
A SELF ORGANIZED CLASSIFIER BASED ON MAXIMUM INFORMATION INDEX
AND ITS DEVELOPMENT USING VHDL

Janusz Starzyk Yongtao Guo

School Of Electrical Engineering and Computer Science
Ohio University

Athens, OH 45701, U.S.A.
{Starzyk,gyt}@bobcat.ent.ohiou.edu

ABSTRACT

An entropy-based self organized learning algorithm is
presented for classifier design. The method, which is based
on ideas from information theory, maximizes the
information index during feed forward learning in ANN.
The neuron in the architecture divides the subspace based
on the division of previous neurons which are connected to
the current neuron by some probability distribution.
Utilizing the entropy-based evaluator (EBE), the neuron
further divides current subspace via optimal selection of the
subspace control neuron, feeding features and fitting
functions. Our method is simulated on standard benchmark
examples and achieves performance improvement over
many traditional classifier algorithm. The hardware
development in behavioral level simulation using VHDL
gains satisfactory results and provides significant reference
to FPGA synthesis in structural level.

KEYWORDS: Self Organized, ANN, Entropy, VHDL and
FPGA

1 INTRODUCTION

Artificial neural networks (ANNs) derived from the field of
neuroscience display interesting features such as
parallelism, adaptation and classification. Data processing
with ANN mimics the parallel, adaptive, neural structures
of the brain for reproducing some of its capabilities and has
wide research and application values . Classifier design is
one of the important research and application field in ANN.
To implement classifier, there are many methods including
learning machines, neural network and statistical methods.
Our proposed ANN classifier method based on information
theory demonstrates to perform well in comparis on with
many conventional classifier method.

The proposed self organized learning algorithm is derived
from both neural networks and information theory. In
information theory, entropy maximization problem is seen
to be equivalent to a free energy minimization in a closed
system, motivating our entropy based approach to minimize
the misclassification cost. Based on our previously

proposed method [1][2], in this paper, we will future
explore and explain our method from our current
development.

When we design and simulate the algorithm, we already
consider the implementation of the algorithm. Custom
hardware requires significant non-recurring engineering
(NRE) cost which makes ANN difficult to implement.
FPGAs are readily available, reconfigurable and have
smaller NRE costs – all important advantages for ANNs
applications. VHDL provides a convenient construct for
the implementation of ANN into FPGA. This paper also
presents our development approach for hardware
implementation of the ANN classifier. Currently the EBE
module has been developed and presented at RTL level
[2]. In this paper, we will introduce the whole system
development using VHDL at behavioral level .

In section 2, the self organized learning algorithm
development is introduced. Section 3 deals with the
algorithm s imulation using both MATLAB and VHDL.
Finally, a conclusion is given in Section 4.

2 ALGORITHM

Let (){ }cS ,ν= be a training set of N vectors, where

nv ℜ∈ is a feature vector and Ζ∈c is its class label

from an index set Ζ . A classifier is a mapping

Ζ→ℜnC : , which assigns a class label in Ζ to each

vector in
nℜ . A training pair () Sc ∈,ν is misclassified

if () cC ≠ν . The performance measure of the classifier is
the probability of error, i.e. the fraction of the training set
that it misclassifies. Our goal is to minimize this cost and it
is achieved through simple threshold searching based on
maximum information index, which is calculated from
estimated subspace probability and local class probabilities .
In the latter section of the paper, we will list the
comparison of the probability of error b etween a number of
existing classifier algorithm with our self organized
approach. Here we estimate the probability distribution of

