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1. Introduction

: VLSI fabrication of large analog or integrated analog and
-digital circuits has become both cost effective and practical.
, Artificial neural networks built using VLSI technology (1] push
testing requirements of large scale analog circuits beyond the
limits of existing methods. As the complexity of analog
integrated circuits increases, the need for automatic tests of
these circuits becomes a critical requirement in circuit
fabrication and maintenance. In complex systems it is not only
more difficult to access different subsystems for functional
testing, but also more difficult to analyze the test results since
the computations increase with the cube of the number of
network elements. Testing is also an cconomic issue as test
costs become the major expense in circuit fabrication. Thus
the major objective for automatic testing of large scale, analog
circuits is to perform reliable tests with minimum test cost and
computational effort.

Testing of analog and mixed (analog and digital) networks is a
challenging and difficult task L[‘.). In spite of excellent
theoretical and practical methods developed over the years
(3]-(5], analog testing lags behind digital testing in both the
size and complexity of circuits that can be practically
diagnosed. This limitation is closely tied to similar limitations
of analog circuit simulators QG] On the other hand,
sensitivities, which play a key role in circuit testing, can be
evaluated at a minimum cost if they are calculated together
with the solution vector (7]. So, if the circuit simulation can
be performed more efficiently, then the sensitivity evaluation
and fault diagnosis will be greatly facilitated.

This paper presents a new approach to analog and mixed mode
testing based on a decomposition technique. Voltage
measurements placed at the partition points are used to reduce
the effect of a faulty clement to a local area, thus facilitating
the test. Limiting the effect of a fault to a local area allows the
separation of digital and analog parts as their analyses do not
have to be performed simultancously. In the proposed testing
technique measurements play an active role not only on the
assessment of circuit functionality but on the circuit simulation
as well. This active role of voltage measurements changes the
way we simulate the circuit and improves the speed and
accuracy of the diagnosis process.

Any practical testing method must consider finite accuracy of
computer simulation as well as effects of measurement errors
on the validity of the results obtained. Therefore, to estimate
element testability we use numerical rank evaluation of the
test matrix based on the singular value decomposition [8]. The
QR factorization approach (9] is used to select the best set of
test points. In time domain testing, the test points are test
nodes, sampling time points, DC excitation levels, and Lypes of
input waveforms. The test point selection minimizes prediction
standard deviations or estimation errors resulting from random
measurement errors.

In order to derive the basis for the decomposition approach and
to compare it with the existing methods, we briefly describe
the sensitivity approach. The sensitivity approach is the most
popular testing method to this day. It can handie a broad
category of circuits and testing situations. But it shows serious
drawbacks when it is applied to large circuits: 1) it needs large
computation time and memory space, 2) it is sensitive to errors
caused by the circuit model, numerical methods, and
measurements, 3) it cannot be directly applied to the mixed
mode circuits. We introduce the decomposition approach to
eliminate these drawbacks.

coH e

In this paper, we present the description of our method for the
time domain testing. The method can be extended for the
measurements of iarmonic components of the periodic
response.  We start discussion on the nonlinear system
equations and sensitivity approach, then introduce the
decomposition approach. The test procedure of the proposed
approach is given.

2. Nonlinear System Equations

Consider a nonlinear circuit described by the set of algebraic
differential equations in implicit form:

flx,x,p,t) =0, )
where
f is the vector of circuit functions,
x is the vector of circuit variables,

x is the vector of time derivatives of x,
p is the vector of circuit parameters, and
t is time.

It is assumed that at t=0, the initial conditions are consistent
and (1) has a unique solution. The system equations (1) can be
obtained using any general formulation technique such as the
modified nodal formulation, sparse tableau or hybrid
descriptions.

The time interval (0,7) is divided using discrete time points
(0"'1"2"“"7')' At each time point, the solution of (1) is first

determined by a nonlinear solver. Then the sensitivity of (1)
w.r.t. all parameters can be obtained simultaneously with the
solution vector, by solving a linear equation.

