9 according to the
error distribution of the node 9 and its neighborhood
(Hybrid-10b). Next, node 9 takes on a portion of the error
of each node in node 9’s neighbor hood to reduce the
error of the region (Hybrid-10d). Finally, node 6’s old
neighborhood connections are removed and it received a
single connection to node 9. Node 6 will gain additional
neighborhood connections later, as needed. This final step
completes the moving process and the algorithm resumes
its normal adjustment iterations.

IV. COMPARISON VS. OTHER KOHONEN BASED
NETWORKS

So far the proposed algorithm has only been considered
in comparison to Fritke’s GNG algorithm. However, to
properly grasp its significance, it is necessary to compare
this algorithm to other variants of the Self-Organizing
Map. The following sections present a brief discussion of
the pros and cons of various SOM based networks vs. this
work.

A. Traditional SOM

The traditional SOM as produced by Kohonen [14]
lacks all the modifications presented in the proposed
algorithm as well as a multitude of others that have been
derived from it. However, it retains one primary
advantage, its overall simplicity. The standard SOM is
simply a network of nodes that have multidimensional
shared inputs whose weights are adjusted based on
neighborhood proximity. In other words, nodes are
chosen by proximity to an input vector and the

2008 International Joint Conference on Neural Networks (IJCNN 2008) 3809

“neighborhood” surrounding said node is updated
according to the algorithm used. In the traditional SOM,
the neighborhood is usually defined by a function
(possibly Gaussian). Weight adjustment within the
neighborhood is handled by a time decreasing constant.
There are several disadvantages of the traditional SOM
which the proposed algorithm and numerous other
variants of the SOM attempt to address. Specifically,
nodes within the traditional SOM are incapable of moving
outside the predefined lattice; the lattice is static and
cannot create or remove connections. In addition, it is
necessary to define parameters for the algorithm to
operate. Furthermore, many SOM algorithms are also
divided into train/test operations, often requiring a
significant number of iterations to train the algorithm
before evaluating the results. However, algorithms such
as the proposed algorithm and Fritzke’s GNG algorithm
do not have this issue. Training occurs continuously, even
during the testing phase.

B. Parameter-less SOM (PLSOM)

The parameter-less SOM is a variant on the standard
SOM that eliminates several of the traditional parameters,
specifically the ones associated with adjustments to
weight and error. One example of the PLSOM is the work
by Berglund [12]. Like the model presented in this paper,
the only actual parameter used was the one associated
with the network size. According to Berglund, the
PLSOM'’s main advantage over the traditional SOM is its
greater convergence rate. Tests within his paper show that
Berglund’s implementation of the PLSOM outperforms a
Matlab implementation of the SOM in both adaptation
time and accuracy. While the proposed algorithm and the
PLSOM both share a predefined network size and a lack
of weight and error parameters, there are also significant
differences between the two. One such difference is that
the Hybrid method actually picks up and moves nodes
from one region to another; something that can have a
major effect on the convergence of the network. Other
differences are in the form of the error calculation and
how neighborhoods are treated. The PLSOM treats
neighborhoods in the standard SOM way, that is, using a
neighborhood function to determine how nodes are
updated about an input point. This is in contrast to both
the Hybrid and Fritzke’s methods which determine the
neighborhood by generating connections between the two
nearest neighbors to an input point. Thus, to move a
neighborhood, the node closest to the input is selected and
its neighbors are adjusted accordingly. In the case of the
proposed hybrid algorithm the adjustment is based on a
force function related to the neighborhoods’ neurons
distance from the input data.

C. Neural Gas

The neural gas algorithm is similar to the standard
SOM, however, it lacks the rigid neighborhood
connectivity present in the SOM. It was introduced by

Matrinetz and Schulten [1], and differs from the SOM in
that it lacks specific neighborhood connections altogether
and computes neighbors on the fly in a method similar to
the neighborhood function used by the traditional SOM.
The neural gas network is named as such because of the
gaseous way it expands to cover regions. Neural Gas
(NG) algorithms have an advantage over the traditional
SOM in that they can form clusters of nodes. Suppose that
instead of a single rectangular region that is used in most
SOM examples, one takes two regions separated by a
space. The neural gas based algorithms are able to handle
this type of problem with no difficulty; they simply divide
into separate clusters. However, both the SOM and
PLSOM algorithms have no mechanism for separating
their grid space, meaning that edges and sometimes nodes
exist in the “no-mans” land between valid input space
regions. The proposed hybrid algorithm and the NG do
not suffer from such a problem.

