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Abstract    In this paper, a self-organizing neural network 
model with entropy-based evaluator called EBE is 
proposed.  An FPGA based design that implements the 
EBE model is presented. The PCI bus interface including 
DMA transfer is embedded into the design. 8-bit test data 
is fed into the design to verify the correctness of the 
algorithm and its FPGA implementation. 
Topic Area          No.5 :  Algorithms and Optimization 
and/or No.4:   Reconfigurable Hardware Architectures 
 

I.  INTRODUCTION 
 
        Artificial neural networks (ANNs) are systems based on 
mathematical algorithms, which are derived from the field of 
neuroscience and are characterized by intensive arithmetic 
operations [1]. These networks display interesting features 
such as parallelism, classification, optimization, adaptation, 
generalization and associative memories [2,3]. To implement 
NN algorithm, custom hardware, although fast and compact, 
require significant non-recurring engineering (NRE) cost 
which makes NN difficult to implement. Fortunately, 
technological developments have substantially increased gate 
densities, making reconfigurable computers, based on field 
programmable gate arrays (FPGAs), an attractive alternative. 
FPGAs provide effective programmable resources for 
implementing self-organizing digital ANNs. They are readily 
available, reconfigurable and have smaller NRE costs– all 
important advantages for ANNs applications. ANNs have two 
phases of operations, the learning phase and the retrieve 
phase. During the learning phase, a flexible and space-
efficient  hardware of self-organizing neural classifiers is 
constructed using FPGA from the elementary modules and the 
processing functions evolve from connecting a number of 
modules in every layer. The self-organization architecture can 
structure itself to execute the algorithm and restructure itself 
during execution depending on results. So it can make the NN 
structure solve the different application tasks such as pattern 
recognition, image processing and so on. Using the training 
data, the structure defining decisions is obtained by the 
evaluator circuit using entropy-based algorithm [4].  
        Relative entropy represents the information we can 
extract from the training data. The algorithm within the 
evaluator circuit evaluates the training data and defines a self-
adapting learning architecture mapping it to specific 
functional units. A hardware unit which computes the entropy 
based information  is called Entropy-based Evaluator (EBE) 
which searches for the maximum mutual information using 
one-dimensional searching space. The learning algorithm 
searches the sample space in parallel and finds the locally 

optimal arithmetic and logic operation threshold for the input 
signal values. This learning process results in fewer 
connections and can provide a very high-speed classifier for 
many real-time image recognition and other machine learning-
based applications.  
        The algorithm is first verified in Matlab at system level 
simulation. Then the Matlab bit level simulation results give 
us a realistic reference to hardware implementation at RTL 
(Register Transfer Level).  First, a behavioral model of the 
EBE algorithm is implemented by using VHDL. VHDL is the 
name of the IEEE 1076 Hardware Description Language 
standard for very high-speed integrated circuits design [5].  
Then the neural network organization and the learning 
algorithm are modified for easy implementation in Field 
Programmable Gate Arrays (FPGA).  
        The 8-bit length stochastic input signals are serially read 
into the input buffer via PCI bus by control module 
implemented with finite state machine. Counter and 
comparator are implemented with simple accumulator and 
shift register. Complex Logarithm-based entropy computing is 
obtained by a fully exploited look-up-based architecture of 
many FPGAs. The Look-up-table (LUT) input pointer is 
combined with a simple shift-add-based structure to obtain the 
entropy information with probability scaling. Different 
modules are connected using 8-bit data bus and synchronously 
operated under 32MHz PCI clock extracted by the control 
unit.  
        The hardware organization using FPGA has been 
modeled and simulated in VHDL. Leanardo, an RTL/logic 
synthesis tool from Mentor Graphics Corp., has been used to 
generate the gate level of the proposed structure. The Xilinx 
family (XCV800 Virtex FPGAs) is chosen as target 
technology [6]. The FPGA implementation performance 
results have been verified by efficient and fast classification of 
two experimental classes. Each class has three dimensions 
with 1000 normally distributed samples in each dimension 
with different mean values and variances.  
        In section II, the self-organization structure is introduced. 
Section III deals with the design methodology followed by an 
FPGA-based architecture for the algorithm. Section IV talks 
about the synthesis and implementation results and finally, a 
discussion is given in Section V. 

 
II.  SELF-ORGANIZING NN STRUCTURE 

 
        Self-organization is a transit process. In our self-
organization model, the NN is a feed forward structure that 
can decide about its own interconnections and neuron 
operations. It has a prewired organization that contains a 
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number of identical processing blocks (called neurons), which 
are pseudorandomly connected to the input nodes and other 
neurons. In addition, the Entropy-based Evaluator (EBE) is 
utilized to select a proper operation and input selection for 
each neuron.  
        Entropy is a nonlinear function to represent information 
we can learn from unknown data. In the learning process, we 
learn some constraints on the probability distribution of the 
training data from their entropy. So we can choose a 
probability model that is optimum in some sense given this 
prior knowledge about the training data. Here we choose the 
entropy based information index to built the neural network 
structure in the learning process. 
 