the training data and calculate the system entropy. Then we
use entropy based information index to built the neural
network structure in the learning process. The entropy
calculation is performed in parallel in different neurons to
speed up the learning process. Several EBE units are used
to accomplish this learning and self-organizing task. The
number of EBE depends on the design area requirement
and the number of neurons per a single layer. The learning
idea is derived from the notion of a “fitness” functional,
suitably chosen to represent the clustering problem.
Mathematically the fitness functional class has the form
f(S; C, T) where S is a coving of training set T and C is the
class distribution of T. Since f must correlate to how well a
function can emerge from the network (the resulting
clustering function), f depends on the netwo rk organization
and the goal is thus to optimize f for all possible coverings
S that can be represented by a given organization. For any
covering S represented by the given organization (i.e., an
optimal classification), the function f must be chosen such
that its value can be computed with little overhead (such as
in polynomial time with respect to input size), this way we
can verify in a tractable manner whether this value is within
an acceptable range of values that correspond to "good"
solutions, normalized with respect to the given
organization. Since it is impracticable to examine all
possible coverings, the approach taken is that each
computing fitness function for each computing element is
chosen in the statistical sense: f(S';C',T') =
H(C':S';T')/ H(C';T') where H(C':S';T') is the mutual entropy
of the local distribution of classes C' among the chosen set
T' (subset of T) of samples of local features and the
distribution of clusters S' among these sample features;
H(C';T') is the entropy of the distribution of classes among
the chosen samples. The clustering is thus solved
cooperatively by all the resulting active neurons and
f(S;C,T) reflects the cooperative nature of the algorithm. So
the algorithm is self organized dynamic learning process.

In the algorithm implementation of the self-organizing
learning model, the ANN is a feed forward structure. It has
a prewired organization that contains a number of identical
processing blocks (called neurons), which are pseudo-
randomly connected to the input nodes and other neurons.
In addition, EBEs are utilized to select a proper operation
representing the different fitness function and input
selection for each neuron. In the learning process, the set
of training signals is searched sequentially class by class to
establish the optimum point (threshold) which best
separates the signals of the various training classes. The
quality of the partition is measured by the entropy based
information index defined as follows :

max/1 EEI ∆−= where

∑∑ ∑ +−=∆
s

sssc
s c

sc PPPPE)log()log(

and ∑−=
c

cc PPE)log(max

here
cP ,

sP ,
scP represent the probabilities of each

class, attribute probability and joint probability
respectively. The summation is performed with respect to
all classes and subspaces. The information index should be
maximized to provide an optimum separation of the input
training data. The competition among neurons is realized
by maximizing information content in neurons. When the
limit value of the information index equals to 1, the
problem at hand is solved completely, i.e. the training data
is correctly classify by the ANN. The training objective is
to find a threshold value which maximizes normalized
information index I in the separate neurons. The threshold
value searching is also subject to current confidence value.
If acceptable confidence value is achieved and the current
neuron reaches some information index threshold, the
neuron will be counted as voting neuron. Several voting
neurons are weighted together to solve a given problem.

3 SIMULATION

A Algorithm Simulation

The EBE algorithm is first verified by Matlab simulation in
both behavioral and structural level. The simulation result
obtained in structural levels is shown in Fig. 1.

In this example, two one thousand, one-dimensional and
normally -distributed points with different mean values and
variances are taken as training data. In the behavioral
simulation, we use 8-bit widths to represent the input
analog data and set threshold searching step to be
maximum quantification noise. In order to simplify
hardware used for EBE, an effect of round off errors on the

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15
computation comparation with quantization and lut

I

Threshold Index

caculated
hardware simulated

Fig.1 Structural Simulation

In
fo

rm
at

io
n

In
de

x

accuracy of the resulting information index is considered.
The first test performed is to determine the dependence of
the information index error on the number of bits used in
hardware implementation. For simple verification, we use
two classes training data with three dimensions per class. In
every dimension, there are one-thousand normally
distributed random values with different mean value and
variance.

Using the above EBE module, our system simulation which
implement our self organized learning algorithm is based
on a typical credit card problem which has two classes to
recognize. Several classification algorithm is tested on this
benchmark [3] including some traditional learning
machines, neural network and statistical methods. Our
method is in the last two item in the table 1 [4].

