
Reduct Generation in Information Systems

Janusz Starzyk
Ohio University, Department of Electrical Engineering and Computer Science

starzyk@bobcat.ent.ohiou.edu

Dale E. Nelson
Air Force Research Laboratory, Sensors Directorate

nelsonde@sensors.wpafb.af.mil

Kirk Sturtz
Veridian Corporation

ksturtz@mbvlab.wpafb.af.mil

Abstract – When data sets are analyzed, statistical pattern recognition is often used to find the information hidden
in the data. Another approach to information discovery is data mining. Data mining is concerned with finding
previously undiscovered relationships in data sets. Rough set theory provides a theoretical basis from which to find
these undiscovered relationships. Automatic Target Recognition (ATR) is one area which can benefit from this
approach. We present a new theoretical concept, strong equivalence, and an efficient algorithm, the Expansion
Algorithm, for generation of all reducts of an information system. The process of finding reducts has been proven
to be NP-hard. Using the elimination method, problems of size 13 could be solved in reasonable times. Using our
Expansion Algorithm, the size of problems that can be solved has grown to 40. Further, by using the strong
equivalence property in the Expansion Algorithm, additional savings of up to 50% can be achieved. This paper
describes the fundamentals of this algorithm and the simulation results obtained from randomly generated
information systems. The full paper provides the mathematical foundations of the algorithm.

1.0 Introduction
In the world today, we are inundated with volumes of
data. Businesses have been accumulating vast
amounts of data in accounting, inventory and sales
records. For decades this has been entered and stored
on computers. Business leaders know that there is a
wealth of information that could improve business
operations if only there was a good way to discover
the information contained in the data.

The military is interested in building robust automatic
target recognition (ATR) systems. To build these
systems, there is a set of measured or synthetic data
that can be used for training and test. In the past,
statistical pattern recognition has been used to build
ATR systems. However, if the training data is
viewed as an information system, then the procedures
and methods of data mining can be used to find the
previously unrecognized relationships in the data that
will convert the data to information [3,6,7,10].

An information system can be characterized as a
relational database, where the information is stored in
a table. Each row in the table represents an
individual record. Each column represents some an
attribute of the records or a field. The columns could
represent weight or height, or even some

measurement of a target such as height or length.
Several records can be considered together to
represent a logical grouping. For instance, there
might be several examples of different kinds of
airplanes, or there might be several examples of
people who successfully paid off their loan. One
operation in data mining is the determination of a
minimal set of attributes necessary to distinguish
between the different groups in the data. The process
of determining which records belong to each of the
groups is called classification. Each group of
attributes that can distinguish between the groups is
called a reduct [1, 4,7].

In this paper, due to space limitations, we take a
naïve approach to explain the concepts involved.
Therefore, mathematical rigor will not be enforced.
The full paper, on which this summary is based, is
mathematically rigorous.

2.0 Elimination Method
The first step in generating reducts is to make the
training set non-ambiguous and eliminate duplicates.
The training set is said to be ambiguous when two
signals are identical but belong to two different
groups. When this happens both signals should be
removed from the training set. This is analogous to a

teacher telling a student that 1+1=2 and 1+1=3. One
or both of the examples is wrong. Eliminating them
eliminates ambiguities. If two or more identical
signals represent the same class, all but one of the
signals should be eliminated. This reduces
computational time.

The procedure from this point is to take all possible
combinations of the attribute columns. Each
combination forms a set which is checked for
ambiguity. If there is no ambiguity, then that set of
attributes is a reduct. We call this method the
elimination method because we are eliminating
attributes to check for a reduct.

3.0 Rough Set Theory
Rough set theory was developed by Pawlak [3] for
use in reasoning from imprecise data. This theory
can also be used to formally develop a method for
discovering relationships in data (data mining).
Rough set theory, is concerned with three basic
components; granularity of knowledge,
approximation of sets, and data mining [4, 5]. One
aspect of data mining is the finding of all reducts.
Skowron [7] has proven this process to be NP-hard.
This means that as the size of the problem increases,
the time to compute the reducts increases faster than
polynomially. Most real world problems involve vast
amounts of data. Therefore, it behooves us to find as
efficient an algorithm as possible to generate these
reducts. The algorithm presented is several orders of
magnitude better than the elimination method.

The first step in the rough set approach to generating
all the reducts is to form a discernibility matrix. The
discernibility matrix is an NxN matrix where N
represents the number of records in the training set.
For each entry in the table, we are comparing the
record represented by the row number with the record
represented by the column number. We further
assign a label to each of the attributes. We assume
each record represents one group. We enter in the
table the labels of the attributes which have different
values. In other words, these attributes are the ones
which allows us to distinguish (discern) that they (the
records) are different. We define an operator
∨ (called disjunction) which allows us to distinguish
between these two records by using attribute 1 OR
attribute 5 OR …, etc. It is easily seen that the
diagonal is empty (there are no attributes that allow
us to distinguish a record from itself). Further the
matrix is symmetrical about the diagonal (the
attributes that allow us to distinguish record 1 from 5
are the same as the attributes to distinguish record 5
from 1).

