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ABSTRACT

This paper presents the theoretical background
for designing tests which are topologically
sufficient for evaluation of faulty parameters
within inaccessible faulty subnetworks. Nodal
voltages are assumed to be obtainable either by
measurements or, indirectly, as a result of a nodal
fault analysis. A formulation of nodal fault
analysis for subnetworks is presented.

INTRODUCTION

Fault diagnosis and automatic testing
technigues for analog circuits often require
parameter identification. Recent papers on the
subject [(1-5] present different techniques of
parameter indentification and/or fault region
location. For 1linear analog circuits, necessary
and sutficient conditions related to the network
topology have been formulated, resulting in the
identification of faulty nodes or subnetworks

[3-51.

The principal aim of this paper is to develop
topologically based necessary and sufficient
conditions for the evaluation of faulty elements
within a linear subnetwork under test with a
reasonably small number of excitations at a single
frequency and, thereby, a small number of
measurements, The paper extends the results
presented by Biernacki and Starzyk [2]. The Coates
flow graph representation of network elements 1is
used [61].

LOCATION OF FAULTY NODES AND DESIGN
OF NODAL VOLTAGES

Necessary and sufficitent conditions for
location of faulty nodes have been discussed [4]
for linear networks, and more generally (5] for any
subnetworks selected during the fault location
process 1n a large network., External voltages and
currents of a subnetwork may be measured or
designed through identification of nonfaulty parts
of a large network [5].

Consider the nodal equations for a nominal
subnetwork isolated during a fault location process
for a large network as

This work was supported by the Natural
Sciences and Engineering Research Council of Canada
under Grant A7239.

Hamilton, Canada L8S uL7

50 = !O !O. (1)

Four types of external nodes are associated
with this subnetwork: u-nodes, where both voltages
and currents are known; 3-nodes, where only
voltages are known; y-nodes, where only currents
are known; and &-nodes, where neither voltages nor
currents are known. We assume that ail the
elements spanned over the nodes 8 and & have been
arbitrarily associated with other subnetworks and
they are not represented in (1). 3See Fig. 1.

For the assumed faulty subnetwork, (1) can be
replaced by

I=7Yv. (2)
) 0,-1
Let Z denote a submatrix of (Y )
...a , b_...b ~
k 1 m
obtained by the intersection of rows a, u a, Uu... u

1 2
a, and columns b1 u b2 U ... u bm.

Let V“S, I“Y 36 be subvectors of vector V and I
respewcr,ivewly correspondmg to sets of nodes o u ;3.
@ uyand 83 u §. Let nodes n cuw u vy u ¢ be faulty
and card « > card § + card n.

Solving (1) we obtain

8 wyY 3é n
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Result 1

If the system of equations (3) is consistent and

Rank([Z ] > Rank(Z ] + card n , ()

~uB . BEnx ~uB,BS
where x € « U y u g-n , then the only faulty
elements can be those spanned over the set of nodes
F = nugud. These nodes are called faulty nodes
although there may be no faulty element incident
with g and &§.

%ssune that by solving (3) we have evaluated
Is, and 1", After solving (3), we can solve (2)
to get V. ~For all independent current excitations
we are.N therefore, able to calculate voltages in
the faulty network i1f the conditions of Result 1
are satisified. These voltages, which would
otherwise have to be measured, are required by the
approach presented in {2] for evaluating all the
elements of a network. In the present paper we
only need to evaluate unknown elements, i.e., those
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Fig. 1 Remote, inaccessible faulty subnetworks.
Wwnich are spanned over the faulty nodes.

ELEMENT EVALUATION FOR SUBNETWORKS
SPANNED OVER FAULTY NODES

The elements spanned over faulty nodes may
form separate subnetworks within a given subnet-
wOorkK, as shown in Fig. 1. The subnetworks may be
remote and inaccessible from the point of view of
direct excitation and measur=ment. We can
formulate conditions for element evaluation within
2acn ot these subnetworks separatzly and combine
the results obtained to establish conditions for
the wnole network. These conditions will show
which 2xternal nodes should be excited
independently to evaluate all faulty elements.

