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ABSTRACT 
 
An entropy-based self organized learning algorithm is 
presented  for classifier design. The method, which is based 
on ideas from information theory, maximizes the 
information index during feed forward learning in ANN. 
The neuron in the architecture divides the subspace based 
on the division of previous neurons which are connected to 
the current neuron by some probability distribution. 
Utilizing the entropy-based evaluator (EBE), the neuron 
further divides current subspace via optimal selection of the 
subspace control neuron, feeding features and fitting 
functions. Our method is simulated on standard benchmark 
examples and achieves performance improvement over 
many traditional classifier algorithm. The hardware 
development in behavioral level simulation using VHDL  
gains satisfactory results and provides significant reference 
to FPGA synthesis in structural level. 
 
KEYWORDS: Self Organized, ANN, Entropy, VHDL and 
FPGA  
 

1 INTRODUCTION 
 
Artificial neural networks (ANNs) derived from the field of 
neuroscience display interesting features such as 
parallelism, adaptation and classification. Data processing 
with ANN mimics the parallel, adaptive, neural structures 
of the brain for reproducing some of its capabilities and has 
wide research and application values . Classifier design is 
one of the important research and application field in ANN.  
To implement classifier, there are many methods including 
learning machines, neural network and statistical methods. 
Our proposed ANN classifier method based on information 
theory demonstrates to perform well in comparis on with  
many conventional classifier method. 
 
The proposed self organized learning algorithm is derived 
from both neural networks and information theory. In 
information theory, entropy maximization problem is seen 
to be equivalent to a free energy minimization in a closed 
system, motivating our entropy based approach to minimize 
the misclassification cost. Based on our previously 

proposed method [1][2], in this paper, we will future 
explore  and explain our method from our current 
development.  
 
When we design and simulate the algorithm, we already 
consider the implementation of the algorithm. Custom 
hardware requires significant non-recurring engineering 
(NRE) cost which makes ANN difficult to implement. 
FPGAs are readily available, reconfigurable and have 
smaller NRE costs – all important advantages for ANNs 
applications. VHDL provides  a convenient construct for 
the implementation of ANN into FPGA. This paper also 
presents our development approach for hardware 
implementation of the ANN classifier. Currently the EBE 
module has been  developed and presented at RTL level 
[2]. In this paper, we will  introduce the whole system 
development using VHDL at behavioral level  . 
 
In section 2, the self organized learning algorithm 
development is introduced. Section 3 deals with the 
algorithm s imulation using both MATLAB and VHDL. 
Finally, a conclusion is given in Section 4. 

 
2 ALGORITHM 
 
Let ( ){ }cS ,ν=  be a training set of N vectors, where 

nv ℜ∈  is a feature vector and Ζ∈c is its class label 

from an index set  Ζ . A classifier is a mapping  

Ζ→ℜnC : , which assigns a class label in  Ζ  to each 

vector in 
nℜ . A training pair ( ) Sc ∈,ν  is misclassified 

if ( ) cC ≠ν . The performance measure of the classifier is 
the probability of error, i.e. the fraction of the training set 
that it misclassifies. Our goal is to minimize this cost and it 
is achieved through simple threshold searching based on 
maximum information index, which is calculated from 
estimated subspace probability and local class probabilities .  
In the latter section of the paper, we will list the 
comparison of the probability of error b etween a number of 
existing classifier algorithm with our self organized 
approach. Here we estimate the probability distribution of 



the training data and calculate the system entropy. Then we 
use entropy based information index to built the neural 
network structure in the learning process. The entropy 
calculation is performed in parallel in different neurons to 
speed up the learning process. Several EBE units are used 
to accomplish this learning and self-organizing task. The 
number of EBE depends on the design area requirement 
and the number of neurons per a single layer. The learning 
idea is derived from the notion of a “fitness” functional, 
suitably chosen to represent the clustering problem. 
Mathematically the fitness functional class has the form 
f(S; C, T) where S is a coving of training set T and C is the 
class distribution of T. Since f must correlate to how well a 
function can emerge from the network (the resulting 
clustering function), f depends on the netwo rk organization 
and the goal is thus to optimize f for all possible coverings 
S that can be represented by a given organization.  For any 
covering S represented by the given organization (i.e., an 
optimal classification), the function f must be chosen such 
that its value can be computed with little overhead (such as 
in polynomial time with respect to input size), this way we 
can verify in a tractable manner whether this value is within 
an acceptable range of values that correspond to "good" 
solutions, normalized with respect to the given 
organization.  Since it is impracticable to examine all 
possible coverings, the approach taken is that each 
computing fitness function for each computing element is 
chosen in the statistical sense: f(S';C',T') = 
H(C':S';T')/ H(C';T') where H(C':S';T') is the mutual entropy 
of the local distribution of classes C' among the chosen set 
T' (subset of T) of samples of local features and the 
distribution of clusters S' among these sample features; 
H(C';T') is the entropy of the distribution of classes among 
the chosen samples.  The clustering is thus solved 
cooperatively by all the resulting active neurons and 
f(S;C,T) reflects the cooperative nature of the algorithm. So 
the algorithm is self organized dynamic learning process. 
 
