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1. INTRODUCTION

Signal flowgraph method of linear network analysis used
to be an attractive and convenient instrument only in the case
of very small networks. Elaboration of computer programs
/e.g. SNAP[4], NASAP [3]/ based on signal flowgraph represen-
tation of electronic networks has allowed to estimate real
possibilities of this method. In paper [4] the authors have
affirmed that "results from SNAP indicate that for reasonable
computing times, a 15-node, 30-branch network is about the
maximum that can be handled”. The restrictions on direct to-
pological analysis methods follow from exponential growth of
the number of terms in the Mason'’s formula for the network
determinant as a function of a graph nodes number. So no
matter how efficient technique will be used we shall not be

able to analyse directly large signal flowgraphs.

On the other hand various analysis programs based on
the numerical methods have been elaborated recently. They
allow to obtain symbolic functions of linear active networks.
An application of sparse matrix technique makes them very
efficient and fast. An application of diacoptic resulted in
further improvement of the numerical methods. But even then
they still do not ensure suffiecient accuracy in some practical
cases and still are not efficient enough for solving such
network design problems as centering and tuning. Many other
computational techniques used in computer aided analysis of

electronic circuits can be improved together with the method
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of solving the linear equations.

2. METHOD OF HIERARCHICAL ANALYSIS

The aim of this paper is the presentation of the compu-
ter implementation of the new topological signal flowgraph
analysis concept as well as some computational results and
remarks connected with the program to be discused. This reali-

sation is based on the recent papers of the authors [5,9].

Recently there has been published some papers on topo-
logical signal flowgraph analysis in an attempt to avoid the term
cancelation which can occur in Mason’s formula for the graph
determinant [6,7]. New signal flowgraph topological formulas
for the graph determinant have been proved. In these formulas
no term cancelation occurs. Simple criterions has been established
which permit to eliminate the duplicate terms during the genera-
tion routines. But still the number of terms to be generated
remains the exponential function of the number of graph nodes
and that may cause problems when greater networks will to be
handled.

In [ 5,9] the concept of hierarchical decomposition has
been presented. This method allows to obtain the involutive
dependance for analysis time in a function of graph nodes num-
ber. For quasi-optimal partitions the exponent of the power

is about 2.

A signal flowgraph can be decomposed in one of three
manners /see Fig.1/:

I Nodes decomposition. A graph is divided into edge disjoint
subgraphs, the sum of which contains all nodes of a graph.
Common nodes of different subgraphs are called block nodés.

II Edge decomposition. A graph is divided into node disjoint
subgraphs by extraction of a subset of the set of edges.

ITTI Hybrid decomposition - a combination of two previous decom-
positions.
In our presentation the edge decomposition and Coates repre-
sentation of electrical networks 2. will be used.
Let us cosider a flowgraph which can be a graph of an electri-

cal network or a graph of any system of linear equations as well.



We denote:
G(V,E) - a flowgraph with V - set of vertices and E - set

of edges,
W =<W1,W%) set of vertices such that Wl,W2<: V and
card W1 = card W2 = k.

Definition 1. We call a general k-connection of type CW any
spanning subgraph of G such that o forms in G k separated
paths with Wl set of begginings and W2 set of ends plus a set
of loops disjoint with these paths.

If a function w(e) is a transmittance of weight function
of graph edges, then a weight of a k-connection is defined as
follows

f(cw)= (-1)" / w(e) /1/

ec CW

where n denotes number of loops in Cue

Formulas for a determinant and a cofactor of a flowgraph

calculated with an aid of Mason’s rule are following

F(c)= Z £(c) /2/

ceC

-
D =ve= L (e /3/
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where W = <fi,j:>.
Let us denote:
ECut = cutset of a graph G;
\Y - set of vertices incident with E edges, block vertices;
cut cut

Gl(El, Vl), GZ(Ez, V2)— simple edge decomposition into two
disconnected gjraphs obtained from G after removing edges E ut”

Definition 2. Complete graph spanned on block vertices incident

with edges Ei is called a substitute graph for a subgraph Gi and
denoted Gi



C . d _ s S .
Definition 3. Graph G% = GlCZ)GZC:>cht(Ecut’cht> is called a

Substitute graph for a simple decomposition.

Definition 4. We consider a graph Gd with ordered set of nodes

/e.g. integer positive numbers/. k~connection Py of that graph

is called properly ordered one of the type CW if
a/ Py € CW '
_ S

b/ set of paths Zi =Py r\Gi

- has no longer than one element paths

- Wy > Lvywy> & 23 <V1 <V, =W, <w2>
The set of properly ordered k-connections of type CW we denote
PW’ and Wi are sets of border vertices of Gi edges.

Example_1. Let us consider a simple decomposition presented in

Fig.2. The set of properly ordered O-connections of the graph
¢d is ¢ = {{(1,1> p <L2,2> , B,3> , <4,4> ,C5,55 /
<6,6> F, {<,2> reyrey, <5,4>, <3,3> , <6,6> F,
<212 eyiey, <3,6> , <4,4>, <555 ) r{ejieyiege,,
(3ed> L 5603, {Aa> reqie,, <6,5> , L4,4>
<’3,3>}, {<2,2> reprey, <3,4> , s5,5> , <6,6>}}.

Theorem 1. In a case of simple edge decomposition the determinant

of a flowgraph can be calculated from the formula

AN \L_ (—1)nc £(E tac)F(cW) F(c, ) /4/
Cc & Cp i 1 2

F(cy) = Z f(cwi)

c e C
Wy Wy

where

N, - number of loops in c.

