HIERARCHICAL DECOMPOSITION APPROACH TO D.C. POWER
FLOW SOLUTION

J.A. Starzyk

Electrical & Computer Eng. Dept.
Ohio University
Athens, OH 45701

ABSTRACT

This paper discusses an algorithm to solve the
d.c. power flow problem, In this method large
power systems are hierarchically decomposed into
small manageable subnetworks (blocks) using node
decomposition. These blocks are solved separately
and are interconnected to obtain the solution for
the subnetworks on the higher level of hierarchy.
Finally the solution for the original network is
obtained after all hierarchy has been worked
through.

I. INTRODUCTION

Power flow solutions of a large system have
always been limited because of its memory and
computational requirements. To achieve load flow
solution with limited computational resources,
following aspect of the problem were considered:

(1) sSparsity of the admittance matrix of
the power system,

(2) Decomposition (tearing) of power systems
network in smaller subnetworks (blocks)
to suit computational requirement.

(3) utilization of local effects under
contingency condition.

Sparsity of the admittance matrix of power
system network was exploited by storing nonzero
elements only and thus avoiding zeros in
mathematical operations [1]. Later network tearing
[decomposition] led to simplicity, but
simultaneous analysis of decomposed subnetwork was
not possible [2], A heirarchical decomposition
approach discussed in [3] could analyze large
power system network effectively by solving
decomposed  subnetworks simultaneously. This
approach would further be viable when
contingencies are simulated during operational and
planning studies of the power system,

In this paper heirarchical decomposition
approach has been illustrated to solve d.c. load
flow problem and further extended to solve
contingency load flow problem. This extention
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uses the fact (3) mentioned above and therefore
only locally affected subnetworks are solved and
solutions of the other subnetworks are retained
from the base case - resulting in computional
savings.

In the following sections of the paper,
firstly brief description of the hierarchical
decomposition of network is discussed. Then load
flow equations and their solution is described.
Later test result of the algorithm is discussed.

I.|". . HIERARCHICAL DECOMPOSITION

Matrix decomposition is based on its Coats
signal flow graph representation [4] in which a
square matrix A=[aij] is represented by a graph

with n nodes and k edges, where k is the number of
nonzero coefficients in A. In a Coates graph edge
directed from node xj to node X has a weight

equal to a4e (oats graph of a ocoefficient matrix
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is shown in Fig. 1.

Fig. 1 Coates graph of the matrix A of Example 1.

A signal flow graph is decomposed through its
nodes into two subgraphs (subnetworks). FEach of



these subgraphs can be decomposed further down to
a sufficiently small size. This kind of graph
decomposition is called hierarchical decomposi-
tion., The structure of hierarchical decomposition
can be illustrated by a decomposition tree. Nodes
of the tree correspond to subgraphs obtained on
different levels of decomposition. If a subgraph
Gj was obtained during decomposition of subgraph

Gi then there is an edge from the node
corresponding to G i to the node corresponding

to Gj' Fig. 3 shows the decomposition tree
corresponding to Fig. 2.

L.evel of decomposition:

G, W first
‘ -

third

Fig. 2 Three level hierarchical decomposition.

In the decomposition tree we have one initial

node - the one which is the starting point of
edges. Terminal nodes are those which are only
the end points of edges. All nodes that are not
terminal nodes are middle nodes. Subgraphs
associated with terminal nodes are called proper
blocks. We limit ourselves to bisection as the
only graph partition so that every middle node has
exactly two descendants. If m is the index of a
middle subgraph then two of its descendants have
indices 2m and 2mt+l, respectively. This way of
nutbering the graphs makes the analysis of
interconnections easier.

Fig. 3 Decomposition tree for Fig. 2.

