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Abstract

The paper introduces a unified methodology of testing
analog dvnamic muitiphenomena systems. l.e. svstems
composcd of blocks cxplomung vanous phvsical
phenomena. System models arc developed. Diagnosis
algorithm based on integral sensmivity.  onginally
developed for electronic circuits. extended to cover
multiphenomena systems.

1 Introduction

The paper investigates simulation and testing of
multiphcnomena  systems. ie¢. systems that are cither
homogenous or mixed. with blocks explotting various
physical phenomena. Mechatronic and microelectro-
mechanics systems (MEMS) are examples of such objects
of growing importance.

The steps of diagnosis of multiphenomena svstems are:
development of system models and their computer
simulation. measurements of modules under test
development of the best suited parameter extraction
method based on measurement results and computer
simulation.

We consider soft faults in analog, possibly nonlinear
systems. The diagnosis algorithm for electronic circuits in
the presence of noise {1,2] seems to be a useful starting
point. as it is not directly related to the physical nature of
the tested object.

2 Description of multiphenomena systems

Let us consider a multiphenomena system under test
(MSUT). For simplicity sake. we assume that it contains
only electronic and mechanical subsystems. As mainly
state variables are measurable in mechanical systems we
will use state equations to describe the mechanical part:
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Z(t.P; )= A(PJz(t.P,) + B(Pr1). (O

7 - vector of state variables. () - vector of reference
(excration)  signals. The number of mechanical
parameters to be diagnosed (vector p;) is /,. State
varables arc mostly inaccessible to testing tn clectronic
circuits. and modified nodal equations arc used:

aP) v (LP)+GP)HV (LP)-J (1)=0. (D

V is the vector of nodal voltages and selected branch
currents. G. C - matrices of resistive and reactive
elements. J - excitation vector. The number of clectronic
diagnosable parameters (vector P, ) is 5, - In the sequei
we consider linear equations coupling the mechanical
and eclectronic subsvstems. but this formulation can be
extended to cover noniinear casc as well:
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L, L, and K .K, are matrices relating electrical and
mechanical varables. Vectors of unknowns and of
diagnosable parametcrs of the whole system are:
V.=[V'.Z ], P, =[P} P[] . Combining (1),

(2) and (3), we can wrte equations of linear
multiphenomena svstem:
Cu Va + G V() - Jn (D=0, C))
where
CcCo G 0 X0
G0 1|, G.=| 0 -A|, LB
L L K, K, g

Formulation (4) can be extended to cover also nonlinear
systems.

Example 1. Let us consider an electromechanical
transducer [3] (Fig.l) translating current iz to
rotational movement of rotor (@, are the angular



posttion and rotation velocity of the rotor). Friction
damping of the rotor movement is represented by the
constant D and the friction force is Dw . The rotor

movement Is restrained by the spring with constant £, ,
deveioping F =K ¢ . Electrical
£.=K_i and voltage induced in the coil: 1/, = g, . The

torque torque is

equivalent circuit model of the transducers is in Fig. 1b.
Two controfled sources couple the electrical and
mechanical parts.
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Fig. 1. Rotational transducer: a) physical model;
b) equivalent circuit model

Modified nodal equations for the electrical part have the
form of (2) with:

6 0 0 0 Vi
C={0 0 0 0], V:V’,
000 L V.’
H
G+g0 -G 0 0 e(t)g0
G=| -G G 01|, J=| 0
0 -110 0

The state variables for the mechanical part are @, ¢ and
the describing equations have the form of (1) with:
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J, is the polar inertia moment of the coil assembly. The

matrices of coupling equation (3) have the form:

L =0,

3 Method of diagnosis

System can be accessed at certain points. In electronic
circuits by "points” we usually mean nodes. We divide
the nodes of an electronic subsystem into three groups:
accessible (1.e. at which we apply excitations and measure
responses), partially accessible (we oniy measure
responses) and not accessible. The numbers of the nodes
in these groups are p,., Apacs thna- We divide the

points of the mechanical part into /_ accessible "nodes”

(where excitation. e.g. force. energy, is applied and
responses measured), [/, partly accessible "nodes".
(output values, e.g. position. velocity, acceleration. can be
measured), and [/ , inaccessible “nodes”. We can

perform total n,. +/,, tests and for each of the tests

obtaIN s1aee + 1 yee + 1pac + 1 . Measurements.

We extend the diagnosis method developed for electronic
crcuits  [1.2] to cover multiphenomena systems.
Differential sensitivity is susceptible to errors of the
system model and noise of input data and reduces
accuracy and stability of the testing procedure. Integral
sensitivity tends to reduce zero mean noise, and this effect
is amplified when time intervals are properly selected. As
seminormalized integral sensitivity of ¥, w.r.t p, on

the time interval [;,,¢,] we understand:

“ av,, (1)
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Choice of the interval [¢,,:,/] influences effectiveness of
this technique in reducing noise [2]. We will also use
integrated values U [t,,t,]of the unknowns V., ()
appearing in the system equation (4):

Ul tets] = [V, (0a
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Diagnosis algorithm

The logical steps of the proposed diagnosis algorithm are:



Step [. Simulation of nominal system. Equations (4)
describing the system under consideration. are set up in a
way discussed in the previous section.

Step 2. Selection of time intervals for integral sensitivity.
The strategy of selection. aimed at maximal reduction of
noise and random errors, is described in detail in [1].

Step 3. Cualculation of integral sensitivity. Using an
integration formula. e.g. trapezoidal. (6) can be replaced
by its discretized counterpart:
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=tin 0=t N - number of discretization points.

