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ABSTRACT

The multiple-fault location problem for analog
circuits 1is treated on the basis of the nodal
equations, The availabilaty of voltage
measurements due to current excitations is assumed
by the method. Topological restrictions on the
possibility of fault location for a given set of
measurements are formulated., The emphasis in this
paper 1s on 1locating subnetworks or regions
containing all the faults of the network. Coates
flow-graph representation of a network is used for
topological considerations,

INTRODUCTION

Testing of analog circuits with the aim of
fault location is important in network analysis.
There are different approaches to the problem
depending on the information available from tests
conducted on the network. Generally, the network
topology 1s known and we try to identify the faulty
elements and evaluate them. If the number of
measurements 1s large enough we can evaluate all
elements and single out the faulty ones [1,2].
However, when the number of measurements is limited
we can use various methods to predict regions where
faults may appear [3,4]. To verify whether a
predicted region contains all the faults, the
multiple~fault 1location method based on the
multiport description of a network can be used [5].

In this paper, we present a method based on
the nodal equations. Topological restrictions on
multiple-fault location are discussed and it is
shown how they may be effectively used to locate
faulty regions,. Some practical remarks for
effective calculations are given.

MULTIPLE-FAULT VERIFICATION BY NODAL EQUATIONS

In this section we discuss the method of
multiple fault location on the basis of the nodal
equations. The principal difference between the
nodal and the multiport approach is that in the
multiport approach we aim to find changes in
element values whereas in the nodal method we
design the changes in nodal currents only. Changes
in element values can be computed by the nodal
method after the network topology is considered.
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Nodal Equations for Faulty Network

Let us assume that the network has n+1 nodes,
m of them accessible, and f < m is the number of
faulty elements,. The nodal equations for the
nominal values of the elements have the form

X!:i. 1)
For the faulty network, assuming the same
excitations, we obtain
(Y + AY)(V + aV) = J. (2)
Thus
LAy =~ 8y v, (3)
where V' = V + Ag is the vector of nodal voltages

in theNYaulE} network., We can compute AV assuming
that Y is nonsingular and obtain

AY = - Y Ay V'. (4)

Let us denote 4AJ = - AY V', AJ represents
changes in nodal currents caused by faulty
elements. The relation (4) becomes

ay = Y7 ad. (5)
We can assume that a few elements are faulty, in
which case AJ has the form
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where N indicates the set of all nodes and M the
set of measurement nodes. Hence,
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Relation (8) has to be satisfied when the set F of
network nodes includes all nodes associated with



faulty elements in the network.

Reduction of the Number of Equations

It is.clear from relation (8) that in order to
design 4AJ we must have at least 1 + card F
measurement nodes. If there is an isolated fault
in the_network it causes changes in two elements of
the AJ  vector. In the example shown in Fig, 1 we

F F
have AJk = - AYeU1 = - AJj. In such a case vector

Fig. 1 Changes in nodal current caused by a

single fault.
AgF Wwill contain variables which are not indepen-
dent. We can transform the equation (8) to reduce
the column rank of the coefficient matrix Z,.. The
reduction realized depends on the location of
different faults. Let us discuss the following two
cases.

1. If an 1isolated fault appears between nodes k
and J (see Fig. 1) then -equation (8) can be
modified. We may replace column k of matrix Z by
the difference of columns k and j and removg column
J as well as the jth component of vector AJ .

2. If connected faults form a subtree. in the
network then the number of variables in AJ can be
reduced by one in similar way to Case 1. The
reduction holds for every connected subgraph formed
by faulty elements. If the subgraph contains a
circuit then the number of variables can not be
reduced.

TOPOLOGICAL RESTRICTIONS

A necessary conditions for solvability of
equation (8) 1is full column rank of matrix Z. .,
which i3 equivalent to the existence of a square,
nonsingular (card F) x (card F) submatrix of Zup-

Let g denote a square submatrix of Z and Y
(FIE) dendte the submatrix of Y obtained by
removing F rows and E columns. Using the
equivalence

det Z_. %0 <=> det Y (FIE) % 0 (10)

EF
we can find topological restrictions for the fault
location problem. Let us assume that the
topoiogical equations for the nodal admittance
matrix and the Coates graph representation of the

network are

Y= YT, (1

~ rm e
where the element 1j of A 1s equal to 1 if the jth
edge is directed towards the ith vertex, otherwise
zero, and the element ij of A is equal to 1 if the
jth edge is directed away from the ith vertex,
otherwise zero and Y is a diagonal matrix of
element admittances.

The submatrix Y (FIiE) can be presented in the
form [6]

Y (FIE) = & _Y AT (12)

~ ~—F ~& ~+E'
where ) (A ) is obtained from X (X ) by
~=F "~+E ~e e
removing rows F (E), respectively.

Following Starzyk et al. [6] we can formulate
the following theorem.

Theorem 1

If det Y (FIE) % O then there exists at least
one k-connection c, in the graph G(F|E) obtained
from the Coates graph of the network after deleting
all the edges incoming to nodes F and all the edges
outgoing from nodes E, where

S = {(vs, ve); v, € FA(N-E), v, € En(N=F)1}, (13)

card S = card (En(N-F)) = card (Fa(N-E)), (14)

(Vs' v,) represents a path directed from the node

v, to the node v, and N is the set of all graph
s e
nodes a

The condition stated in Theorem 1 is
sufficient almost everywhere. As a consequence of
Theorem 1 we have an important corollary.

