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Abstracl

A new approach to the topological analysis of large ILLLS networks is presented in the

paper.

A network graph is hierarchically partitioned untill sufficienty small blocks arc
obtained. Itach of these blocks is analysed separately and then analysis of the-
structure of their interconnections follows., An algorithm of so-called upward ana-
lysis, which is developped from downward hierarchical analysis algorithm[l] [2], is
described. The algorithm allows to symbolically anulyse networks with 100-200 nodes
and shows a linear dependence of computer time on network size. An efficient algo-
rithm of automatic graph partitioning, which fits the analysis algorithm described,

is also proposed. Tests of a computer program based of these algorithms are )

presented.

1. INTRODUCTION

A new approach to the symbolic analysis of large
LLILS networks is presented in the paper., Topolo-
gical methods /both signal flow graph /SIPG/ and
tree enumeration techniques /which are used

for the symbolic analysis of electronic networks,
although very convenient, were considered ag
ineffective in the computer analysis because of
-apid increase of analysis time with the prowth
of the network size. To overcome this difficully,
a direct decomposition method was introduced,
but this had not solved the problem. A turning-
point has been achieved when a method of analy-
si1s by hierarchical decomposition was introdu-
ced [l] L)] However the method, called downward
hicrarchical analysis, has two drawbacks:

(i) some parts of the network have to be analysed
more than once, (ii) it is difficult to keep more
than a few clements in symbolic forin through
the whole process of analysis.

The method presented in this paper, called
upward hicvarchical analysis allows to overcore
these drawibacks and permits practicalty fully
symbolic analysis of networks having 100-200 no-
des.

2. MODEILLING

For the purpose of the algorithms, we assume
that the model of the network analysed is unis-
tor graph. Such a graph can be obtained direc-
tly from indefinite admittance matrix /IAM/ of
the network orby connecting unistor models of
network elements [3] or, if the network ele-
ments have no adimittance description, e.g.,
ideal opamps, by connecting unistor and auto-
nomic formal unistor models /FUM-s/ [2}.
Autonomic FUM-s can be derived from the ele-
ment flow graph by replacing each edge of
the flow graph by corresponding set of unistors,
Although such elements are convenient in prac-
tice because they do not influence the rema-
ining part of the network, they have two disa-
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dvantages (i) they introduce additional nodes
and edges to the network graph and (ii) they
cause that cancelled terms can appear in fi-
nal formula. To avoid these, so-called non-
autonomic FUM-s of c¢lements with no admi-
ttance description can be applied. Such mo-
dels are obtained from modified element
SIG-s [obtained forin SFG by changing the
incidence of some edges from the clement
neighbourhood (4] /in a similar way as for
autonomic I"'UM-s,

Fig. 1 shows an example of antonomic and
nonautonomic FUM-s of the invertler with
the opamp.

Fig. 1.

Inverter /a/ and its autonomic
Ju/ and nonautonomic fe¢/ formal
unistor models,
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3. UPWARD ANALY SIS OF DECOMPOSED
GRADH

T.et us consider directed network graph
z (\',]?). T.et B be the set of block vertices
of G [e.g. the sel of terminals of a four-

_pole/. TL.et us assume thalt G has been parti-

tioned to subgraphs G (V I“) [only vertex

) dcpomposilion is considmod here, i.c.

n}‘ =@# for ijf j and U]- = I

generalization for edge and mixed decomposi-
tions follows immediately/. By block vertices
B, of G, we denote block vertices of G and
cut vertices, which belong to V,. By substi-
tute graph Gf :(Bi,Eib) of graph Gi we denote
complete directed graph spanned over vertices
from B;, and by substitute graph of decompo-
sition G5 we call union of @1l GlS

1

By we denote set of multitrees of G span-
ned over B, i.e. such multitrees ty, that

Vi e Y T Vi Viem ]:B /1/
1 k
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v:{(rl'vll""'vlml)’""(rk'vkl’ 'vkmk)l

is the set of components, k is the number
of components, and ry,i=1,2... k arc refe-
rence nodes of (,()mpcments/