D. Growing Neural Gas

The Growing Neural Gas algorithm is based on the
Neural Gas algorithm and differs in that nodes are added
every A input cycles rather than starting with a predefined
number of randomly placed nodes,. Most of the work on
GNG networks can be attributed to Fritzke [2,3,4]. The
pros and cons of the GNG algorithm have already been
discussed with regards to Fritzke’s algorithm in Section 3.
There also exist some similar algorithms, as in Lang and
Warrick’s work [15], which presented a Plastic SOM
algorithm based on Fritzke’s GNG algorithm. The main
thrust of this algorithm was that it retains it’s plasticity
indefinitely and does not allow aging to affect network
adjustment. It also tries to recognize different data sources
and provide separate neuron clusters. Another example of
work using the GNG algorithm as a basis was produced
by Qin and Suganthan [16]. They created a robust
algorithm based on the GNG but implemented several
improvements, including an outlier resistant scheme,
adaptive modulation of learning rates, and a cluster
repulsion method.

V. ALGORITHM TESTING RESULTS

To analyze the performance of the proposed algorithm
we tested against the performance of Fritzke’s algorithm.
Additionally, some of the traits of the proposed algorithm
are examined in this section. The network organization is
its most importance facet. It is important that the proposed
algorithm perform as well as Fritzke’s algorithm. We also
tested the hybrid algorithm with several different initial
connectivity settings and network sizes. In the following
paragraphs both the minimum and maximum initial
connectivities tested are also examined.

Figure 1 shows the organization that results from
running Fritzke’s algorithm for 40,000 iterations with the
following constants: &=0.05, &=0.0006 , @,,=88,
A=200, o=.5, B=0.0005. Figure 2 shows the initial

3810 2008 International Joint Conference on Neural Networks (IJCNN 2008)

structure of the hybrid model before training with 1 preset
connection. Figures 3-4 show the connectivity networks
resulting from running the algorithm for 40,000 iterations
with 1 and 16 preset connections. Figures 5-6 give an idea
of how the connectivity evolves between the nodes as the
number of iterations progresses for the same set of preset
connection numbers. As can be seen from the two figures,
the neighborhood connectivity will eventually reach
equilibrium at around 1,600 connections for the given
conditions. A surprising property of the proposed
algorithm is that the connectivity equilibrium (1,600 total
connections for the presented example) is largely
independent of the initial network connectivity. The
equilibrium is largely dependant on the size of the
network and the maximum connection age parameter of
the network. In the instances shown, the connectivity
approaches 8 connections per node.

Fig. 1. Connectivity network from running Fritzke’s growing neural gas
algorithm

Fig. 2. Initial connectivity for untrained network with 1 random preset
connection.

Network from 1 Present Connection

Fig. 3. Connectivity network resulting from 1 preset connection between
nodes.

Network fram 16 Present Connections

Fig. 4. Connectivity network resulting from 16 preset connections
between nodes.

Ore Present Connection
1e00 T T T T T T T

1400

200

1000

800

Total Connections

600

400

200 L | L L L 1 L
[t} 05 1 15 2 25 3 35 4

Interations +

Fig. 5. The number of connections resulting from 1 preset connection
between nodes.

2008 International Joint Conference on Neural Networks (IJCNN 2008) 3811

Sixteen Present Connections
3400 T T T T T T T

3200

3000

2600

i)
@
=1
=]

2400

Total Connections

2200

2000

1600

1600

1400
a

Interations +
#10

Fig. 6. The number of connections resulting from 16 preset connections
between nodes.

Figure 7 presents another comparison of both Fritzke’s
and the Hybrid algorithm in a 2-D input space. It also
includes a comparison with the standard SOM network.
The Fritzke and Hybrid networks in Figure 7 use the same
settings as in the earlier example, while the SOM network
is the same size as the other two and ran on the same data
for 25 epochs with the rest of its settings being the default
for Matlab. Figures 1 and 3 and the comparison between
the Fritzke and Hybrid networks in Figure 7 are
sufficiently alike that we can say that the proposed Hybrid
algorithm can create results of equivalent quality to
Fritzke’s algorithm. On the downside, however, the
proposed algorithm is slower as a result of the greater
number of computations needed to handle the
parameterless calculations and because Fritzke’s
algorithm has significantly fewer nodes to account for, for
a large portion of its run-time. Both algorithms, however,
do a better job at covering the input region and do it faster
than the basic SOM algorithm, even disregarding the
nodes bridging the gaps.

VI. FURTHER WORK

Attempts are currently being made to adapt a form of
the algorithm presented in this paper to a hierarchical
network capable of feature extraction and shape
recognition. It is believed that some of the features used
in the proposed algorithm such as the GNG based node
insertion, use of neighborhoods, force based weight and
error adjustment, and other biologically plausible features
could prove useful. Some optimization is needed, since it
is believed that using cell array structures (Matlab data
structure) is not as efficient as using regular matrices,
despite making it easier to keep track of individual nodes.
The eventual goal is to have a hierarchal network
structured in an upside down pyramid structure, meaning
subsequent layers have upwards of twice the number of
nodes as those below them. Individual nodes will not have
global input connectivity,

S0M Network

Fig. 7. 2-D comparison of SOM, Fritzke’s GNG, and the Hybrid
algorithm.

but rather local input connections based on the input data
correlation.