Matrix Reordering: After all subgraphs have
been numbered according to the structure of the
decomposition tree, the nodes of a graph are
renumbered consecutively in descending order
starting from the partition nodes of the graph G,,
then the partition nodes of graph G, and G3 up \L.o
the last partition and then the intérnal nddes of
the proper blocks. After the renumbering, the
numbers associated with the graph nodes are called
original indices of the nodes. Such renumbering
corresponds to reordering the coefficient matrix.
An example for the matrix partitioned according to
Fig. 2 is shown in Fig. 4. There is a strict
correspondence between the set of partition nodes
of a middle graph and submatrices of the reordered
coefficient matrix. These submatrices are called

interconnection matrices as they represent
interconnection of two subsystems.
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Fig. 4 Nonzero pattern of a reordered coefficient
matrix.

III. POWER FLOW EQUATIONS

The power flow equations of a power system
under steady state condition are obtained by
equating the power injected into each node by
source or load and power transmitted from the node
via transmission network. Thus at ith node,



P, = PGi+PLi+PTi=Vi(Gik cos0; ) +B; ) sineik) (l.a)
Qi = QGi+QLi+QTi—Vi(Gik smeik-Bik coseik) (1.b)
where

PGi , PLi 'P'I‘i real powers injected into the ith
node by the generator, load and
ties connected to it,

Pi net real power injected into the
ith node,

QGi 'QLi’ i reactive powers injected into the
ith node by the generator, load and
ties connected to it,

0 net reactive power injected into
the ith node,

Viei camplex voltage at the ith node,

Gik’ Bik real and imaginary parts of Yik’
the elements in ith row & jth
column of the network admittance
matrix,

N number of nodes in the network,

eik = Qi - ek.

It is interesting to note that for the power
systems, Gik are small, 8k rarely exceeds 20~ and

the node/bus voltages rarely deviate by more than
10% from their nominal values.

If we make approximations Gikzo, smoikzeik,
and coseikr*_-'.l equations (1.b) reduces to the
decoupled reactive power flow equations

N
0;= - kz,__lBik Vi Vg
Further, in normal operation the per unit voltage
magnitudes V.l are close to 1. Therefore,
approximating V.= 1, equation (l.a) becomes
the d.c. load flow equation.

N
P, = z B,, (B8.- 8, )
i =1 ik i k

If the resistance is much smaller than the
reactance then

N

Writing this in matrix form,
) (5]

P

7, %)

2 - [1/xik} i (2)
n en

This equation can be solved for © and the
resulting power flow on the line can be obtained
by
= * -
Pik l/xik (ei ek) (3)

The power flow equations are very sparse and
mildly nonlinear. Using Newton's method and
treating node wvoltage magnitude and angle as
unknown, each iteration invloves solving a
linearized version of (1), namely.

H Nilae &P
= (4)
J LinvAal (AQ

Where H, N, J, and L constitute the Jacobian of
(1) ,06 and &V are vectors of corrections to the
estimates for node woltages and magnitudes and
AP,HQ are the mismatches between the respective
powers injected into and removed from the nodes.
In practice N and J are much smaller than H and L.
Therefore (4) may be approximated by,
per] = Eles] s

and

 Bop] - iRy )
Where B’ and B" are constant matrices. The
solution of a.c., load flow equations is obtained
by iterating (5) and (6) until mismatch satisfy
specified tolerance by the user. This method is
called decoupled load flow method.

IV. SOLUTION OF N LINEAR EQUATIONS

The set of n linear equations,

AY=D (7)
can be solved effectively, if A is a sparse
matrix, by using bifactorization method [5]. The
inverse of A can be expressed by a multiple
product of 2n factor matrices.
A 1. R(I)R(z)..R(n)L(n)..L(z)L(l) (8)
In order to find L and R the following sequence of
intermediate matrices is introduced:

RN
A1) L (1),(0),(1)
A0 2 L(),G-1),0)

() _ L), (n-D(n) _

Where reduced matrix A(J)
the following equations:
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A

has elements defined by

i3 ij ik
LG G
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a’’'=a 31
ik ik a
33

j being the piwotal index and for i, k =
(3+1),ev..0pn, (i)

The left-hand factor matrices L'3’ are very sparse
and differ from the unity matrix in column j only.
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i=(j+l),...,n