The formula
T =/ l I Ti /2/
R /. vt
teP G.
13 i
follows immediately from Theorem 3 in [1]
Y., ig the set of proper multitrees of G¥ spa-
>
nned over B [proper multitree t is such a
multitree, that any subgraph l*?"fnt does not
contain directed paths longer than 1/, ’l‘lv is
the set of k-trees of G, described by the sel
of componenls v; vt nnay be obtained for given

.t and (‘1 as was described in [1] . It is
H epl pl o1 .
obvious, that T < T , where II) is the
i Bi ]’i

]

set of multitrees of G, spannced over 13, In
conclusion, /2/ a]low.l‘; us to determine all
multitrees of a graph spanned over their sets
of ‘Llock vertices based on all muliitrees of
the subgraphs and the structure of intercon-
nection of these subgraphs. Tn addition, Ty

is a full description of GG considered as n-pole,
where n=I3, Of course, if G is a subgraph of
the network graph, /2/ may be used to dcter-
mine description of a graph, whose decompo-
sition resulted in G,

This procedure is opposite to the downward
analysis, where, on the basis of k-trees of
‘he substitute graph, sets of multitrees of
subgraphs arc determined. Thus upward ana-
lvsis avoids multiple enumeration of the saine
sets of k-trees. Enumeration of k-trees of all

LYypPesS Cill U PruLtccutu watn ves smee we o
more cfficient algorithm than that of genera-
tion of normal k-trees

The algorithm of upward analysis is as
follows -

Step 0. Decompose hierarchically the network
graph [sce next paragruph/.

Step 1. Enumerate sets of multitrees spanned
over block vertices for proper blocks
/i.c. parts of the network graph,
which were not further partitioned/

Step 2. Find substitute graph of dcgompo’si«
tion such that sets of mu'litrees IB
spanned over B! s for all its sub-
graphs were prewousls determined.
Tor this graph, deterrnine its set of
multitrees T, with the aid of /2/.
Repeat this silep untill the set of

. multitrees ’[‘B of the network graph

o
spanned over the set of network
terminal vertices is obtained.

Network functions can be easily obtained:
they can he expressed as ratios of weights
of appropriate subsets of T [3].

o

If we assume more or less uniforin partition
of the network praph, time of analysis 7 can
be estimuted [for the case of hierarchical
biscction/ by
poEner Ao - 1)er F n-(T o) /3/
p s s
where 7 and T are average values of
time neclled for multitree enumeration in
proper blocks and substitute graphs, respecti-
vely, nois the number of proper blocks. So,
/3/ shows alincar dependence of analysis
lime on the network size, Rememcebher that
the cotresponding dependerice for downward
:ln:n]ysis is crm.‘st’Nd, ‘were N'is the number
= 2+ 3.
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of network nodes and

4. DECOMPOSITION

Before upward unalysis is performed, as slep
0 of the algorithm, bierarchical decomposition
of the nctwork graph mustl be made. So far,
no cfficient algorithimms for quasi-optimal
graph partition ave known. In this paragraph,
an hueristic algorithm of hierarchical bisec-
tion will be presented. It fits well the needs
of the analysis algorithm and ensures cffi-
cient analysis for most of network siructures,
The algorithm has been obtained us an exten-
sion of the method presented in [6] . It has
the property that whenever possible, the
graph is partitioned through block vertices.
It minimizes the number of subgraph block
vertices and consequently storage spuce
needed for kecping symbolic network functions
can be smaller
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The algorithra determines the series of
vertex bisections of the graph. l.et us consi-
der unigraph G =(V,E) /for this purpose we
reed only information about structure of the
graph, so G can be undirected and unigraph/
wizh the set of block vertices B, Assume
that this graph can be partitioncd onto two
subgraphs, and Gg :(Va'Ea) is one of these
subgraphs containing vertex N, which will
be called the vertex generating partition. Let
theoutward degree of the vertex v, € V_  be
the number of vertices incident with v, with '
the exception of vertices of Va and B. i-th
bisection of G is determined by attaching to
the set of boundary vertices S. of i-th bisec-
tion such block vertices, which are incident
with NO and with such vertices of S., which
have zero outward degree. Succesive set of
boundary vertices, S, is obtluined from Si

" ] i+1’
in the following way:

(i as new vertex N generating partition
S;+1 we choose such a vertex from Si‘
which has the least, non-zero outward
degree.

tii)  we attach N_-to V_, and include in Si
all vertices of G incident with No and
not belonging to B and \’,\.

