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ABSTRACT

An effect of network topology on the testabi-
1ity of linear, dynamic networks is studied. Seve-
ral methods have been investigated to determine an
upper estimate on the rank of the Jacobian matrix
associated with network equations. Factorized form
of the sensitivity function was obtained to facili-
tate the symbolic analysis of the Jacobian matrix.
An exact, topological method to determine multifre-
quency measurement of testability is suggested.

1. INTRODUCTION

A recent paper [1] has considered an algorithm
to evaluate the measure of testability in linear,
analog systems. The measure is based on the rank of
the Jacobian matrix of the response vector deter-
mined for different frequencies. Consider a linear
system described by the nodal equations

y(p,s) x(s)
!(E,S) = ’ (l)
2(p.s) 0.
where g=[pk]. with k=1,...,2. Usimé.results from [2]
luculano et al. evaluate the maximum rank Ryay of

the Jacobian matrix ¢ of the system response to
different exciations

y(p.s) = H(p,s) x(s) (2)

calculated for any possible set of test frequen-
cies. The response and excitation vectors y(p.s)

and 5(5) have m and e elements respectively.

Since elements hjj of the transfer function
matrix Q(g,s) are rational functions of the complex
frequency s, the rank of ® can be related to the
degree of polynomials of s ih the numerator and the
denominator of each function. Let (i,j)th element
of H(p,s) be represented in the following form:

b..(p,s)
heo= —2 0 ayam, (3)
2! A{p,s) J=1,...,e ,
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where &(p,s) and A.i(g,s) are the determinant of
Y(p,s) and the firSt order cofactor of its (j,i)th
element, respectively. The Jacobian matrix

d=(0_1 , r=1,...,e.m, (4)
- rk Kelyouod |
with ah,
¢, = — | here r=(j-1m + i ,

apk

can be obtained from (3) by differentiation

1 [3a,. (p,s) 34 (p,s)
8, (p.s)= —L—h(p.5)- ———1,,(p.5)
A% (p,s) 3P, 30,
1
= —— P (p,s), (5)
pi(p,s) (KF

where Prk(g.s) are real polynomials of s.

Using Taylor's expansion of vector obtained
from E(g.s) around the nominal point P, e obtain

vec[H(p,s)] = vec[H(p;,s)] + 8(p,.s) 2p , (6)

and the rank R of 9(90‘5) determines how many ele-
ments of 4p can be uniquely evaluated. Obviously
RSt and for a single frequency measurements R < e-m.
Measuring the system responses to the excitations

at different frequencies, R can be increased beyond
e'm, therefore more elements can be evaluated.

In [1] the authors have shown that the maximum
rank of &, calculated over any possible set of test
frequencies Ryax is equal to the rank of the real
matrix gtxa' whose kth column is obtained from the
coefficients of the polynomials Prk(s), r=1,...,e.m,
An upper esbtimate of rows t of this matrix adopted
in [1] is based on the number of reactive elements
No

t = (2n0 + 1)ee'm . (7)
Consequently the authors suggest that if al)l
the circuit elements are frequency dependent (2=ng)
the number of rows of g becomes equal to (22+1)-e-m
and maximum testability could be reached also with
Small values of the the product e-m. According to
our judgement this is an oversimplification of what

appears to be a complex problem, and the true
vaiues of Rpayx may be well below the estimate (7).



In this paper we address the problem of an
effect of the network topology on the rank of the
Jacobian matrix obtained with multifrequency
measurements. In what follows a relationship bet-
ween Rpayx and the arder of complexity of an
electrical network is discussed. Next, we derive a
factorized form for grk(g,s) and link it to the
network transfer functions. Rank limitations which
come from the network decomposition is discussed in

Section 1V and finally a method based on the fully
symbolic analysis is presented.

I1. TOPOLOGICAL CONSTRAINTS.

Presented in (1] the idea of evaluation of Rpay
on the basis of the real matrix is extremely useful
in the multifrequency fault diagnosis. It allows us
to determine the number of test paints necessary to
evaluate network elements and, as such, is helpful

in designing for testability and evaluation of the
testability measure for a given set of test points.

To link the network topology to the degrees of
polynomials grk(g.s) recall the order of complexity

of electrical network N [3], defined as the number

of nonzero zeros of the determinant A. From (3] we
know that

N=p. +p +0p (8)
Co Lo cs
where p.  (p, ) is the rank of the graph obtained
Co ‘FlLo

from the network after open-circuiting all elements
which are not capacitors, (inductors) respectively,
Pes (pLs) is the rank of the graph obtained from

the network after shaort-circuiting all elements
which are not capacitors, (inductors) respectively.

P
L
S

Note that the order of complexity N is always
less or equal to the number of rgjctive elements.
Based on the evaluated order of complexity we can
Justify the'following corollary.

Corollary

An upper bound on the degrees of the polyno-
mials Prk(g,s) is equal to 2N. Consequently the
upper bound on R . is t; = (2N + 1)-e-m.