Using the discernibility matrix, it is now possible to
form the discernibility function using another
operator, ∧ (called conjunction). For simplicity we
use the term “or” to represent our ∨ operator and
“and” to represent our ∧ operator. We form the
discernibility function by or-ing all the values in one
entry in the discernibility matrix and then and-ing all
these together.

The discernibility function can often be simplified by
the process of absorption. For example, suppose
one of the disjuncts in the discernibility function is

)(ba∨ , while another disjunct is)(cba ∨∨ . Since
attribute a or b is required to satisfy the first disjunct,
the second disjunct will be satisfied by either a or b,
and attribute c is not required so we can eliminate the

)(cba ∨∨ term. We have determined all reducts
when this equation is reduced to a disjunction of
conjunctions. This final form yields all possible
classifiers for the given information system!

We introduce a new concept, strong equivalence,
which can be used to achieve significant speed
improvements in our algorithm. We say two
attributes are locally strongly equivalent if either
both attributes are simultaneously present or
simultaneously absent in any disjunctive entry of the
discernibility function. When two attributes are
locally strongly equivalent then they may be
represented by a single attribute.

4.0 Expansion Law
There is a simple way to explain the expansion law.
First, find the attribute that occurs most frequently (at
least twice). OR this single attribute with all the
other disjunctive terms which DO NOT contain the
selected attribute. AND all the previous terms with
all the disjunctive terms in the function removing the
selected attribute from each disjunctive term in which
it appears. This process is illustrated in the following
example in step 3.

5.0 Distribution Algorithm
We now introduce our algorithm for efficiently
computing all the reducts. The algorithm is as
follows:

Given: kA fff ∧∧= ...1 where Af is the
discernibility function.

Step 1. In each component if of the discernibility
function, apply the absorption law to eliminate all
disjunctive expressions which are supersets of

another disjunctive expression; e.g.
)()()(bacbaba ∨=∨∨⊂∨ .

Step 2. Replace each strongly equivalent subset of
attributes in each component if by a single attribute
that represents this class. A strongly equivalent
subset is identified in each component if if the
corresponding set of attributes is simultaneously
either present or absent in each subset of its
conjuncts.

Step 3. In each component if select an attribute
which belongs to the largest number of conjunctive
sets, numbering at least two, and apply the expansion
law. Write the resulting form as a disjunction

21 iii fff ∨= .

Step 4. Repeat steps 1 through 3 until you cannot
apply the expansion law, then Af is said to be in the
simple form.

Step 5. For each component if of the resulting
simple form, substitute all locally strongly equivalent
classes for their corresponding attributes.

Step 6. Calculate the reducts by expanding the final
discernibility function.

Step 7. Determine the minimal elements, with respect

to the inclusion relation, of the set U
p

i
ifRed

1

)(
=

, where

pA fff ∨∨= ...1 . These minimal elements are the
elements of)(ARed

6.0 Example
To illustrate the reduct generation algorithm consider
the discernibility function:

}{}{}{
}{}{}{
cdfedbdcba

fedadbfcbaf A

∨∧∨∨∨∧∨∨∨∧
∨∨∨∧∨∧∨∨∨=

The function should be read as follows: the records
in the information system may be discerned from
each other by using (attribute a or b or c or f) and
(attribute b or d) and (attribute a or d or e or f) and
(attribute a or b or c or d) and (attribute b or d or e or
f) and (attribute d or c). The reason the ∧ and the
∨ are not Boolean operators is that the values of the
attributes are not 1 or 0. What we are saying is that
the attribute is either used or not used.

1. Since }{}{ edbdb ∨∨⊂∨ and
}{}{ dcbdb ∨∨⊂∨ we use the absorption law to

eliminate conjuncts 4 and 5 and get an equivalent
discernibility function:

}{
}{}{}{

cd
fedadbfcbaf A

∨∧
∨∨∨∧∨∧∨∨∨=

2. },{ fa is a locally strongly equivalent class so we
can represent it by a single attribute g which yields:

}{}{}{}{ cdedgdbcbgf A ∨∧∨∨∧∨∧∨∨=
3. The remaining function attribute d is the most
frequent so we apply the expansion law with respect
to this attribute to obtain

}){}{}{ (}){}({
}){}{}{}{ (}){}({

21

cegbcbgd
cegbcbgcbgd

fff A

∧∨∧∨∨∨∧=
∧∨∧∧∨∨∨∨∨∧=

∨=

where the simplification in the last step resulted from
the absorption law.
4. All functions if are in a simple form.
5. Substituting all strongly equivalent classes for
their equivalent attributes we get

}){}{}{ (}){}({
21

cefabcbfad
fff A

∧∨∨∧∨∨∨∨∧=
∨=

6. Reducts which correspond to the if are

}}{},{},{{)(
}}{},{},{},{{)(

2

1

cebcfbcabfRed
dcdbfddafRed
∨∨∨∨∨∨=

∨∨∨∨=

7. The reducts of A are obtained by determining the
minimal elements of the set

()

}}{},{

},{},{},{},{},{{
2

1

cebcfb

cabdcdbfddafRed
i

i

∨∨∨∨

∨∨∨∨∨∨=
=
U

from which we conclude
()

}}{},{},{
},{},{},{},{{
cebcfbcab

dcdbfddaARed
∨∨∨∨∨∨
∨∨∨∨=

(The reducts of A are obtained by “throwing away”

supersets in U
p

i
ifRed

1

)(
=

; in this example there are no

supersets.)