Corollary 1

If det Y (FIE) # 0 then after deleting all the
edges outgoing from nodes E and incoming to nodes F
there are no isolated nodes in the set N - (EnF) [

To locate the faults of elements incident with
nodes F such that after deleting all the edges
incoming to nodes F some of them become isolated,
we must include all of these isolated nodes in the
set E, which means that all of them must be
accessible nodes (i.e., the nodes at which voltages
can be measured).

Let us 1investigate the problem of two
subnetworks the graphs of which have ¢ common nodes
when ¢ < card F. In this case we can not identify
the faults appearing in one of the subnetworks by
measuring the voltages in the second only because
the k-connection required by Theorem 1 does not
exist. But even in this case we still have the
possibility of identifying the faulty region, where
we check whether or not the only faults are
included in a subgraph 1isolated from c+!
measurements by a ¢ common nodes.



In the case when f faults appear in a subgraph
connected to the rest of the graph through c common
nodes, we must have at least f-c+1 measurements
inside this subgraph to identify all these faults
(see Fig. 2).

faults

/
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Fig. 2 TIllustration of necessary measurements.

To ensure that the system of equations 1is
overdetermined we should have at 1least two
nonsingular (card F) x (card F) submatrices of ZMF'

Lemma 1
If zEF is a nonsingular full column rank
. T .
submatrix of EMF and Z, is a nonzero row of éMF not
belonging to EEF then there exists a nonsingular
. . T
submatrix of Zyp that contains Z5 ]
Proof
. T .
Since rank ZMF = rank EEF the row 25 is a

linear combination of rows z; ¢ EEF' i e I. If we

remove row 5:, k € I, then Z5 will be 1linearly

independent from the rows ZI, i € I - {k}, and
because of the linear independency of rows ;z will
T
form a new set of linearly independent rows {Eg' Z;
t1¢ I, 1 ¢k} a
Corollary 2
If 2z contains, a ro row and th

corresponding voltage AV e AV is nonzero then AJ
does not represent all the faults in the network,
therefore, other candidates for faults should be
considered 0

To fulfill the condition stated in the Lemma 1
it is sufficient that there exists a node i € M-E
which is the origin of a path incoming to one of
the F nodes, and if after deleting the edges
incident to this path the remaining graph contains
at least one QO-connection.

Element z.,. ¢ Z F is zero when there is no
path directed om tﬂe node i to j or for every
such path if I denotes the set of nodes belonging
to the path det Y(I{I) = 0. The latter case is
rare in electronic circuits,

SOME PRACTICAL REMARKS

Biernacki and Bandler ([5] stated that
condition (B) 1is satisfied if and only if the
following relation holds

- M
(ZMF - 1 Ay =0, (15)
where
= A T -1 .7
Lur = Zwr Cur Ewp) Ewpe (16

Now we propose a simpler method which can be
used to verify the condition (8).

One can prove that the solution of the
equation

QZ‘:E, 17)

where 4 is an mxf full column rank matrix f < m,
exists if and only if it can be transformed to the
form

" x X x
0 X X
. . Q1
0 X
___________ x =| - (18)
0 0
L ~ § ~

after row manipulation, where b, 1s a column vector
having f elements, The form (18) 1is also more
convenient for obtaining the solution of the set of
equations.

For ill-conditioned systems the method of
Householder orthogonal transformations can be used
to reduce to zero the subdiagonal elements of A

£71.

~For practical situations when both measurement
errors and effects of tolerances appear, the
technique proposed by Bandler, Biernacki and Salama
{8] can be used. In the first stage of computation
we solve an optimization problem that can be stated
as
n
L F F
minimize (IRe(AI ) + HIm(AT D)) (19)
i=1

subject to linear equality constraints (8),
Solution of this problem gives us the most likely
faulty elements. Then the verification technique
in the presence of tolerances can be used to check
(8) in the way described in [81.

Example

Consider the active lowpass filler having
structure shown in Fig. 3. Measurements have been
taken at nodes 10, 12, 15 and 17. We decompose the
graph of the network into three subgraphs as shown
in Fig. 4. We may check the necessary condition
(8) for the subnetwork which contains all the
measurements and find it to be fault free. In this
case the set F={10,15,17} represents all the faulty
nodes that can appear within incident subnetworks.



Fig. 3 Active lowpass filter example.
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Fig. 4 Decomposition of the graph of the active
filter into subgraphs.

CONCLUSIONS

The method presented extends the possibilities
of multiport methods for multiple-fault location.
Topological restrictions discussed in the paper show
that in some cases faults cannot be identified if
the measurements are imposed in the wrong place.
Multiple-fault location analysis is necessary when
we want to isolate faults inside a subnetwork
without a sufficient number of measurements to
identify all subnetwork components.

These topological restrictions can be
effectively used when we investigate a subnetwork
instead of the whole network, All the faults
outside the investigated subnetwork can be
appropriately respresented by assuming as faulty
only the common nodes. This network partitioning
into faulty or nonfaulty regions will be useful in
fault analysis of large networks.

The authors believe that their approach
together with the practical remarks presented
permits more opportunities for effectively solving
fault location problems in linear networks,
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Equations.
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