Even tighter estimate of Rpyx comes from adop-
tion of results presented in [43, where the network
solvability was linked for the first time to the
degrees of polynomials of numerators and denomina-
tor of measured transfer functions. If we estimate
the number of nonzero coeffigients in each such

polynomial by N+1, then according to [4] the number
ot elements one can evalute on the basis of given
measurements (i.e. Rpax ) 1S limited by

to = N+e'm + e'm + N ,
1

which is less than tg. This results mean that not

all reactive elements in the network contribute to

the rank of the Jacobian matrix (4), and that the

topology of tne network is crucial in establishing

its upper bound.

Y2 Y4

in

Fig. 1. An example of one-port network.
Another observation one can make is that a
relative location of the reactive elements and the
measurement points is equally important. The same

network with the same number of test points may
have different rank of ® depending on the location
of the test points.

Example

Consider a one-port network shown in Fig, 1.
Its driving point impedance Zin is equal to

b Y3+,
A (Y1 + Yz)(Y3 + Y4) + Y3Y4
where Yj is the admittance of ith element. In this

example we have e=m=1. The Jacobian matrix of 2,
is expressed by

Zin =

9z

87, ay
o(s) = in = 7in "k
B | K=l,eeid BV, Bp, | kel,... .8
1 ay ay aY ay
=-——{—(Y3+Y4)2-—l, (Y22, 2 A,
A? ap1 sz ap3 ap4

Consider three cases.

I. All elements are capacitors with Yi=sC;. In this
case n°=4, pC°=pCs=2. pLo=°Ls=°‘ N=0, to=1. and
3

0s) = — [ -(ezecp?s (e ?, -, 51

Obviously Ryax=1, while an estimate based on (7) is
t=9. This case well illustrates the effect of the
order of complexity on the rank of g.

I1. Let Y4=sC4, and Y3=Gj, i=1,2,3. In this case
n°=1, t=3, pC°=1, pCs=pLo=pLs=o"N=l' t°=3, and
1

s) = — [-(64+5€,)%, -(GyesC,)2, -s2c2

2
-s C4, —563] .

with Rpax=3. Here we have an agreement between pre-
dicted and estimated value of the rank.

ITT. Let Yy=sCy, and Yy=Gj, i=2,3,4. In this case
n0=1. t=3, pCo=1. pC5=pL°=pLs=0. N=1, to=3, and

1
2 2 2 2
0(s) = — [ -5(6346,)%, ~(G4%6,) s G5, 65 ]

’



with Rpax=2. The predicted rank is overestimated
as the effect of the relative location of the reac-
tive element w.r.t. the measurement.

IT1. FACTORIZED SENSITIVITY

In this section polynominals Prk(g.s) of (5)
are expressed in terms of the products of the
cofactors of the coefficient matrix. On such basis
the evaluation of the rank R should be easier and

directly linked to the transfer functions of the
analyzed network.

Consider the transfer function hj

(3). I1ts derivative w.r.t, the parame

{ described by
e
expressed as

r pg can be

oh,. ©oh.. aY
.4k, (9)
apk aYk apk
where Yy is the admittance of pk, and
°h1j . AjiA - A Aji , (10)
aYk A?

where 8, 4 denote the derivatives of the
corresponding cofactors w.r.t. Y. Let the admit-
tance Yy be located in the coefficient matrix Y on

the intersection of the rows a, b and the co]u&ns
c, d as follows

c d
a|l.. Y R

X X (11)
b .. -Yk e Yy

It can be shown that

BBy = Bhae gi 7w B Bag gi 7 B e gi v B Bpg
= Bachyi 7 Baibye t Bagbyi * aidyg

“ Bpcbyy * Bgybye + Bugdiy - By - (12)
On the other hand
Bbyy = Bycbyy - Bagbyy -8
S0

belyi * Bpabyi 0 (13)

By = B8y by - B8y - By) - (18)
From (10) we obtain ‘

3
[l

Yo .
ah‘J B "(Ajc - A,@)(Aai - Ab\)

= . (15)
2
8y, A
Since hjj=bji/8 is a transfer function, which
determines t%e response yj due to the excitation xj
we can write
Liy 16)
7 MeayMian) (
k

where the transfer function h(c_q)j determines the
response (yc-yq) measured between %he nodes ¢ and d
due to the excitation xj, and hj(a-p) determines

the response yj due to {ne excitation applied bet-
ween the nodes a and b.

In the particular case, when T is the indefi-

nite admittance matrix of a netwo?k. then (15) can
be reduced to

iy Tic.rd TaiLbr

5 : (17)
avk Tuv

where Tyy, Tjc rd» Tai,br @re the first and the

second order cofactors of I. Using (17) one can

determine the degree of polynomials in Prk(pls).

