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Abstract

This paper presents an efficient technique for the
element evaluation in a Jlarge grid resistive
network. The method is based on the optimization
techniques applied in so called layer by layer
fashion. Computational requirements of this method
are compared with those of the direct optimization
technique wused in the impedance computerized
tomography. An example 1is given to illustrate the
method presented.

I. INTRODUCTION

The need for the element evaluation technique in a
large scale networks stems from the requirements
of the impedance computerized tomography (ICT)
technique used in medical diagnosis, subsurface
mineral exploration and material testing. The ICT

technique 1is being developed since 1978. 1In
contrast to the conventional tomography
techniques, this technique does not use x-rays,

but rather employs a weak electrical current to
map out the electrical properties of the tissues
in a tomographic slice. It is expected to have the
following advantages: (1) reduced biological
hazard for medical application, (2) less expensive
hardware, (3) expansibility to full 3-D image, and
(4) very high data rates.

In the ICT 1line integrals along curved paths
through the object must be solved. These paths are
object dependent, and hence their coordinates are
not known in advance. As a result, the
reconstruction process involves the solution of a
nonlinear system of equation. Several methods have
been developed to solve this nonlinear problem,
One is the guarding technique suggested by Price
[1]. This technique helps to mninimize the
nonlinearity of current paths. But unfortunately,
it does not force the current to flow straight in
an inhomogeneous medium, no matter how good the
guard electrodes are. In 1978 M. Tasto developed
the method [2], in which the resistivity profile
of an object is corrected by backprojecting the
difference between the measured and the calculated
resistance integral along the current path. M.
Tasto's method can only be used in the case of
small variations of resistivity. Similar to
Tasto's approach is the sensitivity method [3], iIn
which the resistivity profile of an object is
corrected by backprojecting the difference between
the measured and calculated current density.
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Network approach to the ICT was developed by K. A.
Dines and R. J. Lytle [4]. In their method, a
network model serves as a discrete approximation
of the distributed - parameter system., Its
conductivity image is generated by runing an
iterative process on network equations that are
linearized in unknown conductance variables.
Computer simulation studies using data generated
from the network model show good results and
demonstrate feasibility of this approach. The main
limitation for this method evolves from a 1large
number of equations one must solve simultaneously,
which take a huge computer memory and require an
exorbitant execution time. Also the error for
elements evaluated in the center is higher than
for those at the boundary.

In this paper a method which solves the nonlinear
problem through the network decomposition layer by
layer is introduced. Section II presents the
concept of the element evaluation based on the
direct method. Section III discribes the layer by
layer method and investigates computational
requirements of the proposed algrithm. Section IV
includes an example to demonstrate capabilities of

the method.

II. DIRECT METHOD

The element evaluation problem is to determine
values of the elements uniquely from the network's
behavior as seen from its external nodes. For a
given network, the transfer admittance 1is a
function of the element values and the topology of
the network.
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Assume the network has N elements and (mt+l)
external nodes. The number of independent
measurements taken from external nodes is M =
m(m+1)/2., Formulate the system equations as [5]
F(X) =0 (2)
T
with X = X1y Xy eers Xy 1
and F=] fl’ f2’ eeay fM ]T

These equétions are nonlinear and can be solved
iteratively using Newton—-Raphson algorithm
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where J = o is the Jacobian matrix, 0 <t <1

and k indicates the kth iterative step.

A necessary and sufficient condition for the local

solvability is that the system (3) is
overdetermined and consistent, i.e.,

M >N (5)
and rank( J ) = rank( J' ) = N (6)

where J' 1is the augmented Jacobian matrix [5].

The grid resistive network 1is chosen as a wmodel
(Fig. 1) and each edge of a grid represents an
unknown admittance. In this model we define a
layer as a subnetwork, which contains elements
adjacent to the perimeter of the current network.
If the grid network has L layers, then the number
of edges is

N = 8L + 4L (N
and the number of independent measurements is
M= m(m+1)/2 = 3212 - 4L (8)

It is obvious that M » N for L » 1 and computer
results shows that the system is consistent for
any size of grid models. So the grid model
satisfies the condition of local solvability. The
elements values can be determined provided that
good initial guess is given.

The Jacobian of the system (3) 1s a M x N matrix
and 1its size increases largely with the size of
the model. Refering to (7) and (8) we can
approximate the area required by 256L%, In medical
applications the minimum size of the model should
be 100 layers to obtain a clear picture. In this
case, the system will have 2.56x10 coefficients.