VII. CONCLUSIONS

In the course of this work, Fritzke’s growing neural gas
algorithm was examined and altered into what is believed
to be a more biologically plausible design. The changes
make the new hybrid algorithm more similar to a standard
self-organizing map algorithm rather than a neural gas
algorithm. However, the presence of moving nodes allows
for behavior very similar of that shown by Fritke’s
algorithm as can be seen from Figures 1, 3, and 4. The
hybrid algorithm retains most of the advantages of the
GNG while adapting a reduced number of parameters and
more biologically plausible design. To be specific, it
retains the ability to place nodes where needed, as does
the GNG algorithm, without actually having to introduce
new nodes. Also, by removing the weight and error
adjusting parameters, the guesswork, required to
determine the parameters in the first place, is eliminated.
However, additional work is required to accurately
characterize the proposed algorithm in comparison to the
other algorithm types and variations mentioned herein.
While the hybrid algorithm performs admirably in terms
of the quality of results when compared to Fritzke’s
algorithm, it is slower and an actual quantifiable
comparison has yet to be performed.

REFERENCES

[1] T. M. Matrinetz and K.J. Schulten, “A ‘neural-gas’ network learns
topologies,” in T. Kohonen, K. Mékisara, O. Simula, and J. Kangas
editors, Artificial Neural Networks, North-Holland, Amsterdam,
1991, pp. 397-402.

3812 2008 International Joint Conference on Neural Networks (IJCNN 2008)

[2] B. Fritzke, “A Growing Neural Gas Network Learns Topologies,”
Advances in Neural Information Processing Systems 7, G. Tesauro,
D.S. Toretzky, and T.K. Leen, (eds.), MIT Press, Cambridge MA,
1995..

[3] B. Fritzke, “Unsupervised ontogenetic networks”, Handbook of
Neural Computation, C2.4, IOP Publishing Ltd, 1997.

[4] T. Kohonen, "The Self-Organizing map", Proc. of IEEE, 78:1464-
1480, 1990.

[5] M.A. Montes de Oca, L. Garrido, and J.L. Aguirre, “An
hybridization of an ant-based clustering algorithm with growing
neural gas networks for classification tasks,” in Proc. of 2005
ACM Symposium on Applied Computing, Sante Fe, New Mexico,
13-17 March 2005, pp. 9-13.

[6] J.G. Rodriguez, A. Angelopoulou, and A. Psarrou, “Growing Neural
Gas (GNG): A Soft Competitive Learning Method for 2D Hand
Modeling,” IEICE Trans. INF. & SYST., Vol. E§89-D(7), 2000, pp.
2124-2131.

[7] G. Cheng and A. Zell, “Double Growing Neural Gas for Disease
Diagnosis,” in Proc. of the Artificial Neural Networks in Medicine
and Biology Conference (ANNIMAB-1), Goteborg, Sweden, 13-
16 May 2000, Vol. 5, pp. 309-314.

[8] S. Rovetta and R. Zunino, “Efficient Training of Neural Gas Vector
Quantizers with Analog Circuit Implementation,” IEEE Trans. on
Circuits and Systems-II: Analog and Digital Signal Processing,
Vol. 46(6), 1999, pp. 688-698.

[9] C. Rehtanz and C. Leder, “Stability Assessment of Electric Power
Systems using Growing Neural Gas and Self-Organizing Maps,” in
Proc of European Symposium on Artificial Neural Networks,
Bruges, Belgium, 26-28 April 2000, pp. 401-406.

[10] A.S. Atukorale and P. N. Suganthan, “Hierarchical overlapped
Neural-Gas network with application to pattern classification”,
Neurocomputing, November 2000.

[11] D. Heinke and F. H. Hamker, “Comparing Neural Networks: A
Benchmark on Growing Neural Gas, Growing Cell Structures, and
Fuzzy ARTMAP,” IEEE Trans. On Neural Networks, Vol. 9(6),
1998, pp. 1279-1291.

[12] B. Fritzke, “Automatic construction of radial basis function
networks with the growing neural gas model and its relevance for
fuzzy logic,” in Proc. of the 1996 ACM symposium on Applied
Computing table of contents Philadelphia, Pennsylvania, 1996, pp.
624 —627.

[13] E. Berglund and J. Sitte, “The Parameter-Less Self-Organizing
Map algorithm,” ITEE Trans. On Neural Networks, vol. 17, no. 2,
pp. 305-316, March 2006.

[14] T. Kohonen, Self-Organization and Associative Memory, ser.
Springer Series in Information Sciences. Berlin Heidelberg:
Springer, 1984, vol. 8, 3" ed. 1989.

[15] R. Lang and K. Warwick, “The plastic self organizing map,” in
Proc. Of the 2002 Int. Joint Conf. on Neural Networks, vol. 1,
2002, pp. 727-732.

[16] A. K. Qin and P. N. Suganthan, “Robust growing neural gas
algorithm with application in cluster analysis”, Neural Networks,
Vol. 17, No. 8-9, 2004, pp. 1135-1148.

2008 International Joint Conference on Neural Networks (IJCNN 2008)

3813

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

