
n

J.A. Starryk

Electrical & Comprter Eng. Dept.
Ohio University
Athens, OH 45701

ABSTRACT

This paper discusses an algorithm to solve the
d.c. lperer flor* problern. I; this rnethod large
porier systens are hierarchically decomposed into
ryull manageable subnetvprks (blocks) using node
decomposition. These blocks are solved sepa-rately
and are interconnected to obtain the solulion for
the subnetrrorks on the higher level of hierarchv.
Finally the solution for the original netrrorf is
obtained after all hierarchy has been rcrked
through.

I. INTrcU'CTIChI

Power flow solutions of a large system have
always been l imited because of i ts menorv and
canputational requirernents. To achieve toad fbw
solution with linited conputational resources,
following aspect of the problon were considered:

(1 ) Sparsity of the adnittance matrix of
the por*er system.

(2) Decomposition (tearing) of porrer systems
netrrprk in gnaller subnetr,uorks (blocks)
to suit computational requirenent.

(3 ) Utilization of iocal effects under
contingency condition.

Sparsity of the adnittance matrix of power
qgstem nethrcrk was exploited by storing noizero
elements only and thus avoiOing ieros in
mathematical operations [l]. tater netuork tearing
[deconrposition] Ied to simplicity, but
simultaneous analysis of decrcnposed- subnet.ork was
not possible l?l . A heirarchical deconrrcsition
approach d iscussed in  t3 l  cou ld  analyzL large
po$rer system netrork effectively by solving
decomposed subnetwcrks sinultaneouslf. Thia
approach r,roUld fwther be vialte when
contingencies are sinnrlated dr-ring operationar and
planning str-rdies of the pobrer systern.

In this paper heirarchical decornmsition
approach has been illustrated to solve d.c. load
flow problem and further extended to solve
contingency load flow problem. This extention
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uses the fact (3) rentioned above and therefore
only 1oca11y affected subnetworks are solved and
solutions of the other subnetrrorks are retained
from the base case - result ing in computional
savings.

f n the follor.ring sections of the paper,
firstly brief description of the hierarchical
decorposition of netvork is discussed. Then load
flow eqr:ations and their solution is described.
Iater test result of the algorithm is discussed.

rT. HTERARCHICAL DECOMPOSITIOIV

Matrix decomposition is based on its Coats
signal flow graph representation 1,41 in which a
sguare rnatrix A=[arr] is represented by a graph

with n nodes and k edges, where k is the nurnber of
nonzero coefficients in A. In a Coates grraph edge
directed from node xi to node Fifs- a-weight

equal to €r31 . Oats glpfr of a oeificient natrix-  1 ' l -- 
l-t 2 o-J

A -  1 3  4  s l
[eo l

is sholrtn in Fig. 1.

Fig. I Coates graph of the rnatrix A of Example l.

A signal flow graph is deconposed through its
nodes into tvo sr.rbgnaphs ( subnetvorks ) . Each of
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these sr:bgraphs can be decomtrnsed further down to
a sufficiently snall size. This kind of graph
decomposition is called hierarchical decomposi-
tion. The structure of hierarchical deconposition
can be illustrated by a decomposition tree. Nodes
of the tree correslnnd to subgraphs obtained on
different levels of decomposition. If a subgraph
aj vras obtalnE- during decunposition of sulcgraph

G., then there is an edge from the node
1

corresponding to G, to the node corresponding

a 
"j. 

Fig. 3 shrows the decomposition tree

correstrnnding to Fig. 2.

Level of decomposi l ion,

f i  rsl

Fig. 3 Deconposition tree for Fig. 2.

