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Abstract −−  In this paper, a self-organizing learning array 
(SOLAR) and its hardware-software (HW/SW) co-simulation 
are presented. In SOLAR, every neuron maximizes its 
information index during feed forward self-organizing learning. 
SOLAR was simulated on benchmark examples and showed 
good ability to learn exceeding the performance of many 
traditional classifier algorithms. A simple HW/SW co-simulation 
method was adopted to avoid the use of two simulators and 
complex inter-process communication. In this co-simulation 
method, software is modelled using behavioral, and hardware 
using structural hardware description language (VHDL) models. 
Their interface is also modelled in VHDL.  

1 INTRODUCTION 

Artificial Neural Networks (ANNs), derived from the 
field of neuroscience, display interesting features such 
as parallelism, adaptation, and ability to learn. 
Classifier design is an important application of ANNs 
in such areas as metrology, microbiology, and radar 
based target recognition. There are many methods to 
implement classifier including learning machines [1], 
neural networks [2] and statistical algorithms [3]. 
SOLAR is a parallel signal processing hardware with 
relatively sparse interconnections between processing 
components (neurons). It differs from classical ANNs 
in the way it is organized and how it learns. Its most 
important advantage over ANNs is that it scales well in 
hardware. While classical ANNs are wire dominated 
(wiring area grows as a cube of the number of 
neurons), SOLAR’s interconnection area grows almost 
linearly with the number of neurons. SOLAR classifier 
performed well in comparison with many specialized 
machine learning algorithms and outperformed all 
ANNs [4]. Its idea is derived from both neural 
networks and information theory. SOLAR hardware 
organization was reported in our pervious work [5]. It 
will be explored further in this paper. 
 
    Considering SOLAR has complex self-organizing 
architecture and performs very data-intensive 
computing, we adopted hardware-software co-design 
approach. In hardware-software co-design, simulation 
is performed by combining a specific software code 
(for instance, C++ program, assembly code, or 
MATLAB routines) with structural hardware models. 
A hardware description language (like VERILOG or 
VHDL) is used for hardware modelling and 
simulation, so typically, at the design of mixed-mode 
systems (with hardware and software components), a 
VHDL code is combined with other software for 
system prototyping and debugging. This is often an  
 

error-prone routine requiring filters to handle various 
formats of data and processed signals. In implementing 
SOLAR architectures, we developed a hardware-
software co-simulation approach to model hardware 
and software in the same hardware description 
language program. This approach is simpler than 
Bassam’s co-simulation method [6] since we do not 
need to consider the software synthesis using their 
proposed S-graph-based synthesizer, where the 
software part would be transferred to C language. We 
focus on the system simulation to verify the critical 
timing requirement and attain optimal hardware-
software participation. In this co-simulation, the 
software part is implemented using behavioral VHDL 
description. This part is not synthesizable in FPGA. 
Structural VHDL is employed to implement neuron’s 
training architecture and this part is synthesizable in 
FPGA. This co-simulation method simplifies the 
simulation environment and speeds up SOLAR 
prototyping. 
 
    The rest of this paper is organized as follows. In 
Section 2, the self-organizing learning array 
architecture is discussed. Section 3 deals with the fast 
HW/SW co-simulation using behavioral and structural 
VHDL description. A summary is given in Section 4. 

2   SOLAR ARCHITECTURE 

In SOLAR, we adopt feed forward network structure 
for its stability and fast learning. SOLAR architecuture 
is divided into three main layers as shown in Fig. 1– 
input, processing and output layers. The 
interconnections are randomly initialized at the 
beginning of training. The basic building blocks of the 
arcitecture are the small neurons, trained using the 
entropy-based algorithm [4]. 
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Figure1: Basic SOLAR structure 



 

    There are two types of connections to every neuron. 
The local connections are asscociated with higher 
connection probabilities, and the remote connections 
have smaller probilities. In the SOLAR architecture, 
statistically determined Manhattan distance is used to 
set the initial connections. In the feed forward 
structure, the neuron located at a given row and 
column should always be connected to the one at the 
same row and previous column. The next nearest 
neurons are those located at two neurons away from 
the connecting neuron with certain probability and the 
remote neurons are randomly selected from all the 
previous layers including the primary inputs. This 
interconnection approach applies to both the neuron’s 
input signals as well as the neuron’s control signals 
which define the learning subspace for each neuron. 