For a flowgraph with different edge transmittance the formula
/4/ has no reducible terms.

Analogous formulas can be formulated for flowgraph cofac-

tors.



When a simple decomposition is applied many times towards
the subgraphs obtained during previous steps we deal with the
hierarchical decomposition. The sequence of simple bisections
appearing in the hierarchical decomposition can be represented
as a tree of decomposition which vertices denote either substi-
tute graph when further partition occurs or final subgrarhs of

a decomposed graph. /Fig.3/.

3. MAIN CHARACTERISTICS OF THE PROGRAM OF ANALYSIS

The FORTRAN program FANES based on presented results has
been elaborated. As the input data the decomposed signal flow-
graph should be introduced. But as none restrictions are impo-
sed on the partition procedure the decomposition can be carried
out automatically. Any efficient algorithm for graph partition
can be used. Many of them have been recently elaborated /e.q.
see [8]/. The program realizes formula /4/ in the hierarchical
structure. 5 polynomials of the network are computed in fully
symbolic form and presented as polynomials of Laplace variable s.
We start analysis by determining properly ordered connections
of the substitute graph from the level 1. On each stage when
during the analysis we deal with the substitute graph we con-
tinue procedure on the lower level according to the structure
of the hierachical decomposition tree and f£ind k-connections
of the type determined on the previous level /theorem 1/.
Computations are organized in the way that maximal number of
incidence matrices treated simultaneously is not greater

than number of levels in the tree of decomposition.

The edge decomposition and the notion of properly ordered
k-connection enables us to such organisation of the program
that connections are determined in groups which reduces the
number of transfers in the hierarchical structure and as result

the time of calculations.

If we analyse a signal flowgraph of an electrical twoport
5 characteristic polynomials of the network can be obtained

from the formulas



k;, = N/F(C) /s
kg = N/F(C)) /6 /
kg = N/(F(c ) -Flc )-F(C) +F(caf)> /7/
ki = N/(F(cb)—F(cc)—F(ce)+F(cf)) /8/
N = F(Cy)- F(cg> /9/

where indices represent additional edges shown in Fig.4.

The formula /4/ has no reducible terms if all flowgraph
edge transmittances are different. It is not the case with
various flowgraph representations of electrical networks. This
is the cause of reducible terms in Mason'’s formula. We shall
show now how strong is the dependance of the number of
generated terms on the variables choosen as vertices for

the signal flowgraph.

On purpose to profit the automatic formation of a flow-
graph for an electrical network, two models of oneport have
been examinated /see Fig.5/. As an example let us consider a
passive ladder filter with 11 admitance branches and 7 nodes.
In the table I the results of computation for both representa-
tions are compared.

All computation of FANES have been executed on CDC
Cyber 73.

T

TABLE I
cpargcte- Representation 5b Representation 5c
ristic po- .
. no of edges 44,no of | no of edges 49, no of verti
lynomials
vertices 7 ces 16
No of Execution N° of Execution
terms time(sec) terms time(sec)
n. 797 .05 53 .16
in
n 549 .04 133 .19
uu
n . 248 .03 80 .13
ui
n. . 360 .04 32 .11
n 4 .02 4 | .03




It is evident that with the 5c representation number of generated
terms is much reduced in comparision with 5b graph. In the case
of the analysed filter the column 3 gives the exact number of
terms for characteristic polynomials so no reduction occurs.

The inconvenience of the 5c¢ representation is that the num-

ber of edges and vertices is greate:r than for 5b which in

spite of less term number causes longer computation time.

To give the idea of the increase of computation time
with the size of analysed graph, we shall present some exam-

ples:

a/ a flowgraph of an equalizer with 180 edges and 24 nodes -
time of computation of semisymbolic form of voltage transfer

function 11 sec

b/ a calculation of semisymbolic form of a determinant of

matrix (72)(72) with 204 nonrzero elements - time 10 sec

c/ time of generation of a transfer function of a resistive
ladder in comparison with other symbolic or topological
methods is shown in a table II. /Compare [107/.

TABLE II
Number of nodes Execution time in sec
including ref.node
FANES SNAPEST NAPPE SNAP

11 .10 .298 1.23 3.27

13 .11 .370 1.67 19.8

15 .14 .463 2.35 140.%

17 .19 .567 3.12 16 min¥

' *astimated

4. CONCLUSIONS

The paper presents computer implementation and short review
of an efficient topological method for generating symbolic form
of transfer function for large networks. The method shown in the
paper presents usual advantages of topological analysis like

e.g.:



1/
2/

3/
4/

5/
6/
7/

8/

High accuracy of computations
Reduction of the total computation time when the big number of

frequency points or of changes of elements values is requested

Simplification of sensitivity analysis
Possibility of accomplishment of approximative symbolic

analysis

Possibility of generation of macromodels transfer functions
Simplification of time-domain analysis
Easier stability analysis and determination of zeros and

poles of transfer functions
Easier tolerance, centering and statistical analysis.

The presented method can still be improved. At present

the modified hierarchical analysis method is elaborated. The

analysis will be started now on the lower level of decomposition.

Estimations of the method permit to affirm that new approach

can result in diminution of computation time with only slight

increase of the computer memory demand.
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Fig.1l. a/ Node docomposistion b/ Edge decomposition
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