Method Miss
Detection
Probability

Method Miss
Detection
Probablity

CAL5 .131 Naivebay .151
DIPOL92 .141 CASTLE .148
Logdisc .141 ALLOC80 .201
SMART .158 CART .145

C4.5 .155 NewID .181
IndCART .152 CN2 .204

Bprop .154 LVQ .197
Discrim .141 Kohenen -

RBF .145 Quadisc .207
Baytree .171 Default .440
ITule .137
AC2 .181 SOLAR*

(single)
.183

k-NN .181 SOLAR*
(ensemble)

.135

* SOLAR is our Self-Organizing Learning Array System[4]

B. VHDL Simulation

The use of VHDL has a number of advantages over
conventional hardware design techniques like schematic
capture. Its high level syntax is not very different from
conventional imperative programming languages, thus the
design effort is not significantly different from writing a
software simulation of a ANN. And VHDL supports
extensive optimizations. We use VHDL to describe a
digital system at the behavioral level so that we can
simulate the system to check out the algorithm used and to
make sure that the sequences of operations are correct.
Fig.2 is the EBE module RTL level simulation, the
simulation match the Matlab simulation results. We add the

PCI bus interface modules into the design and organize
them as a hierarchical structure. The first level in
hierarchy is the PCI interface which includes DMA,
FIFO,etc. The Plog(P) function is implemented by the
ROM LUT with 5-bit width address. Other units adopt 8-bit
data flow. The outer modules like PCI interface, FIFO and
so on are linked to EBE module by 32-bit data bus. In the
process of simulation, we use the lowest 10 bits as the data
channel I from Class I and the upper 10 bits as the data
channel II from Class II. From the simulation results, we
can see that the data are transferred and controlled by the
signals -Request, Start, Done, OE and current state. The
interface and control signals are transferred between EBE
interface and PCI and between Control unit and other
modules. After the current threshold reaches the maximum
threshold set by the generic parameter, the Done signal will
be set to High and the simulation process will be over. The
last output threshold will be the classification threshold for
the current dimension of the classes. In the EBE calculating
process, the input data will be resended each time the
threshold is updated by the generic threshold step
parameter while the signal Request to the interface model
will be set to low. The Request, Done, Start, OE are also
used as the handshake signal groups for the synchronized
work of the whole hardware module. The simulation results
are obtained by using Aldec-HDL [5] simulator. Most of
units including PCI bus interface are synthesized using
logic synthesis tool, Leonardo yielding the gate level
structure of the full EBE model.

The whole system simulation using VHDL is at behavioral
level to verify the system adaptability in FPGA hardware.
The VHDL system simulation hierarchy architecture in
behavioral level is shown in Fig.3.

Fig. 2 EBE VHDL Simulation at RTL

CLK

DATA

Start

Request

Done

N_1

N_2

OE

MuxSelect1

MuxSelect2

in_data

Threshold

in_threshold

Curr_Entropy

Max_Entropy

out_data

OutThreshold

State

Nextstate

34 45 56 67 78 89 9A AB BC CD DE

0E 17

3 3 3 3 3 3 3 3 3 3 3

0E 17 1E 1B 10 06

34 45 56 67 78 89 9A AB BC CD DE

0E 17

0E 17 1E 1B 10 06

1 1 1 1 1 1 1 1 1 1 1

67

EF

1E

0

0

00

EF

1E

00

3

0

ns6 8 10 12 14 16 18 20 22 24 26 28

Table 1 Miss Rate for Algorithm

The topmost design is the description for system input and
output, the initialization and the update of the memory
element in the network including reading the training data

(){ }cS ,ν= and writing the learning results. The
initialization is used to build up the initial 2D neural
network mesh architecture including neurons’ connections
and fitting functions. The fitting functions are treated as
low-level, canonical neural functions. Ideally they should
satisfy closure and completeness. Completeness guarantees
that the set is sufficient to implement any function; Closure
guarantees there’s no outlier function that cannot be
uniformly approximately by a series expansion based on
the kernel set. Fig.4 gives a learn result of one neuron in
the mesh using the VHDL simulated data including the
original training data. For the neuron ID 5, the selected
input subspace is the entire space for the raw input data, the
neuron ID 5 uses the composite fitting function to evolve
the learning space shown as the below part in Fig.4.

