
Reduct Generation in Information Systems 
 

Janusz Starzyk 
Ohio University, Department of Electrical Engineering and Computer Science 

starzyk@bobcat.ent.ohiou.edu 
 

Dale E. Nelson 
Air Force Research Laboratory, Sensors Directorate 

nelsonde@sensors.wpafb.af.mil 
 

Kirk Sturtz 
Veridian Corporation 

ksturtz@mbvlab.wpafb.af.mil 
 
 

Abstract – When data sets are analyzed, statistical pattern recognition is often used to find the information hidden 
in the data.  Another approach to information discovery is data mining.  Data mining is concerned with finding 
previously undiscovered relationships in data sets.  Rough set theory provides a theoretical basis from which to find 
these undiscovered relationships.   Automatic Target Recognition (ATR) is one area which can benefit from this 
approach.  We present a new theoretical concept, strong equivalence, and an efficient algorithm, the Expansion 
Algorithm,  for generation of all reducts of an information system. The process of finding reducts has been proven 
to be NP-hard.  Using the elimination method, problems of size 13 could be solved in reasonable times.  Using our 
Expansion Algorithm, the size of problems that can be solved has grown to 40. Further, by using the strong 
equivalence property in the Expansion Algorithm, additional savings of up to 50% can be achieved.  This paper 
describes the fundamentals of this algorithm and the simulation results obtained from randomly generated 
information systems.  The full paper provides the mathematical foundations of the algorithm. 
 
 
1.0  Introduction 
In the world today, we are inundated with volumes of 
data.  Businesses have been accumulating vast 
amounts of data in accounting, inventory and sales 
records.  For decades this has been entered and stored 
on computers.  Business leaders know that there is a 
wealth of information that could improve business 
operations if only there was a good way to discover 
the information contained in the data. 
 
The military is interested in building robust automatic 
target recognition (ATR) systems.  To build these 
systems, there is a set of measured or synthetic data 
that can be used for training and test.  In the past, 
statistical pattern recognition has been used to build 
ATR systems.  However, if the training data is 
viewed as an information system, then the procedures 
and methods of data mining can be used to find the 
previously unrecognized relationships in the data that 
will convert the data to information [3,6,7,10]. 
 
An information system can be characterized as a 
relational database, where the information is stored in 
a table.  Each row in the table represents an 
individual record.  Each column represents some an 
attribute of the records or a field.  The columns could 
represent weight or height, or even some 

measurement of a target such as height or length.  
Several records can be considered together to 
represent a logical grouping.  For instance, there 
might be several examples of different kinds of 
airplanes, or there might be several examples of 
people who successfully paid off their loan.  One 
operation in data mining is the determination of a 
minimal set of attributes necessary to distinguish 
between the different groups in the data.  The process 
of determining which records belong to each of the 
groups is called classification.  Each group of 
attributes that can distinguish between the groups is 
called a reduct [1, 4,7]. 
 
In this paper, due to space limitations, we take a 
naïve approach to explain the concepts involved.  
Therefore, mathematical rigor will not be enforced.  
The full paper, on which this summary is based, is 
mathematically rigorous. 
 
2.0  Elimination Method 
The first step in generating reducts is to make the 
training set non-ambiguous and eliminate duplicates.  
The training set is said to be ambiguous when two 
signals are identical but belong to two different 
groups.  When this happens both signals should be 
removed from the training set.  This is analogous to a 



teacher telling a student that 1+1=2 and 1+1=3.  One 
or both of the examples is wrong.  Eliminating them 
eliminates ambiguities.  If two or more identical 
signals represent the same class, all but one of the 
signals should be eliminated.  This reduces 
computational time. 
 
The procedure from this point is to take all possible 
combinations of the attribute columns.  Each 
combination forms a set which is checked for 
ambiguity.  If there is no ambiguity, then that set of 
attributes is a reduct.  We call this method the 
elimination method because we are eliminating 
attributes to check for a reduct. 
 
3.0  Rough Set Theory 
Rough set theory was developed by Pawlak [3] for 
use in reasoning from imprecise data.  This theory 
can also be used to formally develop a method for 
discovering relationships in data (data mining).  
Rough set theory, is concerned with three basic 
components; granularity of knowledge, 
approximation of sets, and data mining [4, 5].  One 
aspect of data mining is the finding of all reducts.  
Skowron [7] has proven this process to be NP-hard.  
This means that as the size of the problem increases, 
the time to compute the reducts increases faster than 
polynomially.  Most real world problems involve vast 
amounts of data.  Therefore, it behooves us to find as 
efficient an algorithm as possible to generate these 
reducts.  The algorithm presented is several orders of 
magnitude better than the elimination method. 
 