3 SOLAR CO-SIMULATION USING VHDL 

To cope with both the significant NRE cost of custom 
hardware and the limited programmable hardware 
resource of FPGAs, the SOLAR implementation is 
based on tightly coupled conventional processor 
(software) with configurable logic (hardware) on a 
single PCI-based VIRTEX XCV800 FPGA card [7]. 
The software part runs on the host PC. The time 
consuming part – neuron’s self-organizing learning 
runs in the FPGA chip on the PCB board. The 
interface between them is via PCI bus. To develop this 
system, we need real-time test environment to co-
verify the HW/SW parts and their interface. This 
method is time-consuming and it is hard to monitor the 
interface signal timing.  

    In this paper, we use the VHDL simulation to 
explore feasibility of virtual HW/SW prototypes 
including their interface and then map the resulting 
SOLAR onto a mixed HW/SW architecture to model 
the real-time system, and to obtain the operating 
system characteristics. The existing co-simulation 
methods contain at least two simulators for both 
software and hardware respectively integrated through 
comple x inter-process communication. Those methods 
lack portability and change from simulator to simulator 
depending on both the hardware and software 
programming languages.  To design SOLA R, we have 
developed a fast co-simulation method to directly 
simulate the whole HW/SW system. This method not 
only facilitates interactive partitioning and complete 
exploration of the whole system prior to its 
implementation, but also avoids using two simu lators 
and complex inter-process communication. In the co-
simulation environment, we model software using 
behavioral VHDL description, hardware using 
structural VHDL building blocks and HW/SW 
interface using VHDL to describe a finite state 
machine (FSM) plus input/output FIFOs at RTL level. 
We can decompose SOLAR co-simulation system into 
three parts as shown in Fig. 2:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
q System architecture modelling . This is the 

software part in the co-simulation using   
behavioral VHDL description. All of the 
functional behaviour of the system consisting of 
many functions is organized in the hierarchical 
packages as shown in Fig. 3. All functions and 
signal variables in the packages are shared, and 
program execution is functionally interleaved. The 
lower level package is the description for system 
input and output, initialization and update of the 
memory element in the network. The initialization 
is used to build up the 2D neural network mesh 
architecture with randomly interconnected 
neurons, set up the threshold update step, and 
assign initial signal values for system simulation. 
The higher level packages encapsulate new system 
functions based on the functions described by the 
lower level packages.  The highest design level 
function representing the software part in the 
overall system implements the system 
organization and management. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
q A single neuron’s self-organizing learning 

architecture modelling. This is the hardware part 
in the co-simulation using synthesizable structural 

Figure 3: Hierarchy architecture for software model 

 
 
 
 
 

 

Figure 2: Co-simulation system decomposition 
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VHDL description to model the self-organizing 
learning process of a single neuron. The neuron’s 
implementation architecture is shown in Fig. 4. 
Data fed from the interface represents  the single 
neuron’s learning subspace. After input data is 
read into the memory (M) via interface FIFO, the 
main controller launches optimal threshold 
searching collaborated by function producing 
module (OP) and ALU. Finally, the optimal 
threshold and corresponding information index is 
stored in several registers (R). These optimal 
parameters and learning-produced new subspace 
are read back through rapid DMA transfer 
requested by the system level functions (software) 
for storage and further processing. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
q Interface modelling. This is the HW/SW 

interface part in the co-simulation implemented by 
FSM and several input/output FIFOs as shown in 
Fig. 5. This part bridges the gap between the 
system architecture modelling (software) and the 
single neuron’s self organizing learning 
architecture (hardware). This part is implemented 
by a six-state FSM and three FIFOs (six ports) for 
training, class and other data transfer between 
hardware and software parts. The FIFO status 
signals and read/write signals are trigged either by 
structural VHDL (hardware) or by behavioral 
VHDL (software) description via FSM to 
implement the HW/SW communication. 