Ittatrix Reorderings After all sr:bgraphs have
ueenffig to the structure of the
decomposit ion tree, the nodes of a graph are
renrsrbered consecutively in descending order
starting from the partition nodes of the graph G., ,
then the partition nodes of graph G,, and G. up to
the last partition and then the int'ernal n6des of
the proper blocks. After the renurrloering, the
nrlrbers associated with the graph nodes are called
original indices of the nodes. Such renr-nbering
correslnnds to reordering the coefficient rnatrix.
An exanple for the matrix partitioned according to
F ig .  2  i s  shown  i n  F ig .  4 .  The re  i s  a  s t r i c t
correspondence betvpen the set of partition nodes
of a middle graph and subrnatrices of the reordered
coefficient matrix. These submatrices are ca1led
interconnection matrices as they represent
interconnection of trro subwstems.
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Fig. 4 ldonzero pattern of a reordered coefficient
matrix.

III. PO9IER FI.OW EqJAf,IONTS

The power flow equations of a pCI,'rer system
under steady state condition are obtained by
equating the power injected into each node by
source or load and pouer transnitted frorn the node
via transnission netrrcrk. Thus at ith node,

Gl@

second

th i rd

Fig. 2 Three level hierarchical deconposition.

fn the deccrnposition Lree vre have one initial
node - the one which is the start ing poff iT
Fges. Termi.nal nodes are those which 

-are 
only

the end points of edges. A11 nodes that are not
terminal nodes are middle 1g]es. Subgrraphs
associated with terminET-iEEili6 called oroo"t
blocks. [€ limit ourselves to bisection a?ti6
6ffi-graph partition so that every middle node has
exactly tr,vrc descendants. If m is the index of a
middle subgraph then tvp of its descendants have
indices 2m and 2rftt'l, respectively. This way of
nr-rr{rering the graphs rnakes the analysis of
interconnections easier.



G i k '  B i k

N
eix

Pi = Pci*Pti*Pti{ i(ci* cosern+Brn sin9ik) (1.a)

Qt = 0at+Qli{t i=vi(Ct* sineiX-Bin cosotn) (f  .b)

where
PGi, PlirPTi real [Dwers injected into the ith

node by the generator, Ioad and
ties connected to it,

Pr net real [Dhrer injected into the' 
ith node,

QCi'Qf,i, Qti reactive po\Ners injected into ttre
ith node by the generator, load and
ties connected to it,

Qj net reactive [pwer injected into^ 
the ith node, .

V.,lei ccmplex voltage at the ith node,

v'lhere H, N, J, and L constitute the Jacobian of
(1) ,ae and AV are vectors of corrections to the
estimates for node rrcltages and magnitudes and
APrA0 are the mignatches between the respective
fDwers injected into and reroved from the nodes.
In practice N and J are much snaller than H and L.
Therefore (4 ) rmy be approxinated by,

faevl  =FlFq -(s)
a n d : .

6oru1 = l-ti[ l (6 )
Where B' ?nd 

-B" 
ar5'Eon'stant matrices. The

solution of a.c. load flow equations is obtained
by iterating (5) and (5) until misnatch satisfy
specified tolerance by the user. This nethod is
called decoupled load floqr method.

rv. soLuTIoN oF N LINEAR EpUATIONIS

The set of n linear equations,
A  Y  =  b  ( 7 )

can be so lved ef fec t ive ly ,  i f  A  is  a  sparse
matrix, by using bifactorization nethod t5l. The
inverse of A can be expressed by a m u 1 t i p I e
product of 2n factor matrices.

e  
l  =  R ( l ) R ( 2 ) . . * ( n ) r ( n )  . . L ( 2 ) L ( 1 )  ( 8 )

fn order to find L and R the following sequence of
internrediate matrices is introduced:

e ( o )  =  a

: , t ,  
=  L ( l ) A ( o  ) R ( 1 )

a ( j )  =  L ( j ) A ( j - r ) R ( j )
a a

o ( n )  -  

" ( n ) o ( n - I ) * ( n )  
- ,

Where reduced matrix a(j ) has elenents defined bv
the following egtntions:

" ( j )  
=  I  ;  