Consider a linear subnetwork spanned over N
faulty nodes. Let the N-dimensional vectors I_ and
v be subsets of I and V, respectively, corres-
55nding to this subnetwork. We can then write

=1", (5)
for the ith excitation. Our goal is to evaluate Y

and then the element values. For N independeﬁc
exzltations, we can write a matrix equation

oYy L 4
or
T.,T T
Ve Yoo= L, M
wnere the square matrix
A 1 2 . N
!t = [\Ls !s gs] (8)

is the matrix of voltage responses and the square
matrix
2 N

A 1
L firg ID ... 1)) (9

is the matrix of current excitations. From (6), we

find the unknown matrix Xs as
-1

g_s = ;t !t: (10)

provided that Vt is nonsingular.

Using the technique similar to that presented
in (2], we may select a sequence of rfduced
cut-sets. With some of the elements Yii € Y known
we can formulate a sequence of equationg describing
reduced cut-sets of the form

Y.

33, =J

T , _

yt[cj ! Bj] . = . ’ 1)

Y. I, .

33 1]

— k_J K J

where the k equations are chosen from (7) in such a
way that the square submatrix !;[Ci . B.], obtained
as the intersection of rows C. = 1., .., 1} and
columns B, = {j,, ..., 3.}, i§ nonsingular. Eccor—

ding to rdlationship (6). the matrix V, [C.IB.) can
J ~t J
be defined as

v. [C.iB.] = IT

' Ty-1 )
Yo TC5iB) = I LG50 (1) (+iB), (12)

where EI [C.i.] consists of rows Cj from lzvand
(‘{T)_1 {.1B.] consists of columns B. from (Yl)-’.
~3 J J ~s

On the basis of (12) and the Cauchy-Binet theorem
we may formulate the following result.

Result 2
The matrix !Z [CJ:BJ] is nonsingular if and only if
T
A, det I CHA.] £ 0, det Y (AIB.) 0, (13
34, Iy teia) Yo (AiB) 3

where Y (A ./B.) denotes the submatrix of Y

~ i s
obtainedbby rénoving rows Aj and coluans Bj'
Consider a sequence of sets B,, j = j1, [,
Jys which corresponds to a sequence”of reduced cut-
sets of the current graph of the subnetwork. Only

those reduced cut-sets will be considered for which
external currents, if any, can be specified. Based
on (6) and (11), the following result can be
sunmarized.

Result 3

Independent excitations which appear at or are
applied to the subset of nodes A < {1, 2, ..., N}
are sufficient for the identification of all
elements of Xs if and only if

T
¥ B, C. A.CA, det I C.iA.] £ 0
j o3¢ 3y I, (€50l
and det Y (A, | B.)) £ 0, ()
~5 ] J
where
d A, = d B, = d C.. 15)
car j car j car § (15

Nodes A in Result 3 can be chosen from a remote
inaccessible subnetwork, therefore we call them
injection nodes. For each subnetwork the set A
must be a subset of the external nodes of this
subnetwork.,

Location of Injection Nodes

A very efficient heuristic algorithm which
utilizes theoretical aspects discussed at this
section was presented in [2]. It allows us to find
a nearly minimal set of injection nodes in a time
which depends linearly on the subnetwork size. The



algorithm localizes injection nodes in such a way
that cthere exist a set of separate paths from
injection nodes to the nodes of each reduced
cut-set.

In particular cases, when the number of
injection nodes is too large because of the
subnetwork topology we can reduce them by adding
30me Known elements to the subnetwork under
consideration. For evaluation of faulty elements
within remote, inaccessible subnetworks, adding the
Known elements may be equivalent to considering an
augmented subnetwork which will centain faulty
nodes as wWell as some nonfaulty ones.

ELEMENT EVALUATION USING EXTERNAL
EXCITATION NODES

Let us assume that we have distinct, remote,
inaccessibla faulty subnetworks S1. «.., S, spanned
over faulty nodes within the subnetwork under
investization (see Fig. 2). According to Result 1,
the number of external nodes, where both voltages
and external currents are known, have to satisfy
the relation

[ )

card a > no (16)

i=t

"

where n. is the number of nodes in the subnetwork
Si' 42" can identify sets of injection nodes A ,
..., A" at which independent current excitations
could be forced. With 1independent excitations
appearing at injection nodes, we are able to

evaluate all elements within S1. ey Sf.