The right hand factor matrices R(J) are also very
sparse and differ from the unity matrix in row j
only. -

i
1
) . RRRCINEY
j.+l j
1 .
L l_l
where r'1) = - a(J—l)/a(J-l) k = (j+1), ...
ik jk 33

For symmetric matrix A, structures of left (L) and
right (R) factor matrices are the same and can
therefore be stored effectively in the matrix F as

follows, N
‘R
]
L \

Solution to equation (7) can be written as

y = R(l) R(Z)...R(n) L(n)...L(z) L(l) b (9)
Let
2
2 =12 =, L@ )y (10)
z

n|

Where, individual values of z,, 257442, Can be

stored, If the coefficients in" only one proper
block have been altered (for example in G of
Fig.3) then according to above formula and the
nonzero pattern of Fig. 4, we have to calculate
new values of Zygr 271 23 and z,, to obtain the
new value of z.” From equations (9) and (10) we

have,
¥y
Y.

y = 2 =R(1)R(2)...R(n) 2
Yn

If we are interested in the solution for any sub-
matrix, then only those elements of y which cor-
responds to submatrix specified are to be
calculated.

V. HIERARCHICAL DECOMPOSITION ALGORITHM

Following are the steps to solve the power
flow equation.
1. Decompose the power system network
hierarchically.
2. Renumber the nodes.
3. Form the [l/xik] matrix for d.c. solution or

B' and B" for a.c. solution.

4, Solve equation (2) for d.c. solution, or
equations (5) and (6) for a.c. solution using
method described in Section IV,

5. Obtain d.c. power flow by using equation
(3) and for a.c. solution go to step 6.

6. Check power mismatch. If within specified
tolerance limit then determine power flow
else update equations (5) and (6) and go to
step 4.

VI, TEST EXAMPLE

The data below is a listing of input data to
the six bus sample power system used to test the
method discussed in the paper.

NO. OF BUSES = 6 NO. OF LINES 11
NO. OF GENS. = 3 SWING BUS NO. 1
LINE DATA
FROM TO R X BCAP
1 2 0.1000 0.2000 0.0200
1 4 0,0500 0.2000 0.0200
1 5 0.0000 0.3000 0,0300
2 3 0.5000 0.1500 8.0300
2 4 0,0500 0.1000 0.0100
2 5 0,1000 0.3000 0.0200
2 6 0.0700 0.2000 0.0250
3 5 0,1200 0.2600 0.0250
3 6 0.0200 0.1000 0.0100
4 5 0.2000 0.4000 0.0400
5 6 0.1000 0.3000 0.0300
BUS DATA
BUS NO. GEN PU-MW VOLTAGE P LOAD Q LOAD
1 0.00 1,050 0.00 0.00
2 1.00 1.050 0.00 0.00
3 1.00 1.070 0.00 0.00
4 0.00 1.000 1.00 1.00
5 .0.00 1.000 1.00 1.00
6 0.00 1.000 1.00 1.00

The system description and test results of the
above example are shown in Fig. 5. Power flows
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Fig. 5 six bus network base case d.c. load flow



thus obtained are satisfactory and encouraging.
Although CPU time for the present example was not
recorded and therefore, can not be compared,
however, it is expected that for larger networks
and for contingency cases evaluation, the
presented algorithm will show substantial
computational savings.

VII. CONCLUSION

A hierarchical decomposition approach for
solving a d.c. load flow for a large power system
has been presented. First,analysis of proper
blocks is performed and then subnetworks are
combined in a hierarchical manner joining two
subnetworks at any time. Finally,solution for the
original network is obtained after all hierarchy
has been worked through.

The algorithm discussed was tested on several
moderate size power systems. The results obtained
were encouraging, showing feasibility of this
approach in power system analysis. Similar
approach can be developed for a.c. power flow
solution as well,

Such an algorithm is suitable for large power
systems, since computational time can be reduced
by solving the subnetworks in parallel, The most
important application of this approach is in
evaluation of contingency cases required in
planning and operational studies of the power
system. Since, during a contingency there is a
change in coefficients of a proper block and
complete analysis of the whole system is not
required and thus is gained further savings in
computational effort.
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