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Abstract

A software program that can be considered as a tool
for the fault diagnosis of analog linear circuit is
presented. The proposed program implements a
numerically efficient approach to identify complex
ambiguity groups in the case of circuit of great size
and low testability. This approach is based on an
efficient QR factorization technique applied to the
testability matrix. An amplifier circuit is shown as
example of application of the software program.

1 Introduction

In analog circuit testing, an effort of fundamental
importance is constituted by fault diagnosis and fault
location. These testing phases play an essential role in
design validation and prototype characterization
because they alow to improve the yield through
design modification. In the past years, fault diagnosis
and fault location received the attention of many
researchers (see, for example, [1-5]), especialy for
what concerns the automation of fault diagnosis
procedures [6]. In fact, for analog and mixed digital-
analog systems, the lack of simple fault models and
the presence of component tolerances and circuit
nonlinearities make the automation of fault diagnosis
and fault location procedures very complex. As a
consequence, while for digital circuits fully automated
fault diagnosis techniques are commonly used, for
analog circuits, the development level is less
advanced. The information obtained by the ambiguity
groups determination helps to find unique solution of
fault diagnosis equations or identifies which groups of
components can be uniquely determined.

When, as it usually happens, the testability
value is less than the total number of potentially faulty
circuit components, the problem is not uniquely
solvable and it is necessary to consider further
measurements, or to accept a reduced number of
potentially faulty components for the circuit under
consideration. Since not all test points are feasible

due to the practical and economic measurement
constraints, and since the number of faulty
components is generally smaller than the total number
of circuit components, the fault diagnosis problem
must be curtailed. In such situation a quite realistic
hypothesis is assumed that the number of faulty
components is bounded, that is the k-fault hypothesis
is made.

Under this hypothesis, in order to locate the
faulty elements with as low as possible ambiguity, it is
of fundamental importance to determine a set of
components which is representative of all the circuit
elements. To accomplish this, it is necessary to
determine not only the circuit testability but also the
canonical ambiguity groups. Roughly speaking, an
ambiguity group is a set of components that, if
considered as potentially faulty, does not give a unique
solution in fault location. A canonical ambiguity
group is simply an ambiguity group that does not
contain other ambiguity groups.

An efficient algorithm for the computation of
ambiguity groups has been proposed by Stenbakken,
Souders and Stewart [7]. Recently the authors [8]
have developed a new method for the determination of
all the canonical ambiguity groups of a circuit. This
algorithm finds all possible ambiguity groups and all
the sets of circuit parameter values that are consistent
with the test equations. However, the proposed
algorithm is combinatorial in nature and is useful only
for small analog circuits. A new method to overcome
this limitation uses the QR factorization of the circuit
testability matrix [9].

In this paper a software program
implementing the algorithms proposed in [9] for
determining all the possible ambiguity groups of a
linear analog circuit with low testability and all the
sets of circuit parameter values which are consistent
with the test equations is presented. The program is
based on an efficient QR factorization of the circuit
testability matrix and on the use of symbolic analysis
techniques. The symbolic analysis is a procedure that
permits one to obtain, as a result of a computer
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program, circuit network functions in a closed form,
where some or all the circuit elements and the
complex frequency are represented by symbolic
parameters. Hence, the symbolic analysis is
particularly suitable for testability evaluation and
ambiguity group determination, where the component
values are the unknown quantities. It allows to realize
very simple algorithms dedicated to these problems by
exploiting the determination of the nonlinear fault
diagnosis equations in symbolic form with respect to
both complex frequency s and component values [10]
and, subsequently, the sensitivity analysis of these
equations [11].

2 Theoretical basis and softwar e or ganization

For low testability system, no simple solution can be
found using traditional solving methods for system
test equations, because they are singular. In what
follows we concentrate on this kind of systems. If the
fault equations are known, the potentially faulty
parameters vector P (the faulty parameters number is
equal to p) can be related to the measurements vector
V (the number of measurements is m) by using the
testability matrix B as follows:

BP=V 1)

where B is testability matrix of order mxp, obtained by
the Jacobian of the fault equations or it is a matrix
used in linear verification techniques [12-13]. Vectors
P and V constitute the parameters variations and
measurement variations with respect to the nominal
circuit, if the testability matrix is obtained from the
Jacobian. If the test equations are derived as
discussed in [12-13], the two matrices directly
represent the parameter values and measurements,
respectively. In both cases, each circuit parameter is
related to a specific column of the testability matrix.
Hence the ambiguity groups determination is based on
the correct identification of the sets of linearly
dependent columns that belong to the testability
matrix. Let us remind that we are considering low
testability circuits, hence the matrix B does not have
the full column rank. In such case, the matrix B can
be partitioned into two submatrices B=[B1 B2 ] which
are linearly dependent:

B2=B1C 2

where mxr matrix B1 has the full column rank equal
to the rank of the matrix B, and the columns of rx(p-r)
matrix C represent an expansion of the corresponding
columns of B2 in the basis vectors obtained from the
columns of B1 . Due to the role of the matrix C in the
expansion of the dependent columns of B into a set of

the basis columns we cal C a linear combination
matrix. Moreover when the QR factorization is
performed the following equation can be written:

BE= QR 3)

where E is pxp column selection matrix, Q is a mxm
orthogonal matrix and R is mxp upper triangular
matrix. In the presence of ambiguity groups in the
testability matrix B, its rank and the rank of R are less
than p. Therefore, matrix R can be written as
_ &Rl R2 (4)
= é “
g0 oy
where R1 is rxr upper triangular and has its rank
equal to the rank r of the testability matrix B. Hence
the linear combination matrix C can be numerically
obtained from the QR factorization of the testability
matrix B using:

C=RI'R2 (5)

Furthermore the product B E = [B1 B2 ]
constitutes a partition of B that defines C, with the
matrix Bl that corresponds to R1 representing the
independent set of columns. From the definition of
the matrix it can be noticed that different partitions
define different linear combination matrices C.

We have also introduced the definition of
basis of a partition as the set of components that
correspond to columns of matrix B1 and the co-basis
as a set of components that correspond to columns of
matrix B2. In [9] it has been demonstrated that is
possible to determine a combination matrix C written
in a minimum form, that is a matrix with a maximum
number of zero elements. A minimum form C is not
unique. It is enough to switch a component of the
basis (that corresponds to a row of C with a single
nonzero component) with the corresponding
component of the co-basis (that corresponds to a
column which includes this nonzero component) to
obtain another minimum form of C. The
corresponding partition (2) is called a canonical form
of the testability matrix [9].

Moreover, as is well known, the testability
measure defined as the rank of the testability matrix is
independent on parameter values, which means that
the rank of the testability matrix is equal to a given
testability measure amost everywhere in the
parameter space. This result can be extended to ranks
of all submatrices of the testability matrix that are
used to determine the existence of ambiguity groups.
Under this assumption we may study properties of the
linear combination matrix C considering its
equivalent binary matrix D that has the same size as C



and it can be obtained by considering equal to one the
corresponding elements of C that are different from
zero while the remaining ones are considered equal to
zero. As in matrix C, rows of D correspond to the
elements of the basis and columns correspond to the
elements of the co-basis on a given partition of the
testability matrix. This equivalent representation
simplifies the analysis of C as the set theory can be
used to study its structural properties.

It has been shown in [9] that a suitable
elaboration of the matrix D allows us to determine all
the canonical ambiguity groups, hence the clusters of
ambiguity and the surely testable components of the
circuit under test without considering all the possible
combinations of sets of columns and in a shorter
number of iterations. In fact the computational
complexity of this approach that identifies ambiguity
groups is on the order of O(p3 ) that is much smaller
than the computational cost of checking all
combinations of p columns that is on the order of O(
2° p*). This exponential dependence of the search time
on the number of tested parameters renders ambiguity
analysis by using the previous combinatorial
approach, impractical for all but very small designs.
Hence this new procedure has been implemented in a
software program that, starting from the circuital
scheme of the device under test, is able to determine
in an efficient way the ambiguities information also in
the low testability case.

A program called ATES (ambiguous test
equations solver) was developed using Matlab. Using
B and M matrices as input, it automatically gets all
useful results quickly, finding ambiguity groups,
minimum form of matrix D, and the solution of faulty
parameters. Fig. 1 illustrates the software organization
of program ATES.
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Fig.1. Software Organization of ATES

3. Circuit example

Let us consider an IC differential amplifier as an
example to which the procedure has been applied. Fig.
2 shows the amplifier’s topology and the p transistor
model used in simulation.
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Fig. 2 Differential amplifier as a low testability circuit.

The program Sapwin [14] has been used and
integrated with the new software to produce the fault
equation, written in a symbolic form, corresponding to
the voltage answer to a differential voltage input.
Using such test point, the testability value is equal to
six while the circuit parameter number is equal to
thirteen: we are in a low testability case. Hence the
herein presented procedure has been applied to the
fault equation giving the results of Fig. 3
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Fig. 3 Software program results.

It is important to notice how information about the
circuit ambiguities constitutes a fundamental step of
the fault diagnosis process. In fact in this case the
minimum size of the canonical ambiguity groups is
equal to four, allowing a unique identification for the
potentially faulty parameters for the case of double
fault [8], whatever fault location procedure will be
used following the fault diagnosis process.

4 Conclusions

A software program for the determination of
ambiguity groups in low testability systems has been
presented. The developed algorithm has a very modest
computational cost comparing to the combinatorial
method proposed in [8]. This alows to efficiently
deal with analog circuits that are more complex and of
alarger size than those considered in [8]. Although a
unigue solution is not always possible in such systems,
our method provides the best possible alternative. The
method provides a unique solution for all testable
components. In addition, components within an
ambiguity group have unique solution under the
assumption of the number of faults being smaller than
the rank of the corresponding ambiguity group. The
program results can constitute the first step in the
development of a procedure for the fault location of
analog linear circuits, because they represent
theoretical and rigorous upper limits to the degree of
solvability of the faulty component location in low
testahility circuits.
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