System solution

At a certain time point tj' (1) becomes a nonlinear algebraic
equation

jv p) =0 * (2)

In order to solve (2) by the Newton-Raphson method or other
iterative techniques, the Jacobian matrix M). is evaluated by
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Using the backward diffcrentiation formula (BDF), we can
formulate
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From (4) we get
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and the Jacobian matrix (3) becomes
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Derivatives df/0x. and of/dx. are calculated using current
values of the solution vector x. Since these values change from
iteration to iteration, therefore the Jacobian matrix M, has to

be evaluated and factorized at cach iteration. The nonlinear
iterations are solved using
M. Ax, = -1, 9
e R I )
where
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If the iterations (9) are performed using the nominal parameter
values po, then a nominal solution vector x0 is obtained.

Sensitivity Approach

In our analysis, we assume that the system parameters p are
close to their nominal values. The purpose of the fault

diagnosis is to find deviations Ap = p - pO, which characterize
changes in the clement cquations. Linear elements are
described through their admittances; therefore only one para-
meter is required to identify cach lincar element. Nonlinear
elements have their characteristics described through several
parameters p; (eg ib=p00xp(p1vb)+p2), so one nonlinear

element may require identification of more than one value in
order to determine its characteristics.

To obtain the sensitivity of the original system (SQ) w.r.t.
parameter p, differentiate both sides of (2} which yields
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System of linear equations (15) has the form:
MJ Sj = - Bj (16)
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After the sensitivity matrix S at all time points (tl, toy weny tj'

...,7) i8 formulated, the element deviations Ap can be obtained
by solving the test equations

SAp=Av (17)

where Av are the deviations of the measured responses from
the nominal response.
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It is clear from the above analysis that the sensitivities can be
obtained by solving a linear equation 315) after the solution of
the original system has been obtained. Therefore, solution of
the original system is the most time consuming step and is also
the most inaccurate step in sensitivity evaluation. Inaccuracy
of the system model, approximations of nonlincar integration,
and solution of nonlinear algebraic equations introduce errors
to the sensitivity analysis. In the next section a decomposition
approach is described which significantly reduces these
deficiencies. As a result, analog testing strategies can be
developed and implemented for networks many times larger
than those which can be handled by existing methods.

3. Decomposition Approach

It is well known that decomposition approaches to network
analysis are very effective in reducing the amount of
computation when the size of the analyzed network becomes
large. The decomposition approach proposed in [10] for fault
location in large-scale networks is using the fault verification
technique. In this case it is assumed that the faulty elements
are located within a small part of the network and the
remaining part is fault—free. Decomposition of a network into
1s_m:]aller subnetworks facilitate testing by localizing the effect of
aults.

In this paper, we apply the decomposition approach to solve
fault identification and element evaluation problems. We seck
savings both in evaluation of the solution vector x and the
vector of parameter deviations Ap. Our goal is realized in two
steps: network analysis and network testing.

Network Analysis

Let N be the network under test. The nodal decomposition
decomposes the network N into k subnetworks by
hypothetically breaking the connections (not actually cutting
conpecting wires) at accessible nodes (see Fig. 1). There must
be no mutual coupling between any two subnetworks. We
assume that all decomposition nodes can be accessed for
measurements. The measured nodes are the external nodeg
denoted by m) and the remaining nodes are internal nodeg
denoted by i).

After the voltage measurements have been taken at the

external nodes of each subnetwork, the external variables x™
have known values. In this case, the deviation of measured
voltages Ax™ are zero

AxT =0 (18)

and since the measured voltages do not vary with the assumed
or computed parameter values, sensitivities of the external
variables to the parameters are zero,

m=3fm=

8 0. (19)

Therefore,.the system solution vector x' and the sensitivities s'
can be easily computed. When the circuit is decomposed into a

number of small subnetworks, all computations for x' and §'

can be implemented in parallel within each subnetwork.
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Fig. 1. Subnetwork of N,



Internal System Solutions

The deviations of circuit variables only contain the internal
part

Ax = = R (20)

so only internal system equations f are used for solving

internal variables Ax'. As a result we can simplify (9),
eliminating rows and columns of M, which correspond to the

measured  circuit variables and ~denoting the obtained
submatrix by M.'i' Then (9) can be replaced by

M‘j Ax:li =-r}, (1)

and the internal variables are evaluated using the measured
variables and the nominal parameter values.

