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Abstract

In this paper the problem of fault diagnosis is
approached from a topological point of view using
the two graph representation of networks (the
current graph and the voltage graph). A necessary
and almost sufficient condition to diagnose mul-
tiple faults in active networks 1s derived. In
this condition the concept of a common tree is
rigorously employed to extend the validity and
usefullness of topological fault analysis for
active networks. Based on this condition, which
depends only on the graph of the network and not
on the element values, the choice of measurement
nodes can be substantially simplified.

1. INTRODUCTION

Topological analysis has provided a useful insight
to the problem of analog fault diagnosis [1-4].
The topology of the network reveals the connec-
tions between different elements aiding the
dlagnosability and fault location.

One possible approach to network diagnosis is
first to assume the fault has occured in a part of
the network and then check whether the assumption
is correct by examining the consistency of certain
linear equations which are invariant on faulty
elements. This assume and check method was origi-
nally formulated by Biernacki et al. [l]. 1t was
further extended to formulate topological con-
ditions to determine faults in a linear circuit.
In [2] Starzyk and Bandler showed a necessary
topological condition for the assume and check
method with the aid of Coates flow graph represen-—
tation of a network. Huang et al. (3] introduced
the concept of f-node fault testability and they
derived necessary and almost sufficient conditions
for diagnosability of passive networks.

The main contribution of this paper is to show
that a necessary and almost sufficient topological
condition for the assume and check method is valid
for passive as well as active networks.

This condition 1s derived on the basis of the two
graph representation of active networks, namely,
the current graph and the voltage graph. An impor-
tant feature of this topological condition is that
it depends only on the graph representation of the
network and not on the element values, which makes
it adequate for the diagnosability of analog net-

works where elements always deviate from their
nominal values. It appears that the existence of a
common tree is crucial to extend the validity of
topological analysis to active networks. The paper
is organized as follows. 1In Section II the
algebraic conditions for fault diagnosis are
briefly discussed [2-3]}. 1In Section 1III the
proposed topological condition is presented and
justified. In Section IV an example is given in
which the topological condition 1is wused to
determine diagnosability. The effect of this
condition on the proper choice of measurement
nodes is also investigated.

II. ALGEBRAIC CONDITIONS FOR FAULT DIAGNOSIS

Assume that a network S has nt+tl nodes m of them
accessible for excitation and measurement with f
faulty nodes where f<m .

Starting from the nodal equations of the network S
we can formulate an overdetermined system of
equations. The consistency of this system of
equations is a necessary condition to extract the
faulty nodes [2-3].

The nodal equations for the nominal values of the
elements have the form

Yy, 8

where Y is the nodal admittance matrix, Vn is the

vector of nodal voltages with respect to a
selected reference node g, In is the vector of

nodal currents,

If S 1is perturbed to (S+AS) with the same
excitations we obtain

(e B0, + g = 1 @

Subtracting (1) from (2) yields

Y oV = - AY V' = Al (3)
- ~N ~ 143 n

where Yn'= Yn+AYn is the vector of nodal voltages
and A}n represents changes 1in nodal currents
caused by faulty elements. Defining node i as
faulty if and only if the ith component of A}n is
nonzero and assuming that only f elements are
faulty we can write (3) as
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where AIf is the nonzero part of AI « For f<m

equatlon (5) represents an overdetermined system
of equations. A necessary condition for isolating
the faulty nodes is the consistency of this system
of equations.

Any f faulty nodes can be uniquely located if the
following rank test, known as the f-node fault
testability condition is satisfied [3],

Rank Z = f+l (6)
-mq

for all possible q, where q refers to (f+l)
columns of Zmn. However, the above condition is

too strong if we are interested in a certain set
of faults F.

Considering a specific candidates for faulty nodes
F, the following condition can be used [2],

Rank Z_ = f+] "N
~X

where, in this case, x = card X refers to (f+l)
columns of Z ., X =FU {y}, yeN-F and N is the
set of all nodes excluding the reference node.
This condition is equivalent to the existence of
a square nonsingular submatrix of Z _ of order

~MnX
(f+1).
I1I. TOPOLOGICAL CONDITION

In this section we show that the condition stated
in (7) can be transformed to a condition which
depends only on the graph of the network and
not on the element values.