In order to reduce the computational effort, the
elements can be evaluated using multiple steps
procedure instead of using the direct evaluation
of all elements, as discussed in the next section.
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Fig. 1 The grid resistive network
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III. LAYER BY LAYER METHOD
In what follows we describe a decomposition
approach developed for the purpose of the elements
evaluation in a resistive grid network.

Divide the grid model into L layers. Lable layers
staring from the boundary to the center. The node-
admittance matrix Ynn is a band matrix as follows:
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The external admittance matrix can be

Y11(e)
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the to the
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The element evaluation 1is the reversal of the
suppressing process. Knowing Yll(e) from the
external measurements, elements will be evaluated
by retriving the internal nodes from the boundary

to the center. Equation (12) is solved to evaluate
the elements in the first layer and Yp;(,) needed

for the second layer evaluation. Once Y22(e) is
known, the elements in the second layer and Y33(e)

can be computed by solving (11). In the same way,
the remaining layers can be evaluated.

As an example consider the first layer evaluation.
Denote admittances of boundary elements by by

(1:1,2,...,1;;1) and the remaining elements of the
first layer by gj (3=1,2,...,m;=4). Define

-1
Z= XZZ(e) (13)

and (12) becomes
Iy "4~ Y2 2 Yy (14)

Note that Yj; 1s basically a three diagonal matrix
containing by and gj only and each entry of matrix
Y12 A Y5, 1is the product of three variables. The

element evaluation in each layer can be performed
in two stages: a set of equations to calculate gj

and z are selected from off-diagonal non-zero
entries in Yjj(e) ( 2pq are elements of Z ). When
g5 and z,q are known, b; can be obtained directly

from the remaining m; equatiouns in zll(e)'



At the first stage, the number of variables is
(15)
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where m2=m -8. We formulate the functions Y as
= Y 16
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and solve the nonlinear problem using
3, X ==-W (17)
where Jl is the Jacobian matrix of w.
and = [ 4G, 42 ] (18)

We find that the system is overdetermined but does
not have unique solution the rank of the system is
less than N;. The reason 1is that the number of

variables 1s increased by my When Yy, ., “l 46
replaced by Z. So my equations are added using the

zero~row-sum property of the indefinite-admittance
matrix. We define functions U as

m

m 1
u, =1y (1,3)+ ¥ v, (1,3), 1i=1,2,...,m, (19)
17,k 7220 R )

The linearized system of equations for U

1, X =-10 (20)
can be combined with (17) to obtain
Jax--x (2
where F = [ W, U1 (22)
) r oW W
% 3z
and J = - - (23)
- aU oU

The new system is consistent because the rank of
the augmented Jacobian matrix equals the number of

variables, i.e., rank(J')= Nj. So the values of
all variables can be obtained by the iterative
process.

The algorithm of
follows:
1. Form Yll(e) from the measurements and determine

the layer by layer method is as

the number of layers L in the grid model.
2. Calculate the number of external nodes m and
the number of variables N and give initial values

of the variable vector XO for the ith layer.
3. Compute Fk Jk and J'k based on Xk and evaluate

rank(J' ) for the kth iteration. If rank(J' ) >N,

the ystem is solvable. Otherwise it is not
solvable and the process stops.

4. Solve the linear equations Jk Axk = -Fk to get
Axk and update X using Xk 1 Xk AX (0<t <1).

5. If ] AX | and l AF I do not reach the required
accuracy, “then kek+l and go to 3.
6. Calculate b; after getting 8; and Zoq°

7. Store the values of elements on the £th layer
and compute Yz—l,z—l(e) for the next layer from E.

8. If %=1, then stop. Otherwise £=2-1 and go to 2.
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N = 32L° - 52L + 24
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X X 4 X
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Fig. 2 Dimension and nonzero pattern of J (23).

let us investigate the size of the Jacobian matrix
(Fig. 2). Since each function of W is the product

of three variables, J; 1is a very sparse matrix

although it is quite 1large. The sparse matrix
technique will be wused to save the memory and
speed up the computation. Jo 1s composed of two

parts: 9dU/3G and 3U/3Z. The first part is small
and sparse but the second part is dense since

m
aui/azpq = aljzlyzz(e)(i,j)]/azpq

m
B 2 y22(e)(i’p)y22(e)(q’j) (24)

j=1

The size of this part 1is nearly equal to 256L3
when L is very large. Comparing with the direct

method the size of the dense part is substantially

reduced from ~ L4 to ~ L3.