To observe the effect of this simplification, consider the
structure of M. and M.. If the network can be partitioned
hierarchically at the measurement nodes, then M. has the

following structure:
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where the block diagonal part of Mj-corresponds to the internal

circuit variables. Therefore the submatrix M} is block diagonal
and (21) becomes
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The internal variables x).a are evaluated using the measured

m
variables xj @ and the nominal parameter values ba of each

subnetwork. Therefore, the internal variables xi. can be
computed in parallel. A solution vector obtained from (21) is
different than the nominal solution x(j) and we denote it by ;j'

When the iterative process converges, the KCL equations are
satisfied at the internal nodes, i.e.

f‘j(ij,ij,po) =0 (24)

Internal Sensitivities

The internal sensitivities should be calculated before

evaluating test matrix. Differentiating both sides of (24) w.r.t.
p, we obtain
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Derivatives are calculated using X, = ;j and p = po.

Denote s-’i = (’)x}/(?pj, then (26) can be rewritten as
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Since the matrix M! has block diagonal structure, (27) can be
solved in each subnetwork independently to obtain sensitivity
vector s}. Fora=1,2, ..,k
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Network Testing

After the network analysis stage, the system equations (2? will
be satisfied at the internal points, but in general they will not
be satisfied at the partition points. This results from a
mismatch between assumed (in our case nominal) parameters

pO for which jterations (21) were performed, and the actual

parameters p for which the measurements were taken. We
define the external system functions as test functions

f? = IT (Xj,xj,p) . (30)
Differentiating f* w.r.t. p, and using the solution of (16) we

can now formulate the test equations

darm
I Ap=- (31)
P J

from which Ap can be evaluated.
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The coefficient matrix 3 is called a test matrix T and it is

p
evaluated by differentiating (30) w.r.t. p,
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where the internal sensitivities 8} has been computed from (27).

The test matrix of cach subnetwork can be evaluated in
parallel. For ¢ =1, 2, ..., k,
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The test equation at the time instance j will be
Ty Ap = - F"j (36)

Procedure to Generate and Solve Test Equations

Test cquations in time domain can be formulated and solved
using the following procedure:

1.
2.
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Decompose the tested circuit N into k subnetworks. .
Perform measurements at the partition nodes to obtain

x™ within the time interval (0-7).
Assume the initial values po, and set j=0. .
Assume the initial values of internal variables x}, and set

=i+l i )
For each subnetwork do the following steps in paralle!
(a=12,...,k)

i
Predict xja using the forward differentiation formula.

i
Calculate ija using the backward differentiation formula.

i
Estimate internal variables x & by iterative process (23).

1
Compute the sensitivitics s * by solving (29).
Evaluate the test matrices T using (35).
Formulate the test matrix T.i by combining test matrices

TY of all subnetworks.

Repeat Steps 46 for eacl time point within (0,7). The
test matrix has the form

' L] 11
T=[T, Ty ... T],
where ' stands the matrix transpose operation.

Estimate parameter deviations Ap by solving the test
equations of the interconnected system

TAp=- M.
The test matrix T has bordered block diagonal structure.
The sparse matrix technique, parallel algorithm and
vector computation can be used to reduce the
computational time and the memory requirements. .
Update the parameter values and repeat steps 3-8 if Ap is
large.

Remarks

1.

The Jacobian matrix M! for the nonlinear iterations (21)

is block diagonal, so the circuit analysis is much easier
than that in the sensitivity approach (9).

Each subnetwork can be analyzed independently,
therefore, parallel processing can be implemented which
further reduce the analysis time.