The set of fitting functions on the original data feed into the
current neuron and the neuron output indicates that the
neuron has gained enough knowledge to resolve the
classification problem in the given subspace. In the 2D
lattice, we use Manhatan distance as a distance measure for
any given pair of neurons. There is only one nearest
neighbor from pervious layer, at most three available next
nearest neighbors and all neurons with distance greater than
two are considered remote. The learning process is a
supervised learning procedure assuming that the class
information is given. Subspace learning is based on local
optimization of mutual entropy between the class and the
subspace, generally the subspace learning is to explore the
best local transformation which is restricted to a given set
of kernel functions, their linear combinations and
composites. So the classes are optimally separated into
subspaces. Once certain neuron’s information index
reaches maximum, the related information is updated in
neuron’s memory. At the same time, if the calculated
information index reaches some generic maximum value,
not much information can be gained for further dividing the
selected subspace and the neuron will be labeled as
“voting” neuron to cooperate with other voting neurons in
testing stage when the learn ing is over. All these functions
are given in hierarchical organization. Package 0 gives the
necessary initiation function, kernel function and other
calculation function. Package 1 implements EBE
calculation based on current threshold. Package 2 calls
EBE calculation to seek optimum threshold to reach
maximum information index. Package 3 carried out the self
organized learning to update the neurons’ information
memory . Fig .5 gives the final learned self organized
architecture based on VHDL system simulated data using
small number of neurons.

Fig.5 Learned Architecture

Fig.3 System Hiera rchy Architecture

Fig.4 Training data & Neuron ID5 Output Subspace

4 CONCLUSION

In the paper, we presented a self organized ANN classifier
design based on information entropy. The algorithm based
on ideas from information theory maximizes the
information index during feed forward learning in ANN. So
the neuron networks will be self organized connected and
the processing function is searched to achieve optimal
division of the current subspace. Once the informa tion
index reaches some certain threshold, the neuron will be
labeled as voting neuron. The voting neurons vote to
classify the input data. The developed models have been
verified by both Matlab and VHDL simulation results. We
used the VHDL simulation to verify the hardware
organization and operation at structural level and whether
the selected bit widths for internal and external signals are
sufficient for achieving a required computation precision
under certain confidence values . In classification area, the
necessary calculation accuracy varies by application. The
low precision can simplify the hardware implementation
complexity and speedup the performance. The EBE
module, consisting of calculating unit, a memory unit and
a few digital components, has been modeled and
simulated in VHDL at structural level. Experimental results
show that the obtained classification of the training data by
system behavioral VHDL simulation matches closely with
that anticipated from the analysis results. Our next
objective is to construct a parallel self organized neural
networks classifier using Virtex FPGA [6] from Xilinx
Corp , verify hardware training phase and test the approach
in the real world applications.

In our proposed method, although it achieves good
performance over many traditional classifier algorithm, we
still need consider other aspects including both information
theory and neural networks itself. For instance, one of the
possible consideration is more efficient cooperative and
competitive information control which can mediate
between cooperation and competition during neuron’s
learning. On the other hand, the hardware implementation
on FPGA is limited by the reconfigurable hardware
resource, especially the connection between neurons.
Similar to the currently implemented ANN chips, our ANN
architecture inevitably has high interconnection
requirement including long line to connect to remote
control neurons which is very limited resources inside
FPGA . So except the consideration of our algorithm, the
hardware architecture is also our future work.

5 REFERENCES

[1] J. A. Starzyk and J.Pang, “Evolvable binary artificial
neural network for data classification.”, The 2000 Int. Conf.

on Parallel and Distributed Processing Techniques and
Applications, (Las Vegas, NV, June 2000).
[2] J.A Starzyk and Y. Guo, “Entropy-Based Self-
Organized ANN Design Using Virtex FPGA”, the Int.
Conf. on Engineering of Reconfigurable Systems and
Agorithms, (Las Vegas, NV, June 2001).
[3] D.Michie, D.J.Spiegelhalter, and C.C.Taylor, “Machine
learning, Neural and Statistical Classification” London,
U.K. Ellis Horwood Ltd.1994.
[4] J. A. Starzyk and Zhen Zhu, “Software Simulation of a
Self-Organizing Learning Array System”. Presented to Int.
Conf.,(Canada,2002).
[5] Aldec, “Aldec-HDLTM Series User Guide Version 4.1”,
August 2000.
[6] Xilinx, “The Programmable Logic Data Book”, 1993.