" ( j )  
=  a ( j )  =  o

j j  i j  j k

" (  

j - r  )  a (  
j - l )

i . i  j k
u 

( j  )=. ( j - l  )  : ,________
ik  ik  

" ( j - r  
)

j j

index and for i, k =

trices r-( 
j ) 

"t. 
very sparse

ty matrix in colurmn j only.

real and imaginary parts of Yik,
the elenents in ith rovr & jth
colr-srrr of the netvork a&nittance
matrix,
nuunber of nodes in the netrrork,
= e i - 9 k '

It is interesting to note that, for the Rgvrer
systems, Gik are gnall, eik rarely exceeds 20" and

the nodeAus voltages rarely deviate by nore than
108 from their noninal values.

If we make approximations GifiOr sinOrp9i*r

and cosein : l  equat ions ( f  .b)  reduces to  the

decoupled reactive poh€r flow eguations
N

oi= - Z,"ix vi vr
K=l

Further, in norrnal opreration the per unit voltage
nagnitudes V. are close to 1. Therefore,
approximatinQ V.,= 1, equation (1.a) becones
the d.c. load flow equation.

N
Pi = 

*Z=r.tt* 
(ei- ek)

If the resistance is nu:ch gnaller than the
reactance then

N

Pi = 
?iOr* 

*(ei- ok)

*t.t.ntninis in marrix 
?3T,

l ' ; l  :r,* r l" i l
l . - l  = l r l * ix l  l .  l  e )
l .  I  L  J  l .  I

L".i L"^l
This eguation can be
resulting power flow on
by

solved for
the line can

e and the
be obtained

n r l

j being the pirotal
1 i + l  )  7 .  .  .  .  .  ; D .
The left-hand factor ma
and differ from the uni

I'
I
I

L ( j )  =  
|
I
I

!{ trcre t( 
j  )  = t /  a( 

j :1)

1-  
1 (  

j  )

i , j
. 1

1 ( j )  1

Pik  =  lA ix  * (e t  -  eo)  (3 )

and
and

as
a j j  j j

a n d  l ( j )  =  _  
" ( j - r ) / a ( j - r )  

,
l 1 u) )

i  =  ( j + l ) r . . . 7 o



The right
sparse and
only.

R( 
j  )  =

fr,and factonoatrices n( 
j ) are

differ from the unitv matrix
W. TEST EXAMPLE

The data below is a listing of input data to
the six bus sample pot,rer system used to test the
rethod discussed in the paper.

IIO. OF BUSES = 5 NO. OF LINES 11
NO. OF GEIiIS. = 3 SWI}re BUS NO. I

LINE DAf,A
F R O I 4 T O R X B C A P

L  2  0 .1000  0 .2000  0 .0200
r  4  0 .0500  0 .2000  0 .0200
I  5  0 .0000  0 .3000  0 .0300
2  3  0 . 5 0 0 0  0 . 1 5 0 0  0 . 0 3 0 0
2  4  0 . 0 5 0 0  0 . 1 0 0 0  0 . 0 1 0 0
2  5  0 . 1 0 0 0  0 . 3 0 0 0  0 . 0 2 0 0
2  6  0 .0700  0 .2000  0 .0250
3  5  0 .1200  0 .2600  0 .0250
3  6  0 .0200  0 .1000  0 .0100
4  5  0 .2000  0 .4000  0 .0400
5  5  0 .1000  0 .3000  0 .0300

BUS DTTA
BUS NO. GEN PU-MtiI VOLTAGE P IOAD Q IOAD

I  0 . 0 0  1 . 0 5 0  0 . 0 0  0 . 0 0
2  1 . 0 0  r . 0 5 0  0 . 0 0  0 . 0 0
3  1 . 0 0  1 . 0 7 0  0 . 0 0  0 . 0 0
4  0 . 0 0  1 . 0 0 0  1 . 0 0  1 . 0 0
5  , 0 . 0 0  1 . 0 0 0  1 . 0 0  1 . 0 0
6  0 . 0 0  1 . 0 0 0  1 . 0 0  1 . 0 0