Obtained Si+1’ witch attached block vertices, de-
terrmines new bisection of G.

Important problem lies in choosing starting
vertex NO This vertex determines the direc-
tion of movinz through the graph, and thus
strongly influences the series of bisections.
The problem may be solved with the use of
the algorithm determining the peripherial
vertex and graph diameter [7]

Afrer the series of bisections is determined
we can choose the best bisection. The quality
of the partition can be estirmated: in the case

of hicrarchicil analysis we may assume, that .

it is worth while to further partition the
graph if

i the rumber of block vertices introduced
is suiliciently small,

tii)  the cardinality of sets of multitrees of
subgraphs and substitute graph is less
than the cardinality of the set of multi-
trees of the graph.

In comparison with the method from [6], the
algorithm allows obtaining subgraphs with less
number of block vertices and more uniform
decomposition. Tests performed showed that
tiiie of decornposition linearly depends on
the network size,

5. NMPLEMENTATION

A corputer program HADEN 2 was elaborated
on the basis of algorithms presented. The
program deals with the case of hierarchical
biscction. This does not cause the loss of
generality, because any decomposition may be
treated as a hierarchical bisection.
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The most important problem in the implementa-
tion is the form of data siructures, because of
necessity of storing all sets of multitrees in
the memory. Any multitree weight can be
represented as :

p.
C'inl /41

where ¢ is product of nonsymbolic branch
admittances of the tree, y. are symbols, and
- i

pj is the exponent of the symbol /we may
identify some elements/. One of symbols
may be complex variable s. Because p.’s are
small integers, they may be stored in a sin-
gle computer word in packed form.

It is convenient to store the sets at multi-
trees spanned over set of block vertices as
a sorted file of records where record
consists of the set of k-trees of the same
type /i.e. having the same set cf components/.
The same can be done with the sets of pro-
per multitrees. IHowever, the proper k-iree
t may be considered as a pair [for bisec-
tion/ of symbolic addresses pointing to
appropriate sets of k-trees 7!
v
G, i1 = 1,2, These addresses can be evalua-
ted during computations and stored in the pla-
ce of mullitree edges.

of subgraphs

The symbolic formula obtained in the analy-
sis may be considered as a sum of products
with hierarchical parenthesis 1 -

ye )) - ')

EaleGode o
/s5/

s

1 1 k k
Computing numerical values from [5/ can be
done without expanding the formula, because
the partial results are stored, thus saving
computer time. -t '

|
6. RESULTS

To test the program, the RC-ladder network
was choosen becduse of its regular structu-
re. Yig. 2 shows the dependence of analy-
sis time on the number of nodes of the net-
work /half of elements were kepl in symbo-
lic form/. Tests were perforied for parti-
tions resulting in proper blocks of 1 (ay,
M by, 1TT (e) and = - Tid) types.
Experimental results confirm strictly linear
dependence of time of analysis on the network
size. The relation between the computing ti-
me and the proper block size shows an
existence of an "optimum' and may be useful
for evaluating the qualitly factor for the pro-
gram of decomposition,
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7. CONCILUSIONS

The method described can be used for sym-
bolic analysis of large elecironic networks,
with practicaly unlimited number of clements
kept in symbolic form. The authors are
convinced that, the method, after user-
oriented programs are elaborated, can beco-

me o powerful tool for the analysis and design

of large LLLLS networks. Computatlional effort
linearly depends on the network size and
this allows the method to compete with the
fastest numerical methods [e. g, sparse
matrix techniques/.

Worls arve continued to apply (he method for
statistical analysis, tolerance analysis and
optitmization, analysis of large SC networks
and hierarchical macromodelling.
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