In the algorithm implementation of the self-organizing 
learning model, the ANN is a feed forward structure. It has 
a prewired organization that contains a number of identical 
processing blocks (called neurons), which are pseudo-
randomly connected to the input nodes  and other neurons. 
In addition, EBEs are utilized to select a proper operation 
representing the different fitness function and input 
selection for each neuron. In the learning process,  the set 
of training signals is searched sequentially class by class to 
establish the optimum point (threshold) which best 
separates the signals of the various training classes. The 
quality of the partition is measured by the entropy based 
information index defined as follows : 

max/1 EEI ∆−= where 

∑∑ ∑ +−=∆
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here  
cP , 

sP , 
scP   represent the probabilities of each 

class, attribute probability and joint probability 
respectively. The summation is performed with respect to 
all classes and subspaces. The information index should be 
maximized to provide an optimum separation of the input 
training data. The competition among neurons is realized 
by maximizing information content in neurons. When the 
limit value of the information index equals to 1, the 
problem at hand is solved completely, i.e. the training data 
is correctly classify by the ANN. The training objective is 
to find a threshold value which maximizes normalized 
information index I in the separate neurons. The threshold 
value searching is also subject to current confidence value. 
If acceptable confidence value is achieved and the current 
neuron reaches some information index threshold, the 
neuron will be counted as voting neuron. Several voting 
neurons are weighted together to solve  a given problem. 
 

3 SIMULATION 
 
A Algorithm Simulation 
 
The EBE algorithm is first verified by Matlab simulation in 
both behavioral and structural level. The simulation result  
obtained in structural levels is   shown in Fig. 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this example, two one thousand, one-dimensional and 
normally -distributed points  with different mean values and 
variances are taken  as training data. In the behavioral 
simulation, we use 8-bit widths to represent the input 
analog data and set threshold searching step to be 
maximum quantification noise. In order to simplify 
hardware used for EBE, an effect of round off errors on the 
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Fig.1  Structural Simulation 
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accuracy of the resulting information index is considered. 
The first test performed is to determine the dependence of 
the information index error on the number of bits used in 
hardware implementation. For simple verification, we use 
two classes training data with three dimensions per class. In 
every dimension, there are one-thousand normally 
distributed random values with different mean value and 
variance.  
 
Using the above EBE module, our system simulation which 
implement our self organized learning algorithm is based 
on a typical credit card problem which has two classes to 
recognize. Several classification algorithm is tested on this 
benchmark [3] including some traditional learning 
machines, neural network and statistical methods. Our 
method is in the last two item in the table 1 [4].  
 

Method Miss 
Detection 
Probability 

Method Miss 
Detection 
Probablity 

CAL5 .131 Naivebay .151 
DIPOL92 .141 CASTLE .148 
Logdisc .141 ALLOC80 .201 
SMART  .158 CART  .145 

C4.5 .155 NewID .181 
IndCART  .152 CN2 .204 

Bprop .154 LVQ .197 
Discrim .141 Kohenen - 

RBF .145 Quadisc .207 
Baytree .171 Default .440 
ITule .137   
AC2 .181 SOLAR* 

(single) 
.183 

k-NN .181 SOLAR* 
(ensemble) 

.135 

* SOLAR is our Self-Organizing Learning Array System[4] 
 

 
     
 
 

B. VHDL Simulation 
 
The use of VHDL has a number of advantages over 
conventional hardware design techniques like schematic 
capture. Its high level syntax is not very different from 
conventional imperative programming languages, thus the 
design effort is not significantly different from writing a 
software simulation of a ANN. And VHDL supports 
extensive optimizations.  We use VHDL to describe a 
digital system at the behavioral level so that we can 
simulate the system to check out the algorithm used and to 
make sure that the sequences of operations are correct.  
Fig.2 is the EBE module RTL level simulation, the 
simulation match the Matlab simulation results. We add the 

PCI bus interface modules into the design and organize 
them as a  hierarchical  structure.   The first level in 
hierarchy is the PCI interface which includes DMA, 
FIFO,etc.  The Plog(P)  function is  implemented by the 
ROM  LUT with 5-bit width address. Other units adopt 8-bit 
data flow. The outer modules like PCI interface, FIFO and 
so on are linked to EBE module by 32-bit data bus. In the 
process of simulation, we use the lowest 10 bits as the data  
channel I  from Class I  and the upper 10  bits as the data 
channel II from Class II. From the simulation results, we 
can see that the data are transferred and controlled by the 
signals -Request, Start, Done, OE and current state. The  
interface and control signals are transferred between EBE 
interface and PCI and between Control unit and other 
modules. After the current threshold reaches the maximum 
threshold set by the generic parameter, the Done signal will 
be set to High and the simulation process will be over.  The  
last  output threshold will be the classification threshold for 
the current dimension of the classes. In the EBE calculating 
process, the input data will be resended each time the 
threshold is updated by the generic threshold step 
parameter while the signal Request to the interface model 
will be set to low. The  Request, Done, Start,  OE are also 
used as the handshake signal groups for the synchronized 
work of the whole hardware module. The simulation results 
are obtained by using Aldec-HDL [5] simulator. Most of 
units including PCI bus interface are synthesized using 
logic synthesis tool, Leonardo yielding the gate level 
structure of the full EBE model.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The whole system simulation using VHDL is at behavioral 
level to verify the system adaptability in FPGA hardware. 
The VHDL system simulation hierarchy architecture in 
behavioral level is shown in Fig.3.  