The first step in the rough set approach to generating 
all the reducts is to form a discernibility matrix.  The 
discernibility matrix is an NxN matrix where N 
represents the number of records in the training set.  
For each entry in the table, we are comparing the 
record represented by the row number with the record 
represented by the column number.  We further 
assign a label to each of the attributes.  We assume 
each record represents one group.  We enter in the 
table the labels of the attributes which have different 
values.  In other words, these attributes are the ones 
which allows us to distinguish (discern) that they (the 
records) are different.  We define an operator 
∨ (called disjunction) which allows us to distinguish 
between these two records by using attribute 1 OR 
attribute 5 OR …, etc.  It is easily seen that the 
diagonal is empty (there are no attributes that allow 
us to distinguish a record from itself).  Further the 
matrix is symmetrical about the diagonal (the 
attributes that allow us to distinguish  record 1 from 5 
are the same as the attributes to distinguish record 5 
from 1). 
 

Using the discernibility matrix, it is now possible to 
form the discernibility function using another 
operator, ∧  (called conjunction).  For simplicity we 
use the term “or” to represent our ∨ operator and 
“and” to represent our ∧ operator.  We form the 
discernibility function by or-ing all the values in one 
entry in the discernibility matrix and then and-ing all 
these together. 
 
The discernibility function can often be simplified by 
the process of absorption.  For example, suppose 
one of the disjuncts in the discernibility function is 

)( ba∨ , while another disjunct is )( cba ∨∨ .  Since 
attribute a or b is required to satisfy the first disjunct, 
the second disjunct will be satisfied by either a or b, 
and attribute c is not required so we can eliminate the 

)( cba ∨∨  term.  We have determined all reducts 
when this equation is reduced to a disjunction of 
conjunctions.  This final form yields all possible 
classifiers for the given information system! 
 
We introduce a new concept, strong equivalence, 
which can be used to achieve significant speed 
improvements in our algorithm. We say two 
attributes are locally strongly equivalent if either 
both attributes are simultaneously present or 
simultaneously absent in any disjunctive entry of the 
discernibility function.  When two attributes are 
locally strongly equivalent then they may be 
represented by a single attribute. 
 
4.0  Expansion Law 
There is a simple way to explain the expansion law.  
First, find the attribute that occurs most frequently (at 
least twice).  OR this single attribute with all the 
other disjunctive terms which DO NOT contain the 
selected attribute.  AND all the previous terms with 
all the disjunctive terms in the function removing the 
selected attribute from each disjunctive term in which 
it appears.  This process is illustrated in the following 
example in step 3. 
 
5.0  Distribution Algorithm 
We now introduce our algorithm for efficiently 
computing all the reducts.  The algorithm is as 
follows: 
 

Given: kA fff ∧∧= ...1  where Af  is the 
discernibility function. 
 
Step 1. In each component if  of the discernibility 
function, apply the absorption law to eliminate all 
disjunctive expressions which are supersets of 



another disjunctive expression; e.g. 
)()()( bacbaba ∨=∨∨⊂∨ . 

 
Step 2. Replace each strongly equivalent subset of 
attributes in each component if  by a single attribute 
that represents this class.  A strongly equivalent 
subset is identified in each component if  if the 
corresponding set of attributes is simultaneously 
either present or absent in each subset of its 
conjuncts. 
 
Step 3. In each component if  select an attribute 
which belongs to the largest number of conjunctive 
sets, numbering at least two, and apply the expansion 
law.  Write the resulting form as a disjunction 

21 iii fff ∨= . 
 
Step 4.  Repeat steps 1 through 3 until you cannot 
apply the expansion law, then Af  is said to be in the 
simple form. 
 
Step 5. For each component if  of the resulting 
simple form, substitute all locally strongly equivalent 
classes for their corresponding attributes. 
 
Step 6.  Calculate the reducts by expanding the final 
discernibility function. 
 
Step 7. Determine the minimal elements, with respect 

to the inclusion relation, of the set U
p

i
ifRed

1

)(
=

, where 

pA fff ∨∨= ...1 . These minimal elements are the 
elements of )(ARed  
 
6.0  Example 
To illustrate the reduct generation algorithm consider 
the discernibility function: 

}{}{}{
}{}{}{
cdfedbdcba

fedadbfcbaf A

∨∧∨∨∨∧∨∨∨∧
∨∨∨∧∨∧∨∨∨=

 

The function should be read as follows:  the records 
in the information system may be discerned from 
each other by using (attribute a or b or c or f ) and 
(attribute b or d) and (attribute a or d or e or f ) and 
(attribute a or b or c or d ) and (attribute b or d or e or 
f) and (attribute d or c ).  The reason the ∧  and the 
∨  are not Boolean operators is that the values of the 
attributes are not 1 or 0.  What we are saying is that 
the attribute is either used or not used. 