Let T be a subset of the external nodes of the
subnetwork S. Let G denote the Coates signal-flow
graph of 3, Let us assume that we have evaluated
faulty currents and designed nodal voltages. Let
ki = card A",

Lemma 1

If there exist ki simultaneous and separate

paths in G from T to A* not incident with other S,
nodes, then all the elements of Si can be uniquel§
identified.

Proof is based on the recognition of each

external nodes

test nodasw
/7 -~
=~ injection nodes — — —

cut-set in Si as a reduced cut-set in S,
Corollary 1

If Lemma 7 is satisfied for all A%, then T can
be chosen as a set of test nodes where independent
current excitations are applied, to evaluate all
faulty elements in S.

We want to have the cardinality of T as small
as possible, to minimize the number of tests and
designs of nodal voltages.

Corollary 4

card T > max ki' a7
The main goal is to find %, as small as possible,
so the technique described guarantees

identification of faulty elements effectively. For
most practical cases, card T is between 2 and 5.

Remark

For inaccessible subnetworks we design
currents flowing into them from the surrounding
network using the desizned voltages and nominal

element values first, and then proceed with element
evaluation within each of them as discussed.

Example

Assume that the nominal element values for the
network of Fig. 3 are:

Y, =1, Y, = 0.5, Y. = 0.3, Y, = 0.32,

1 2 3 4
Y5 : 0.2, Yg = 0.167, Y, = 0.143,
Yg = 0,125, Yo = 0.1, Yq = 0.2, Yy, = 0.1,
Y,, = 0.0833, Y,y = 0.0769, Y., = 0.0714,
Yi5 = 0.0667, Y, = 0.0625, Y,, = 0.0588, g = 8.5.

Four external points are available for voltage
measurements and current excitations at the nodes
1, 3, 4 and 7. Assume for simplicity that all
external nodes are of the a type. We have found
three faulty nodes, namely, 2, 4, 6 and evaluated
currents gn‘ n = {2, 4, 6}. The subnetwork spanned

subnetwork

Fig. 2 Faulty subnetwork under consideration,
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Fig. 3 Faulty network.
TABLE I 0.32925 0. 14264 Y3 + Yu 0.1564
NODAL VOLTAGES FOR THE EXAMPLE =
0.0u8524 0,076u466 -‘I'u 0.009183

Yoltage Excitation at Node
1 7
‘J1 0.77641 0.016174
V? 0.32925 0.048524
v ~0.0066477 0.175324
v; 0.14264 0.076466
V5 -0.57149 0.47525
V6 0.038418 0.091385
v, -0.9163 4.5309
vé -2.0943 -2.126

over the faulty nodes is a simple ladder network.
We can easily locate nodes 2 and 6 as injection
nodes sufficient for evaluation of the ladder
elements. According to Lemma 1 external current
excitations sufficient for element evaluation can
be made at nodes 1 and 7.

How we simulate the nominal network with inde-
pendent (unit) excitations at nodes 1 and 7 sep-
arately and evaluate currents En from equation (3).
With those currents and independent current excita-
tions we excite the nominal network to obtain the
current voltages as in Table I. Elements Y?, Yg.
1, and Y, are nominal as they are not spanned over
tZe faul%y nodes. Using the voltages from Table I
Wwe calculate external currents for the ladder sub-
network spanned over faulty nodes as equal to
- V.l Y Y, o+ (

- V1 ) Y. = 0.1564,

Vi3

12 11 2 2 2 57
I1u = (V.'3 - V1U) Y7 = -0.02135,
I16 = (V13 - V16) Y8 = -0.005633.

Similarly we can get

172 = 0.009188, I7u = 0.01414, I76 = 0.01049,

Equation (11) for the first reduced cut-set has the
form

12 Yy T3+ Xy Lo

Yy 72

Therefore,

and we get Y? = 0.333 and Y, = 0.25. In the next
two reduced Ctut-sets elements Y,, Y and Y7 are
evaluated respectively, with the help of voqtage
measurements as well as evaluated and nominal
elements.

CONCLUSIONS

The method presented enables us to find a
reasonably small number of excitation nodes which
are topologically sufficient for the identification
of all faulty parameter values of linear analog
subnetworks. This can be achieved by searching for
a "good" sequence of reduced cut-sets within the
subnetworks spanned over faulty nodes, whose
elements are consecutively determined from (11).
The number of excitations can be reduced by adding
external elements or some nominal ones in the case
of inaccessible subnetworks. ’
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