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This paper addresses the problem of fault location in analog circuit

under voltage measurements.

With a sufficient aumber of voltage

measurements the least squares criterion 1Is efficiently employed to

identify faulty elements and calculate their values.

The L1 norm 1is

utilized in isolating the wmost likely faulty elements under a given

and limited number of measurements.

Examples demonstrating the effec-

tiveness of the proposed methods in locating the faulty elements are

presented.

1. INTRODUCTION

In recent years a considerable amount of
effort has been directed towards tech-
nigques by which the problem of fault loca-
tion can be approached. The main objective
of fault diagnosis is to detect the faulty
elements {a the clrcuit.

By a fault we mean in general any change
in the value of the element with respect
to {ts nominal value which can cause the
failure of the circuit performance.

Fault location can be done by the method
which identifies all element values [1],
aud then compares the nominal and actual
values. The fault evaluation is thus being
done simultaneously with the fault detec-
tion. However, this parameter iden-
tification approach needs a sufficient
number of independent voltage measurements
and is computationaly demanding.

With a limited number of independent
voltage measurements fault locatlion is
carried out by identifying the faulty com-
ponents under the assumption that there
are very few of them and values of
remaining components are within their
tolerances [2].

In this paper we discuss two efficient
approaches for fault locatfion.In the first
one, we formulate the fault location
problem as an unconstrained optimization
problem with least squares objective func-
tion. The outcome of this optimization
problem is a complete identification of
all network elements and consequently
location of the faulty elements that drift
out of their tolerances. In the second
approach, we utilize the L, norm in esti-
mating the most likely fauity elements.

At the end we give examples demonstrating
the capabilties of both methods in the
detection of faulty elements.
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2. PARAMETER IDENTIFICATION

The parameter identification problem can
be formulated in the following way. Given
a sufficient number of independent voltage
measurements greater than the number of
the elements of the faulty network, 1t {is
required to identify all the elements of
the network. The circuit under test is
assumed to be of known topology. In
general a subset of network nodes are
accessible nodes (test nodes) where volta-
ges and/or currents can be applied and/or
measured and the rest of the nodes are
internal nodes (inaccessible nodes), at
which neither voltages nor currents can be
applied or measured. It 18 further assumed
that the nominal element values are known.

One then desires to identify the elements
of the circuit by performing measurement
at the test nodes. The faulty elements are
consequently identified by determining
which circuit’'s element values fall out-
side the tolerance margins.

In what follows we present a simple for-
mulation that employs the least squares
criterion to identify all network ele-
ments.

First of all we simulate the network with

nominal element vyalues to get the computed
voltage vector V . Then we measure volta-

ges at the test nodes to get the voltage
measurement vector V . This will enable us

to construct the following objective func-
tion

n
2
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where I is the set of accessible nodes,
and n is the number of independent

excitations.



It should be noted that V" is a constant

vector. It is clear that the minimization
of the above objective function will yield
to the identification of all the element
values of the circuit under test. The
objective function P is considered as an
uncoastrained optimization problem, which
can be solved very efficieantly utilizing
appropriate optimization techniques [3],
to find the values of all elements.

The question that arises immediately is
how to choose the nodes for independent
current excitations (excitation nodes) to
obtain independent measurements especially
for large size networks. Different appro-
aches have been suggested to partially
answer this question ([4,5].

The selection of the excitation nodes can
be based on a rank test. Similar to the
work presented in [4], it can be shown

that for the local uniqueness of the solu-
tion we must select the set of the excita-
tion nodes such that the matrix ann is
of full rank, where
T
Boxn “2n xam Ay X n (2)
e e
A is the matrix of the derivatives of

~ axm
e

the voltages measured with respect to the
elements of the circuit at each excitation
n is the number of network elements, and
m_is the number of accessible nodes
multiplied by the number of excitations.

3. FAULT LOCATION USING THE L

1 NORM
In this section fault location is dis-
cussed with a limited number of indepen-
dent voltage measurements. Obviously the
identification of all network elements in
this case is impossible. The fault loca-
tion 1s done by identifying the faulty
elements under the realistic assumption
that they are very few in number and the
relative changes 1in thelr values are
significantly larger than in the non-
faulty ones.

The fault diagnosis problem is generally
formulated as follows [6]. Given AV® ag

the m - dimensional vector of the changes
of the measured voltages from their nomi-
nals, determine the associated n - dimen-
slonal vector of the changes of the
elements from nominal values A$ where

A% , (3
and 8 is the m x n gensitivity matrix.
Equation (3) 13 an underdetermined system
of equations 1in the parameters A¢. A least
one objective function 1s utilized to
estimate the most likely faulty elements.
The problem 1s formulated as a linear
optimization problem in the following way.
Find the vector A¢é which minimizes the

objective function,

n ady

i=1

(4a)
4
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subject to

- 0, jeI (4b)

V3

where voltages v:
single excitation. The normalization

with respect to the nominal element values
¢° is recommended especially when the
nominal values of the elements are varied
over a wide range.

are measured under a

This objective function penalizes the non-
zero elements in the solution exploiting
the properties of the L, norm. A nonzero
element of Ad ifimplies failure of the ele-
ment assoclated with it.