VI. RESULTS AND DISCUSSION

This layer by layer method was implemented and
tested using computer—-generated data for several
admittance patterns. For each pattern, Yll(e) was
computed based on the actual values of elements.
At each iterative step, the linear system (21)
was solved by Gauss—Jordan elimination wusing the
maximum pivot- strategy.

Example

As an example consider
Fig. 3. It can be divided into two layers:

the first layer;

the grid model shown in
by and

g; belong to Gk belong to the
second layer.
ba b5 b6
by &3 | & 5
b 82 c Cz c g5 b
2 1 3 8
g c g
1 4 6
b Eg &; b
b2 P Py
Fig. 3 The grid model for the example.



There are total 18 variables in the first stage:

X = 2032 43X 42, 52 z ]T
= e A R S PR kLA VAL P AL VAN
24 equations w.r.t. the entries in Yll(e) repre—
sented by the sign x (see Fig. 4(a))
define functions W,

v, = [gll(e)lkl + 832 pq8r

and rank(Jl') = l4. So additional 4
are as follows:

are used to

1=1,2,...,24  (25)

functions U

4
o = J.21"22(e)“’3) "8 " &
4
i’ jzlyzz(e)(z’j) T8 T8
4 (26)
uy jZlyzz(e)(3,j) -8, - &
4
Y j§1Y22<e>(4’1> T8 " &
The combined system of equations formulated as

(21) 1is consistent. 8; and z
the iterative process and results are listed in
Table. Nine iterative steps were needed to meet
requirements of the 0.12 precision. The non-zero
pattern of the Jacobian matrix is shown in Fig.
4(b). Denmsity of J; is 15% and the size of the

dense part is 4xl10.

pq can be obtained by

According to the algorithm in Section III,

be obtained using 12 equations w.r.t. the entries
in Yyj(e) represented by the sign * (Fig. 4 (a))

bi can

and ck can be calculated after inverting z.

X X X
X X X
X X X
X X X
X X X
x XX
XX x
. * * X X b4
* ., % XX XX XX X X x
* ,* xXX XX XX X X x
X X . * X X b4
X x * , % X X X X x X X
* ., * xx xx X X x
XX XXx*,%* X X X
XX xXxx * ,% xx X X X
* . k% x x X X X
XX XX X x* . % XX X
XX XX Xx %, % X X X
* * X X x
X X X
X X X
X X X
XX X
X X X
x AXXXXXXXXXK
XX XXXXAXXXXX
XX  XXXXXXXXXX
XX XAXXXXXXXX
(a) (b)

Fig. 4 Nonzero Entries of Y1(e) (a) and J (b).
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Table. Results
0 9
elements actual X | initial X computed X
values ~ values ~ values ~
g 1.000 1.500 1.000
g; 1.000 1.500 1.000
g3 1.000 1.500 1.000
gk 1.000 1.500 1.000
& 1.000 1.500 1.000
g6 1.000 1.500 1.000
8, 1.000 1.500 1.000
£g 1.000 1.500 1.000
Z 0.292 0.233 0.292
z, 0.083 0.100 0.083
23 0.043 0.067 0.043
2% 0.083 0.100 0.083
Z,, 0.292 0.233 0.292
zy3 0.083 0.100 0.083
Z,, 0.042 0.067 0.042
235 0.292 0.233 0.292
234 0.083 0.100 0.083
z 0.292 0.233 0.292
44
V. CONCLUSION

Results of our simulation study indicate that it
is feasible to estimate the elements values in a
large resistive network from the external
measurements. By using the layer by layer method,
the size of the dense part in the Jacobian matrix
is decreased from L~ to L3. Thus the computational
effort is 1largely decreased. Since each 1layer
evaluation depends on the results obtained from
the previous layer, a number of iterative steps is
needed at each layer to ensure accuracy. It is a
significant improvement for the ICT application.
This evaluation .method will be developed by
improving the numerical procudure to reduce error
and by combining parallel processing with
decompositon and sparse techniques to 1increase
efficiency. The method will be tested on
experimental data.
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