In the special case of a linear subnetwork, a solution
vector can be obtained in one step; no iterations are
necessary. Note that il a linear subnetwork is a part of a
nonlinear network, such a simplification of analysis cannot
be achieved by other approaches. Even in the popular
harmonic balance approach (11], in which linear
subnetworks are separated {rom a nonlinear part, several
iterations are necessary to balance the mismatch between
the solutions of nonlinear and linear parts.

1
The Jacobian matrix M.% is block diagonal with the LU
factorization known from the solution of (23), so the

i
sensitivities sja can be easily obtained from (29).

It is obvious from the block diagonal form of M} that the

internal variables x} of a subnetwork depend only on these
parameters from the vector p which belong to the same
subnetwork. Also, one can observe that derivatives of IT

w.r.t. x} or %! are nonzero only for these variables or their

derivatives which are in the subnetworks incident at a
selected measurement nodes. As a result, the test matrix
T, (32) has a block matrix structure. Due to this structure

it is possible to identify individual parameters locally
using only measurements from a given subnetwork or two
adjacent subnetworks.

The Newton-Raphson method requires the Jacobian to be
constructed and factorized at each iteration. If the changes
in the Jacobian from iteration to iteration are sufficiently
small, then the old Jacobian closely approximates the new
one. Therefore, the factorized Jacobian from one iteration
can be used for several subsequent iterations.

4. Test Procedure

The test procedure, which implements the proposed testing
method, will be organized as follows:

1.

In the pre-test stage, a circuit under test is modeled in
order to perform a computer simulation and test nodes are
selected at the partition points.

During the actual test, reference time domain input
signals are applied to the circuits under test using
di%ferent signal levels. A waveform recorder is used to
sample, digitize and store the output responses at different
test points. Data are collected either directly through the
voltage probes or indirectly through special purpose
testing circuitry (as discussed in [3]). After collection, the
data are transferred to the computer system for post—test
processing. The time domain testing system is illustrated
in Fig. 2. A similar system will be used in frequency
domain testing where instead of time samples, different
harmonic components of the periodic response will be
recorded.

In the post—test stage, the measured voltages are used to
aid circuit analysis and to formulate the test equations,
from which deviations of the network parameters Ap are
evaluated. If a mixed analog-digital circuit is tested, then
analog signals at the terminals of digital subcircuits are
transformed into the digital format and digital testing is
performed on these subcircuits. Note that this approach .
requires the measurements to be performed at the |
boundaries between the analog and the digital parts of a |
circuit. |
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Fig. 2. Time domain testing system.

5. Summary

In the described testing method the measurements are used in
an efficient, innovative way to achieve two major goals:

1. To improve circuit simulation.

2. To aid parameter identification.

The first goal is satisfied by breaking interconnected system
equations into a sct of smaller su%systcms. Each of the
subsystems can be analyzed scparately reducing overall
analysis time and memory requirements. In addition, the
subsystems can be analyzed using analysis methods which best
suit the type of a subcircuit analyzed. For example, a linear
subcircuit can be analyzed using the Fourier transform, or
another frequency domain method, which takes advantage of
the circuit linearity. A subcircuit with only resistive elements
may use an algebraic equation solver since the differential
cquations will not be needed. Other types of subcircuits such as
subcircuits with distributed parameters or subcircuits with
ideal switches may use specialized analysis methods.

The second goal is satisfied by the same principle of
partitioning applied to the test equations. The Jacobian matrix
of the test equations has a block matrix structure which
permits solution of the parameter identification problem
locally. As a result, savings in computer time and memory are
realized. Another important effect of the Jacobian matrix
structure is limitation of effects of changes in the system to the
local areas. Only the parameters of the subnetworks adjacent
t(())da particular test node will affect the test equation at this
node.

In addition to the above mentioned advantages, the proposed
method allows a more flexible approach to testing different
parts of a network. Different subnetworks can be simulated and
tested on different levels of circuit representation, like discrete
element level, gate level, functional level efc.. Some
.subnetworks may be tested on the functional or the
_macromodel level, while for others parameter identification on
-the element level may be performed.
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