1. Since }{}{ edbdb ∨∨⊂∨  and 
}{}{ dcbdb ∨∨⊂∨  we use the absorption law to 

eliminate conjuncts 4 and 5 and get an equivalent 
discernibility function: 

}{
}{}{}{

cd
fedadbfcbaf A

∨∧
∨∨∨∧∨∧∨∨∨=

 

2. },{ fa  is a locally strongly equivalent class so we 
can represent it by a single attribute g which yields: 

}{}{}{}{ cdedgdbcbgf A ∨∧∨∨∧∨∧∨∨=  
3.  The remaining function attribute d  is the most 
frequent so we apply the expansion law with respect 
to this attribute to obtain 

}){}{}{ ( }){}({
}){}{}{}{ (}){}({

21

cegbcbgd
cegbcbgcbgd

fff A

∧∨∧∨∨∨∧=
∧∨∧∧∨∨∨∨∨∧=

∨=

where the simplification in the last step resulted from 
the absorption law. 
4.  All functions if  are in a simple form. 
5.  Substituting all strongly equivalent classes for 
their equivalent attributes we get 

}){}{}{ ( }){}({
21

cefabcbfad
fff A

∧∨∨∧∨∨∨∨∧=
∨=

6.  Reducts which correspond to the if  are 

}}{},{},{{)(
}}{},{},{},{{)(

2

1

cebcfbcabfRed
dcdbfddafRed
∨∨∨∨∨∨=

∨∨∨∨=
 

7.  The reducts of A are obtained by determining the 
minimal elements of the set 

( )

}}{},{

},{},{},{},{},{{
2

1

cebcfb

cabdcdbfddafRed
i

i

∨∨∨∨

∨∨∨∨∨∨=
=
U

from which we conclude 
( )

}}{},{},{
},{},{},{},{{
cebcfbcab

dcdbfddaARed
∨∨∨∨∨∨
∨∨∨∨=

 

(The reducts of A are obtained by “throwing away” 

supersets in U
p

i
ifRed

1

)(
=

; in this example there are no 

supersets.) 
 

 
7.0  Results 
Simulations were run using MATLAB 5.2 on test 
data generated randomly.  A random number 
generator provided uniformly distributed numbers to 
represent each attribute of each record.  These values 
were multiplied by 8 and then the fractional part was 
truncated.  This resulted in integer attribute values 
between 0 and 8.  The number of attributes varied 
from 10 to 40 in steps of 5 and the number of records 
varied from 10 to 40 in steps of 5.  All simulations 
were accomplished using a dual Pentium Pro 200 
MHz computer using 256MB of memory.  Figure 1 
illustrates how the run times increase with problem 



size using the Expansion Algorithm.  Note the 
abscissa is log10 of the run time.  The curves shown 
are for 10, 15, 20, 25, 30, 35, and 40 attributes.  Note 
that the computational time is growing exponentially. 
 

Figure 2 shows the difference in time to run the 
problems using the Elimination Method and the new 
Distribution Algorithm.  The graph only shows the 
results for 10 and 15 attributes.  This is because when 
the problem size was larger than this, the elimination 
method required so much time that results could not 
be obtained without the simulation running for many 
days!  Note that the time expressed is the log10 of the 
time.   

Figure 3 shows the run times for the Distribution 
Algorithm with and without strong equivalence.  
Incorporating strong equivalence into the Expansion 
Algorithm does cost computational time.  However, 
as seen in Figure 3, the time savings can be 
significant (as much as 50%) when strong 
equivalence is present. 
 
8.0  Conclusions 
We have shown that the use of the Expansion 
Algorithm allows the generation of all reducts in a 
much less time than the elimination method.  Further, 
this algorithm is ideal for implementation on 

multiprocessor computers.  Using this algorithm, 
larger problems should be able to be addressed. 
 
The addition of strong equivalence to the Expansion 
Algorithm further reduces computation time when 
strong equivalence is present.  In the simulations we 
ran, strong equivalence was not always present and 
thus the run times were increased.  It is possible that 
in real world problems, where structure is present, 
strong equivalence will manifest itself more 
frequently.  Therefore, the computational time should 
be reduced in most cases. 
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