We apply a similar discretization to U [¢,,1,].

Step 4. Formulation of diagnosis equations. Diagnosis
equations are obtained by using integral sensitivity, and
replacing infinitesimally small changes by finite
increments:

W[tk»Nvfk] oP = AU[[k-Nv[k]y (8)

entries & p,= A p,/ p, of P are the relative deviations
of parameters from the current vector P5 AU, [ 1w, te]
is the difference of [/ , caiculated for the values of
variables (1) obtained for the tested and simulated

nominal systems. Typically, the number of test equations
is much larger than the number of parameters to be
identified.

Step 5. Orthogonalization of the sensitivity matrix. The
orthogonalization technique reduces excessive equations
by elimination of linearly or near linearly dependent rows
and reduces the number of unknown parameters by

detecting ambiguity groups [1].
Step 6. Solving diagnosis equations and fault
detecting.  Diagnosis  equations are  usually

overdetermined. We use this property to provide
stability and a good convergence rate of the solving
procedure. The regularization technique [5] was
designed for solving equations with noisy data.
Tikhonov's functional is defined as:

M/5P(a)] [W5P(a) - AU[ +aldP(a|

a 2 0 is the regularization coefficient. The first term is
the standard least square term; the second is added to
improve stability and convergence rate of the iterative
procedure. Obviously, when a — 0 then SP solves the
least square problem. The solution of diagnosis equations
is obtained by minimizing the functional:

minM/6Pra))
w.rioP

(10)

To improve accuracy. (10} is solved iteratively. At the
beginning we simulate a fauit free system and calculate
the required data for the nominal set of parameters
p=p". is calculated as:

pt Y =pvl +op¥). and all simulation vectors and

A new approximation

matrices are updated. The iterative algorithm stops when:
0 PPISTOL AMAU|< ¢, TOL, - the accepable
tolerance of P, & - is the level of noise characteristics of
the measurement system. The decision whether the
diagnosed parameter P, is faulty i1s made by checking
(pl-peyrp! TOL, . The
numerical effectiveness of solving (10} depends on the
values of @ . The optimal value of « for the qth
iteration is found by solving the equation of generalized
discrepancy [5].

The discussed algorithm covers linear systems. but it can
be extended to nonlinear systems as well. using an
approach similar to {1].

the value of against

4 Test example

We consider the linear fourth order servomechanism [6].
The mechanism (Fig.2) transforms rotational movement
of the motor to transiational movement of the load. Fig. 3
shows a schematic view of the controller, and Fig.3 the
layout of the mechanical part. The following parameters
are used: r(t) - reference signal [rad], 7, - servomotor
torque [Nm], C, - servo stiffness [Nm/rad], p,
damping [Nms/rad], ¢,,,.¢, - position, velocity, and
acceleration of load [rad. radss, rad/s”], @.,¢,.@,-
position, velocity, and acceleration of rotor motor [rad.
rad/s, rad/s”], J,,J. - inertia load and rotor motor

[kgm’], k - stiffness of the transmission [Nm/rad].
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Fig.2 General layout of the servomechanism
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Fig. 3 Controiler
servomechanism

The state space equations are {6]:
R ) l 0 0 T 9707
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Diagnosable parameters are: C,,D,.d,..k.J,, dy,.

with the nominai values collected in the vector p”
(Table 1). The wvalue of 4., 1s fixed at

2.0x10” Nms/rad and j, is 5.0x]0” kgm . The

sinfaxj

testing excitation signal was fa=4). A

ax
nine order cycloide was used in [6] to examine the
tracking accuracy of the servomechanism, but in
application to testing this signai leads to sensitivity
matrix with a lower column rank. In the
identification procedure we detected an ambiguity
group { C,.d,; }. The results of identification are in

Table 1: p/,p‘are the faulted and diagnosed

vectors of parameters, respectively. As it is shown in
the third row of Table | the values of fauited

parameters P/ deviate 5% to 30% from their

nominal values P”. The diagnosis procedure has

been completed after 17 iterations. The quality of
identification (row five) was better then 4% .

TABLE 1. Results of diagnosis

Fig. 4 Mechanical part of

5 Conclusions

In the paper. the method for fault diagnosis in
dvnamic multiphenomena (nonlinear) systems has
been presented. From the mathematical point of view
the discussed method handles. in a untform manner.
equations obtained using various methods of
formulation. e.g. nodal modified. state. tabieau. The
quatity of diagnosis is assured by: using time domain
integral sensitivity. proper selection of time intervals
for sensitivity to reduce numerical and data noise.
orthogonaliization and regulanization techniques to
improve accuracy of the solution of overdetermined
diagnosis equations. We also examined and showed
that the effectiveness of diagnosis depends on the
proper selection of testing signals. Using the proposed
method the soft fauits have been detected in the
fourth order servomechanism with a satisfactory
accuracy.
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pP" C. D; diz k Ji d,
3.423e-1 4.607e-2 4.933e-5 5.99-1 4.40e4 5 496e-4
p/ 4.107¢-1 5.067e-2 4.993e-5 7.781e-1 3.743e4 5.221e4
(/- P")/ P" 20 % 10 % 0% 30% -15% -5%
P¢ 4.213e-1 5.138e-2 4.933e-5 8.145¢-1 3.668e-4 5.012e4
(Pf__Pd)/Pf -2.6% 1.4% 0% (*) 4.6 % -2% -4 %