Fig. 2 EBE VHDL Simulation at RTL 
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Table 1 Miss Rate for Algorithm 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The topmost design is the description for system input and 
output, the initialization and the update of the memory 
element in the network including reading the training data 

( ){ }cS ,ν=  and writing the learning results. The 
initialization is used to build  up the initial 2D neural 
network  mesh architecture  including neurons’ connections 
and fitting functions.  The fitting functions are treated as 
low-level, canonical neural functions. Ideally they should 
satisfy closure and completeness. Completeness guarantees 
that the set is sufficient to implement any function; Closure 
guarantees there’s no outlier function that cannot be 
uniformly approximately by a series expansion based on 
the kernel set.  Fig.4 gives a learn result of one neuron in 
the mesh using the VHDL simulated data including the 
original training data.  For the neuron ID 5, the selected 
input subspace is the entire space for the raw input data, the 
neuron ID 5 uses the composite fitting function to evolve 
the learning space shown as the  below part  in Fig.4. 

 
 

The set of fitting functions on the original data feed into the 
current neuron and the neuron output indicates that the 
neuron has gained enough knowledge to resolve the 
classification problem in the given subspace.  In the 2D 
lattice, we use Manhatan distance as a distance measure for 
any given pair of neurons. There is only one nearest 
neighbor from pervious layer, at most three available next 
nearest neighbors and all neurons with distance greater than 
two are considered remote. The learning process is a 
supervised learning procedure assuming that the class 
information is given. Subspace learning is based on local 
optimization of mutual entropy between the class and the 
subspace, generally the subspace learning is to explore the 
best local transformation which is restricted to a given set 
of kernel functions, their linear combinations and 
composites. So the classes are optimally separated into 
subspaces. Once certain neuron’s information index 
reaches  maximum, the related information is updated in 
neuron’s memory. At the same time, if the calculated 
information index reaches  some generic maximum value, 
not much information can be gained for further dividing the 
selected subspace and the neuron will be labeled as 
“voting” neuron to cooperate with other voting neurons in 
testing stage when the learn ing is over. All these functions 
are given in hierarchical organization. Package 0 gives the 
necessary initiation function, kernel function and other 
calculation function. Package 1 implements EBE 
calculation based on current threshold. Package 2 calls 
EBE calculation to seek optimum threshold to reach 
maximum information index. Package 3 carried out the self 
organized learning to update the neurons’ information 
memory . Fig .5 gives the final learned self organized 
architecture based on VHDL system simulated data using 
small number of neurons.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5  Learned Architecture 

 

Fig.3  System Hiera rchy Architecture  

Fig.4  Training data & Neuron ID5 Output Subspace 



4 CONCLUSION 
 
In the paper, we presented a self organized ANN classifier 
design based on information entropy. The algorithm based 
on ideas from information theory maximizes  the 
information index during feed forward learning in ANN. So 
the neuron networks will be self organized connected and 
the processing function is searched to achieve optimal 
division of the current subspace.  Once the informa tion 
index reaches some certain  threshold, the neuron will be 
labeled as voting neuron.  The voting neurons  vote to 
classify the input data. The developed models have been 
verified by both Matlab and VHDL simulation results. We 
used the VHDL simulation to verify the hardware 
organization and operation at structural level and whether 
the selected bit widths for internal and external signals are 
sufficient for achieving a required computation precision 
under certain confidence values . In classification area, the 
necessary calculation accuracy varies by application. The 
low precision can simplify the hardware implementation 
complexity and speedup the performance. The EBE 
module, consisting of calculating unit, a memory unit  and 
a few   digital components, has been modeled and 
simulated in VHDL at structural level. Experimental results 
show that the obtained classification of the training data by 
system behavioral VHDL simulation matches closely  with 
that anticipated from the analysis results. Our next 
objective is to construct a parallel self organized neural 
networks classifier using Virtex FPGA [6]   from Xilinx 
Corp , verify hardware training phase and test the approach 
in the real world applications.  
 
In our proposed method, although it achieves good 
performance over many traditional classifier algorithm, we 
still need consider other aspects including both information 
theory and neural networks itself. For instance, one of the 
possible consideration is more efficient cooperative and 
competitive information control which can mediate 
between cooperation and competition during neuron’s 
learning. On the other hand, the hardware implementation 
on FPGA is limited by the reconfigurable hardware 
resource, especially the connection between neurons. 
Similar to the currently implemented ANN chips, our ANN 
architecture inevitably has high interconnection 
requirement including long line to connect to remote 
control neurons which is very limited resources inside 
FPGA . So except the consideration of our algorithm, the 
hardware architecture is also our future work. 
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