It is the authors' experience that the
discontinuities of the derivative of F, at
A¢, = 0, may cause some practical probfems
wh%n uging general optimization algrithms
that can not deal with the-L1 norm objec~
tive function.

In order to avold these problems we define
a 2n - dimensional vector X > O

such that,

LI U and X 41 " 0 1f a4y 2 0
x; = 0 and Kopqg = ~héy if Apy < 0
(5
where A¢1- L PR S

the optimization problem presented in (3)
can be restated as follows,
Find the vector X which minimizes

2n
F, = | x (6a)
2 151 i
subject to
o c
v, - v, =0 , jelm (6b)
and X >0

Although the number of variablies is dou-
bled, the problem described by equations
(6) is easier to be solved than the one
described by (4) and usually leads to more
accurate results.

4. EXAMPLES

To {llustrate the methods two examlpes
were run on the CDC 170/815 system and
results obtained are presented in Tables I
and II.

Example 1

Consider the resistive network shown in
Fig 1. which was originally considered by
Bandler et al [2]. The nominal values of
elements G, = 1 and tolerances g, = ¢ 0.05
, i=1,2,....,20. The outside nodes are as-
sumed to be accessible with node 12 taken
as the reference node. Nodes 4,5,8,9 are
internal nodes where no measurements can
be applied.

Two faults are assumed in the network el-
ements G2 and 818' For case 1, we selved
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the wunconstrained optimization problem

(1) with independent excitations at nodes
For Case 2,

1,6 and 7. we counsider the

Fig. 1 The resistive network
optimization problem described
a single excitation at node 1.
cases the faulty elements have
correctly identified as we can

by (6) with
In both
been

see from

Table T.
TABLE I
RESULTS FOR EXAMPLE 1
Percentage Deviation
Element Actual Casgse 1 Case 2
Gy -2.0 0.0 -1.0
G2 -50.0 -48.0 -50.2
G4 4.0 5.1 0.0
GA -3.0 -4 .0 0.0
65 -5.0 -2.0 -2.5
G6 -1.0 2.0 0.0
G7 2.0 4.0 0.0
GS 5.0 1.5 0.1
09 2.0 1.0 0.0
G10 -2.0 -1.0 0.0
G11 4.0 1.0 1.2
Gya 1.0 2.0 0.0
G13 -1.0 1.5 0.0
Gy -2.0 -3.0 0.5
G15 2.0 1.5 0.0
G16 -4.0 -3.8 0.0
G17 2.0 0.0 1.3
G18 -50.0 48 .2 -49.2
Glg -2.0 -3.9 -1.0
G20 -4.0 -4.6 -2.0

Example 2 [7]

Consider the single stage transistor
amplifier gshown in Fig.2 with its equiva-
lent circuit in Fig.3. Three faults are
assumed in Cl,r" and gy+ We excite the

circuit at node 1 with angular frequency
= 0.01 rad/sec and simulate voltage
measurements at the accessible nodes
1,2,4,5 and 6. For the sake of comparison
we have quoted the results presented, in
[2], which are referred to as case 1
Table II. For case 2 we again apply the
optimization problem described by (6). In
both examples the obtained results repre-
sent an improvement over those in [2],
with the estimated changes in the faulty

in
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elements approaching theilr true values.
For example, using our approach g _was
detected as a faulty element where as in
the method described in [2], g has not
been detected as a fault. o

It is obvious that if we use more than one
excitation for case 2, then we add more
information about the network. Accordingly
the problem becomes less underdetermined
and the proposed method is expected to
give better results.

1
Re

Rg

L Vout

Iia Ry Rb
Re ¢

T

Fig. 2 The transistor amplifier circuit
TABLE IT,
RESULTS FOR EXAMPLE 2
Percentage Deviation
*

Element Actual Case 1 Case 2
c, -50.00 -48 .68 -48.23
Rs 2.56 0.0 1.73
L 2.00 0.0 0.52
r 66 .66 -12.93 -22.36
et -6.66 0.0 0.0
e” -4.00 -0.32 0.0
8y -50.00 0.0 ~46 .34
R -2.00 -1.36 -1.28
C2 -5.00 -0.65 -1.37
R 3.00 1.43 0.78
R, -1.96 4,97 -0.42
[ -5.00 0.0 0.0
Rf 0.50 ~1.43 0.54

+ A faulty element has not been detected

5. CONCLUSIONS

Two approaches for fault location in ana-
log circuits have been presented and com~
putational results discussed. They depend
upon voltage measurements using current

excitations. The least squares criterion
is effectively employed to ldentify all
element values and consequently the faulty
elements are located. With the practical
restriction on a number of independent
voltage measurements we exploited the pro-
perties of the L, norm in estimating the
most likely faulty elements. The proposed
modification of the least one objective
fupction allows us to obtain improvement
over the fault location technique pre-
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Fig. 3 The amplifier equivalent circuit.

sented in {2], giving better estimates for
element values. Illustrative examples
which clearly indicated the efficlency of
the proposed approaches are presented .
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