7.0 Results
Simulations were run using MATLAB 5.2 on test
data generated randomly. A random number
generator provided uniformly distributed numbers to
represent each attribute of each record. These values
were multiplied by 8 and then the fractional part was
truncated. This resulted in integer attribute values
between 0 and 8. The number of attributes varied
from 10 to 40 in steps of 5 and the number of records
varied from 10 to 40 in steps of 5. All simulations
were accomplished using a dual Pentium Pro 200
MHz computer using 256MB of memory. Figure 1
illustrates how the run times increase with problem

size using the Expansion Algorithm. Note the
abscissa is log10 of the run time. The curves shown
are for 10, 15, 20, 25, 30, 35, and 40 attributes. Note
that the computational time is growing exponentially.

Figure 2 shows the difference in time to run the
problems using the Elimination Method and the new
Distribution Algorithm. The graph only shows the
results for 10 and 15 attributes. This is because when
the problem size was larger than this, the elimination
method required so much time that results could not
be obtained without the simulation running for many
days! Note that the time expressed is the log10 of the
time.

Figure 3 shows the run times for the Distribution
Algorithm with and without strong equivalence.
Incorporating strong equivalence into the Expansion
Algorithm does cost computational time. However,
as seen in Figure 3, the time savings can be
significant (as much as 50%) when strong
equivalence is present.

8.0 Conclusions
We have shown that the use of the Expansion
Algorithm allows the generation of all reducts in a
much less time than the elimination method. Further,
this algorithm is ideal for implementation on

multiprocessor computers. Using this algorithm,
larger problems should be able to be addressed.

The addition of strong equivalence to the Expansion
Algorithm further reduces computation time when
strong equivalence is present. In the simulations we
ran, strong equivalence was not always present and
thus the run times were increased. It is possible that
in real world problems, where structure is present,
strong equivalence will manifest itself more
frequently. Therefore, the computational time should
be reduced in most cases.

9.0 References

[1] W. Buszkowski and E. Orlowska, “On the logic of database

dependencies”, Bull. Polish Sci. Math., Vol 34, pp345-354,
1986.

[2] A. Nakamura and G. Jian-Miang, “A modal logic for
similarity-based data analysis”, Hiroshima Univ. Technical.
Report., 1988.

[3] Z. Pawlak, “Information systems - theoretical foundations”,
Information Systems, Vol. 6, pp.205-218, 1981.

[4] Z. Pawlak, “On rough dependency of attributes in
information systems”, Bull. Polish Acad. Sci. Tech. Vol. 33,
pp.481-485, 1985.

[5] Z. Pawlak, Rough Sets - Theoretical Aspects of Reasoning
About Data, Kluwer Academic Publ., 1991.

[6] Rasiowa and A. Skowron, “Approximation logic”,
Mathematical Methods Specification and Synthesis of
Software Systems, Akademie-Verlag, Berlin, Band 31, pp.
123-139,1986.

[7] A. Skowron and J. Stepaniuk, “Towards an approximation
theory of discrete problems: Part I”, Fundamenta
Informaticae 15(2), pp.187-208, 1991.

[8] A. Skowron and C. Rauszer, “The discernibility matrices and
functions in information systems”, Fundamenta
Informaticae 15(2), pp.331-362, 1991.

[9] D. Vakarelov, “Modal logic of knowledge representation
systems”, Lecture Notes on Computer Science, Springer
Verlag, 363, pp.257-277, 1989.

[10] W. Ziarko, “Acquisition of design knowledge from
examples”, Math Comput. Modeling Vol. 10, pp. 551-554.

New Algorithm

0
0.5

1
1.5

2
2.5

3
3.5

4

0 10 20 30 40 50

Number of Signals

Lo
g1

0(
Ti

m
e) Dist. Algorithm-

15 Attributes

Dist. Algorithm-
10 Attributes

Elim. Meth.
10 Attributes

Elim. Method
15 Attributes

Figure 2. Time Savings of the Distribution
Algorithm vs. the Elimination Method

Expansion Algorithm

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0 10 20 30 40 50

Number of Signals

Lo
g1

0(
Ti

m
e)

Figure 1. Expansion Algorithm Run Times

40 Att.

10 Att.

0

0.5

1

1.5

2

2.5

3

3.5

4

Lo
g1

0(
Ti

m
e)

Figure 3. Time Savings When Strong
Equivalence is Present vs. When It is Not.

Increasing Problem Size

Strong
Equivalence

No Strong
Equivalence