 
 
 
 
 
 
 
 
 
 
 
 

Co-Simulation Results 

We used a single VHDL simulator to simulate SOLAR 
using the described co-simulation model. As Fig. 6 
shows, the HW/SW interface is implemented based on 
three FIFOs -input, output and address strobe. The 
communication between software and hardware is 
controlled by a simple FSM – signal ‘SM_STATE’ 
plus those three FIFOs. Some FSM states read the data 
from software part and send the formatted data to 
hardware part via input FIFO. Conversely, the other 
FSM sates read the output FIFO to receive the 
processed data from the hardware part and send them 
to software part. The address or data is decided by the 
address strobe FIFO. This interface based on FSM and 
FIFO only represents the simplified PCI LOGICORE 
which is part of a separate firmware connecting PCI 
bus to FPGA chip. Using co-simulation, we can model 
functionality essential for system operation leaving out 
unessential details of the interface protocol.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    The interface process continues until the training 
process is over as shown in a snapshot simulation 
waveform in Fig. 7. The training example uses 2 
classes  in 2-dimensional input space with 1818 
training data. Different neurons have different learning 
subspaces resulting from pseudorandom wiring. Each 
neuron processes the training data subspace selecting 
its inputs from the initial pseudorandom selection. It 
optimises the information index in its learning 
subspace, setting its threshold, and transformation 
function. It calculates information deficiency and 
defines its output subspace threshold clock. This clock 
is used as an input clock of subsequent neuron, which 
responds to data from the neuron output space. The 
illustrated simulation waveform represents only one 
particular neuron’s self organizing learning in a 
particular learning subspace. The whole system 
synchronization is controlled by the system modelling 
part (software). Through the interface, software model 
sends data to the input FIFOs. The input FIFOs status 
signals trigger the hardware model to fetch the input 

Figure 4: Single neuron’s learning 
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Figure 5: Interface modelling using FSM&FIFO 
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Figure 6: HW/SW interface simulation  

 



 

data. After receiving all the data, the hardware module 
enters into the self-organizing learning stage. During 
this stage, the hardware module still fetches the control 
commands from the input FIFO to synchronize the 
self-organizing learning with software module. Finally, 
the optimal learned parameters and a new subspace are 
achieved and the output FIFOs are used as buffers to 
send the learned results out to software module. In this 
simulation waveform, the signal “Opt_Threshold” and 
“ID” represent the optimal threshold and the 
corresponding information index for this  particular 
training neuron in its learning subspace.  
 
    The hardware -software co-simulation results for 
every neuron correspond to the MATLAB simulation 
results as far as the final optimal learning parameters 
except for the difference in data format. Using this co-
simulation method, we can promptly verify the 
hardware-software partition, system functionality, 
interface efficiency and etc., which saves us much real 
prototyping time  of the entire system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

4 SUMMARY 

In contrast to more traditional neural network 
classifiers or self-organization based on clustering 
approaches, this paper discusses an information theory 
based hardware self organization for machine learning. 
Dynamically reconfigurable architectures [8] can be 
quickly reconfigured by reading pre-stored 
configuration bits from memory. SOLAR is similar to 
these structures, except its reconfiguration is a result of 
learning, rather than a result of pre-stored architecture. 
This way it is a new class of learning machines and at 
the same time a new type of reconfigurable hardware. 
SOLAR simulation proved it to be advantageous over 
many traditional learning machines, neural network 
and statistical methods. Due to the computation-
intensive process and large storage requirements, we 

adopted hardware-software co-design to prototype the 
system on both microprocessor (software) and a single 
XILINX VIRTEX XCV800 FPGA (hardware). We 
present a mechanism for co-simulation of the 
synthesized hardware and software using a single 
VHDL simulator. This technique uses behavioral 
VHDL description to simulate the self-organizing 
system and to synchronize and control the 
synthesizable learning neuron’s architecture using 
structural VHDL description. This co-simulation 
approach achieves fast simulation speed without 
alternating between two (hardware and software) 
simulation environments and simplifies hardware and 
software partition process. Finally, it speeds up our 
hardware-software co-design to prototype the SOLAR 
architecture on FPGA. 
 
    This design work is to prototype the simplified self-
organizing learning array on a single FPGA. Future 
SOLAR architecture will be based on hundreds of 
VIRTEX XCV 1000 FPGAs [9] and is currently under 
design evaluation stage. The presented co-simulation 
method will benefit the development of such a system. 
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Figure 7: Single neuron’s training co-simulation  

 