Let S ={sl,sz,...,s } be a set of integer numbers
and let K, be an u element subset of Sps iee.,
K, {k1’k2’---:k } By K we understand the
complement of K, in S_. Let h be mxn matrix with
m < n, H(Ku,Jr) be the submatrix of h consisting

of the rows and columns corresponding to the inte-
gers in the set K, € S and J. € s, respec-

tively., In particular, by @(Ku,-) we understand
M(K,,S,) and by M(.,J.) we understand M(S;,J.).

Lemma [2]

Let Z(E,X) be a square submatrix of the matrix
Z(M,X), then
det Z(E,X) # 0<=> det Y(X,E) # 0 (8a)

where \"=Z_l and M is the set of measurement nodes.

We will now investigate the topological implica-
tions of the above lemma. A topological criterion
for the detY(X E) to be nonzero will be presented.

Let G be a graph and V = {vl,vz,...,vf} a subset
of the set of its vertices. Denote ¢t(V) to be
f-tree of G such that the vertices of V belong
to different connectivity components. T(V) is the
set of all possible f-trees t{(V). G(V) is the
graph obtained from G by the identification of all
the vertices of V (i.e., by shorting these ver -
tices to the reference node).

Theorem

A necessary _and almost sufficient condition for
the matrix Y(X,E) to be nonsingular is

(X U {g})N T(E U {g}) # ¢ (8b)

where g is the reference node,
Proof

Necessity: The nodal admittance matrix of the
network can be written as

Y- ATy Ay 2

where A; 1is the incidence matrix of the current
graph G; of the network, Av is the incidence

matrix of the voltage graph G, of the network and
Yb is the diagonal branch admittance matrix.

Accordingly we may write
—_— — T, —
Y(X,E) = A;(X,.) Yy AL LE) (10)

Removing rows from the 1incidence matrix of the
graph 1is equivalent to short circuiting the
corresponding nodes to the reference node [5].
Hence, A (X,.) is the incidence matrix of the

current graph Gi = G;(X U {g]) and Av(Ex.) is the

incidence matrix of the voltage graph_ Gv,
Gy(E U {g}). Consequently we denote Ai(X,.)— Ai

and QV(EZ. év

Using Binet-Cauchy theorem [6] the det Y(i;i) can
be expanded as follows

det Y(X,E) =

L det A;(. K1) det YL (K ,K.) det AE(KI.,.) 1)
i ~ - -
T

where r is the rank of Gi(cv)'

Since det Yb(Kr,Kr)to we conclude that det Y(X E)
is nonzero only if det Ai(-,Kr)*O and det Av(Kr"

#0 for a certain K,.. Furthermore, if K, represents
a tree of G; then det A (.,K ) 1is nonzero [5]. The

same 1s true for det A (Kr,.) in G
det Y(XNE) is nonzero if and only if the set of

branches Ke represents a common tree of both the
current graph Gi and the voltage graph Gye In

other words det Ai(.,K ) # 0 1if and only if K,
represents (f+2)-tree t(X Y {g}) in the current
graph G; and similarly det Av(Kr,.)¢ 0 if and only
if Ky represents (f+2)-tree t(E U {g}) in G,.

Therefore

Hence Y(X,E) is nonsingular only if there exists a



common (f+2)-tree of both the current and the
voltage graphs with nodes X U {g}(E U {g}) in dif-
ferent connectivity components of G,(G_ ) respec-
tively. v
Sufficiency : The sufficiency follows from the
important fact that the edges of the two graph
representation of the network (the current graph
and the_ voltage graph) have unique weights [6].
det Y(X,E) 1is a polynomial of edge weights and we
will show that if the specified common tree exists
then this determinant is not zero and we do not
have a symbolical cancellation.

We will_ show that the polynomial representing
det Y(X,E) 1is not zero for a particular set of
edge weights, therefore on the basis of [7], it
is not zero for almost all edge weights. The
polynomial representing det Y(X,E) can be writ-—

ten as

Po=y, Pl + summation of other terms
1 which do not include vy (12)
1

where we factor out the weight i) of a selected
edge eil and P} 1is the polynomial obtained after
this factorization. From (11) and the existance of
a common tree at least one term will appear on the

right hand side of (12). Now Pl can also be writ-
ten as

P P, + summation of other terms

1 - Y
2 which do not include y, —or y; (13)

1 2
is the weight of a second selected
is the polynomial obtained after
We will now turn our

where Yip

edge and )
factoring out iy and Yiy
attention to Py which can be written as

P P3 + summation of other terms which

=y
2 i3
14
do not include yil, in or yi3 (14)

Continuing this way we finally obtain

+ summation of other terms which

P =y
n-1 i
n do not include yi]’ yiz,...,yin

(15)
Since Yig is not zero therefore P,_; can be made
not zero by proper selection of Yi, and similarly
we can select Yiny such that P, _, 1s not zero.