The system description and test results of the
above exarple are shor*n in Fig. 5. Po*er flows

0u3 I

also very
in row j

r , ( j )  .  r ( j )
i  ' i+t j  'n

1 .

sub-
cor-

be

V. HIERARCHICAL DrcO'{POSITION AIfORITTIM

Following are the steps to solve the po$rer
flow equation.
1. Decomlnse the por.rer qlstem netrpork

hierarchically.
2. Renr-urber the nodes.
3. Form the tlAifl rnatrix for d.c. solution or

B' and B" for a.c. solut ion.
4. Solve equation (2) for d.c. solut ion, or

equations (5) and (6) for a.c. solut ion using
rethod described in Section IV.

5. Obtain d.c. 6Dvrer flow by using equation
(3) and for a.c, solut ion go to step 6.

6. Check power misnatch. ff within specified
tolerance limit then determine pCIn€r flow
else update egr:ations (5) and (6) and go to
steP 4.

too uw
LOAO

5 six bus neLlork base case d.c. load flow

I

Y =
Let

v t h e r e , ( j )  =  _  u ( j - r ) 6 ( i - r )  k  =  ( j + 1 ) 7  o o o l D
j k  j k  j j

For symetric natrix Arstructures of left (L) and
right (n) factor matrices are the sane and can
therefore be stored effectively in the matrix F as
follows, K I

" =l ' l  I-  
Lr , " l

Solution to equation (7) can be written as

R ( 1 )  R ( 2  ) . . . * ( n )  , ( n ) . .  . r ( 2  )  L ( I  )  b  ( 9  )

I ,{ lrere, individual values of 2.,  ,  z?r..znt can be
storecl. If the coefficients in- only' one proper
block have been altered ( for example in G., , of
Fig.3 ) then according to above fonrnrla and= the
nonzero pattern of Fig. 4, we have to calculate
new values of z.r ,t, zt r 21 and z.r , to obtain the
new vaLue of z. '= Frofn e{,rat ions'(9) and (10) ' ie
have,

( 1 0 )
["rl

,  = l? 
l= , , tn) . . . t (2)  L(r )  b

t ; l
L r !

lvrl
y  =  I t l  |  =  n ( I )  R(2 ) . . . * ( . )  ,

l . ly"l
If qle are interested in the solution for any
natrix, then only those elernents of y which
responds to suhnatrix specified are to
calculated.

+ 3 6 . 0  + ! 6 . 6



thus obtained are satisfactory and encouraging.
Allhough CPU t.ime for the present example was not
recorded and therefore, can not be compared,
trcwever, it is expected that for larger networks
and for contingency cases evaluation, the
presented algorithm will sfpw substantial
cornputational savings.

\rII. CONCLUSION

A hierarchical deconposition approach for
solving a d.c. load flow for a large poriter system
has been presented.  F i rs t ranalys is  o f  proper
blocks is perfonred and then subnetworks are
combined in  a  h ierarch ica l  manner  jo in ing two
subnetworks at any tine. Finally, solution for the
original netr.ork is obtained after all hierarchy
has been vorked through.

The algorithm discussed was tested on several
nnderate size power systems. The results obtained
vrere encouraging, sfowing feasibility of this
approach in pori,er qgstern analysis. Similar
approach can be developed for E.c. porder f low
solut ion as well .

Such an algorithm is suitable for large po'.€r
systenrs, since ccrnputational time can be reduced
by solving the subnetworks in parallel. The rost
important applicaLion of this approach is in
evaluation of contingency cases reguired in
planning and operational studies of the power
system. Since, dr.rring a contingenry there is a
change in coeff icients of a proper block and
complete analysis of the whole system is not
required and thus is gained further savings in
computational effort.
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