IV, MULTITERMINAL NETWORK LIMITATION

As could be seen from the case III of Example,
the order of complexity alone is not the only topo-
logical information one needs to evaluate the rank
of ¢. To derive more accurate estimate of Ryax the

effect of the reactive elements on the input-output
relationships must be considered. Assume for simpli-
city that the network contains capacitors as the
only frequency-dependent elements, and that the
excitation and measurement nodes are the same (m=e).

If all reactive elements are incident to the
measurement nodes only, then the coefficient matrix
!(g,s) can be represented as

G11(9)+5C11(g) 612(9)

Ga1(2) Caa(0)

where the subscripts 1 and 2 correspond to the
measurement nodes and al) the remaining nodes
respectively, In such a case

e .

Y(p.s) = . (18)

B (B5) = 61 (p)45C (9)-6,(9)G55(R)G,, (p). (19)

Changing excitations and measuring responses we can
identify H(p,s), therefore from (19) we can find

sC,,(0) = W (p.s) - H(p.0) (20)

and all the frequency dependent elements can be
directly identified when the measurements are taken
for DC excitations and then repeated for single,
nonzero frequency. This result also indicates that
adding reactive elements between the netwcrk ter-
minals cannot increase the rank Rpay by more than
Lthe number of reactive elements added.

It is well known [4], that in the resistive
network Rpax < m?. In the case of symmetrical
resistive network Rpax S m(m+1)/2. Based on the
above observation we have the following result.

Result 1

If all the reactive elements are incident to
the measurement nodes only then the upper bound on

i =m? +n_.
Rmax is t1 m nO



resistive
network

reactive
network

2. Resistive and reactive subnetworks.

Fig.

This result can be used to explain why Rpay=2
in the case 11l of Example. Another obvious limita-
tion comes from the network decomposition.

Result 2

Consider two subnetworks: Ny with the rank of
its Jacobian matrix Ry and Nz with the rank Rp. If
we combine these two subnetworks preserving their
excitation and measurement points, then the rank

Rmax for the combined network is less or equal to
Ry + R2.

If the number of reactive elements is small,
comparing to the number of nodes, we can use
results 1 and 2 to obtain better estimate for the
rank Rpax. Let us represent coefficient matrix of
such a network in the form (18) assuming that the
subscript 1 corresponds to all the accessible nodes
as well as those incident to the reactive elements.
Let m+c denotes cardinality of this set of nodes.
This decomposition is illustrated on Fig. 2, in
which we have assumed that the reactive elements
are incident to the internal nodes only. Even if
all m+c terminals shown in Fig. 2 were accessible,
the rank Rpax for the combined network is less or
equal to Ry + Rz, where Ry} < (m+c)? and R < ng so
we can formulate the following result.

Result 3

An upper bound on Rpayx in the.frequency depen-
dent linear network is tp = (m+c)?+ ng.

Partition shown in Fig. 2 can be used to sepa-
rate effect of reactive and resistive elements.
Using excitations and responses on terminals m+l to
m+Cc at a single nonzero frequency one can identify
ng more than c¢? reactive elements. If the network

is symmetrical then we can obtain a special case of
Result 3 formulated as follows.

s .

Result 4

An upper bound on Rpax in the frequency depen-
dent linear, symmetrical network is

t3=[(m+c)(m+cyl)+c2+c]/2 .
Y

Finally if the excitation and measurement nodes are
different, then tp in Result 3 should be replaced by

t4= (m+c)(e+c)+R2.
V. RANK TEST BASED ON TOPOLOGICAL ANALYSIS

In [5] the elements of a resistive network were
identified using topological analysis tools. A topo-
logical matrix 8, which represents 2-trees needed

to generate numerators of transfer functions measu-
red, was used. The rank of the Jacobian matrix ¢

have been shown to be a function of the rank of a
selected submatrix of this topological matrix. The

submatrix must contain exactly one 2-tree from each
transfer function.

To our knowledge this is the most exact method
of rank estimation based on the network topology,
but it is also the most expensive one since it
requires fully symbolic analysis of a given net-
work. This method can be applied to find rank R,
and Rz in the separated subnetworks and estimate
Rmax On the basis of the Result 2.

One can think of a new method applied directly
to the network which contains both resistive and
reactive elements. We have tested a method which
modifies approach presented in [5] distinguishing
2-trees of different degree of complex variable s.
The submatrix of the topological matrix 8 contains
selected 2-trees, Each 2-tree has a distinct degree
of s for each transfer function. Results of our
research on this new method are to be reported.

CONCULSIONS

The rank of the Jacobian matrix of the network
equations in multifrequency measurements depends on
the order of complexity of the analyzed network as
well as on the relative location of reactive ele-
ments and the test points. Decomposition of the net-
work can be used to separate an effect of reactive
and resistive elements. In the decomposed network
we can analyze each part for testability to obtain
an upper estimate on the rank of the Jacobian
matrix. An exact method of rank estimation requires
fully symbolic analysis of a given network. This
method, although the most expensive, is very
accurate and can be used to develop an efficient
testing strﬁtegy in the large, dynamic networks.
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