Continuing backwards we can get P| mnot zero and
select yil which makes the polynomial P not zero.
Accordingly det Y(X,E) # O for the selected values
of edge weights Yigs Yigs +ees Vi, and on the
basis of [7] it follows that the determinant is
not zero for almost all edge weights.

IV. EXAMPLE

Consider the active network with two voltage
controlled current sources shown in Fig. 1.

The topological condition given in the Theorem can
be used to decide upon a number and a location of
measurement nodes to identify faulty nodes. The
current and voltage graphs of the network are
shown in Fig. 2. Let the measurement nodes be 1
and 2, thus we have the set E = {1,2}. The nodal
admittance matrix of the netwark 1s given by

Yity, 0 ~Y 0

‘- 0 Y, e -y, g,
- ¥,78, -y, v,ty,tey 0
£ 0 &) Ys

The graph G, = G,(E U {5}) is obtained from G by
shorting the nodes 1 and 2 to the reference node
(i.e., node 5).

Assume that node 3 1is the faulty node, i.e.,
F={3}, thus y € N-F = {1,2,4}. 1f there exists a
common tree of both G (E U {4}1) and Gi(x U {5})
where X= F U {y}, then Y(X,E) is nonsingular and
therefore we can uniquely identify node 3 as
faulty. In other words we are looking for a com
mon 3-tree t(X U {5}) in G; and t(E U {5})in G.

Consider X={3,4}. As we can see from Fig. 3,
y28p is a common tree of both G (X U {5}) and
GV(E U {5}),i.e., y,8, represents a common 3-tree
of both Gy and G,. This can be verified by exa-
mining the determinant of the matrix Y(K,E) which
in this case is as follows
S Yy 0

Y(X,E) =

_y4 gz

The other two possibilities of the set X required
to check node 3 as faulty are shown in Fig. 4 and
Fig. 5. In Fig. 4 1t is easy to see that yo¥s is
a common tree, f.e., yp¥; 1s a common 3-tree of
both Gy and Gv‘ The corresponding nonsingular

matrix Y(X,E) is given by

- -y v

¥(E) = 2
i 8 Vs

Finally from Fig. 5 we find that y,¥5 and g;g, are

common 3-trees of both Gy and G, where the

v
corresponding nonsingular matrix Y(X,E) is

- — -y, g
Y(X,E) = 4 2

! Y5
In both cases graph G, is as shown in Fig.3b).

Hence the topological condition stated in the
Theorem 1is satisfied and we conclude that the
faulty node 3 can be uniquely located provided
that 1 and 2 are the measurement nodes.

As another example consider the same network with
E = {1,4} as the set of measurement nodes, and
node 2 as the faulty node, i.e., F = {2}. We will
investigate the existance of a common tree of both
Gi(E U {5]) and G (XU {5]) where X = F U {y},
y € N-F= {1,3,4}.

Consider the case X = {2,3} shown in Fig. 6. It is
clear that_there is no such a common tree, so the
matrix Y(X,E) has to be singular. This can be
checked by inspecting the matrix Y(X,E) which in
this case is given by



Y(X,E) =

Hence, we conclude that it is not possible to
identify node 2 as faulty with the wmeasurements
chosen at nodes 1 and 4.

V. CONCLUSIONS

A necessary and almost sufficient topological con-
dition for diagnosability in analog circuits has
been fully presented and justified. The represen-—
tation of the network through a pair of graphs
(the current graph and the voltage graph) together
with the concept of a common tree constitute the
theoritical basis of the proposed condition.

A unique feature of this topological condition is
that 1t is applicable to passive as well as
active networks. This represents a significant
advantage over other topological conditions pre-
sented in [2-3]. The implications on the choice
of measurement nodes is illustrated through an
example.
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Fig. 2 The current and the voltage graphs.
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Fig. 3 The current and the voltage graphs.
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Fig. 6 The current and the voltage graphs.