A.    Information Index and Information Deficiency  

 
        In the learning process, the training set of signals is 
searched sequentially class by class to establish the optimum 
point (threshold) which best separates signals of the various 
training classes. The quality of the partition is measured by 
the entropy based information index defined as follows: 
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attribute probability and joint probability respectively. The 
summation is performed with respect to all classes and two 
subspaces (for training samples in a given subspace that either 
satisfy or do not satisfy threshold respectively). The 
information index should be maximized to provide an 
optimum separation of the input training data. When the limit 
value of the information index equals to 1, the problem at 
hand is solved completely, i.e. the training data is correctly 
classified (separated into various classes) by the NN. In order 
to accumulate learning results from different subspaces we 
consider what is the amount of added learning and weight it 
against increased system complexity and resulting error of 
statistical learning. This is the case when a set of training data 
is obtained from a small subspace of the original space and  it 
is related to less reliable statistics about the training data. So 
we also define the subspaces information deficiency as 
following to indicate how much knowledge must be gained to 
resolve the classification problem in the given subspace. 
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        Our training objective is to find the vector configuration 
and threshold value which maximizes normalized information 
index I. The learning process is used to maximize classifying 

information for each class. Logarithm function used in 
entropy evaluation can be implemented in analog circuits 
owing to the nonlinear characteristics inherent in CMOS 
devices. In digital implementation, the entropy function  can 
be approximated either by a lookup table (LUT) or by a direct 
calculation. The latter asks for many logic resources and a 
long delay time. In the former, the lookup table approach, the 
Plog(P) function-value associated with each probability-value 
is stored in the memory and P is used as an address to the 
lookup table. Many EBE hardware unit will be used to support 
the organization and local optimization of evolved  learning 
structure. Therefore, each of them should be simple and use 
small design area. 
 
B.   EBE Analysis and  Simulation Results 
 
        In order to simplify hardware used for EBE, an effect of 
round off errors on the accuracy of the resulting information 
index is considered. The first test performed is to determine 
the dependence of the information index error on the number 
of units used to represent them. For simple verification, we 
use two classes training data with three dimensions per class. 
In every dimension, there are one-thousand normally 
distributed random values with different mean value and 
variance.  
        The EBE algorithm is first verified by Matlab simulation 
in both behavioral and structural level. The simulation results 
obtained in structural levels are  shown in Fig. 1. In this 
example, two one thousand, one-dimensional and normally-
distributed points  with different mean values and variances 
are taken  as training data. In the behavioral simulation, we 
use 8-bit widths to represent the input analog data and set 
threshold searching step to be maximum quantification  noise. 
        Using the results obtained in behavioral simulation, 
approximation error effects were analyzed and generalized 
structural model was developed. In the structural level 
simulation, we utilize 5-bit width input pointer to address the 
Plog(P) lookup table (LUT) and to cope with the induced 
noise in the quantification process of the training data. As 
seen in Fig.1, these hardware simplification  and 
approximation in the process of entropy calculation do not 
sacrifice the necessary classification information compared to 
the behavioral simulation results. 
 

III. HARDWARE IMPLEMENTATION 
 

A. Design Methodology 
 
        A top-down design methodology was adopted. A high-
level VHDL model [7] for the circuits was generated. The 
logic was partitioned. Each part was re-described in a  lower 
level  description (RTL) required for the circuit synthesis, 
optimization and mapping to the specific technology by 
assigning current FPGA family and device. The resulting 
optimized circuit description was verified through extensive 
simulation after which the layout was created (Layout 
synthesis) and finally, on chip verification was executed by 
using C++ programming to connect PCI bus to the design 
ports and to test the design.  
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B.    FPGA-based Architecture 
 
        The Xilinx Virtex XCV800 was adopted in our study as 
the Virtex series offers the improved architecture, high gate 
density and connecting line density. The density of XCV800 
is 888,439 equivalent gates and it consists of a 56 x 84 grid of 
configurable logic blocks.  Global Routing resources 
distribute clocks and other signals with very high fanout 
throughout the device. Some classes of signal require 
dedicated routing resources referred to as primary global and 
secondary local clock routing resources. In the speed grad-6 
XCV800, Global Clock input to output maximum delay is 4.9 
ns. Interconnection delay increases with increasing fanout and 
routing distance. The Virtex CLBs structure combines two 
LUTs and referring to LUT is useful for EBE with the LUT’s  
flexible function implementation ability.  It also has a fast 
propagating adder feature with dedicated circuitry for the 
computation and interconnection of carries. The fast 
propagate feature provides an implementation with the least 
delay and small design area. In our design, we embed PCI bus 
interface module including DMA for fast data IO and easy 
debugging with software. The system architecture is shown in  

Fig.2. In particular, Fig.2 illustrates the EBE hardware model  
which is mainly based on a:                       
Memory circuit unit (LUT) which implements the Plog(P) 
function. 
• Comparator unit using a fast propagating carry feature to 

compare the current maximum entropy index with the 
calculated entropy from the entropy calculating unit 
(ECU). 

• Two registers that are used to store the maximum entropy 
index and its corresponding threshold in the process. 

• ECU which can produce the 5-bit access pointer for data 
acquirement from LUT, calculate the current information 
entropy and send the current entropy and threshold to  the 
comparator unit.  

 
In the four units which comprise the EBE module, ECU is the 
main block organized as shown in Fig.3. Other components 
are used for control, interface, monitor and so on. 
•       Control unit produces the control signals for the whole EBE 

including system clock,  state transfer signals, handshake 
signals and so on. 

• MUX and DMUX are used for parallel process of the multi-
dimensional data in the input classes. 

• Display unit implements the online monitor for  the   data 
transfer. 

• EBE interface is used as interface between FIFO control 
unit, PCI bus and EBE for rapid data transfer and easy 
online system debugging. 

• PCI interface core and FIFO unit satisfy PCI 2.0 
specification. 
 

C. VHDL Design and Simulation 
 
        We use VHDL to describe a digital system at the behavioral 
level so that we can simulate the system to check out the 
algorithm used and to make sure that the sequences of operations 
are correct. After verification the correctness of the algorithm 
and adaptability of the hardware implementation (Shown in Fig. 
4), we add the PCI bus interface modules into the design and 
organize them as a  hierarchical  structure.   The first level in 
hierarchy is the PCI interface includes DMA, FIFO etc.
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The second level is the EBE supporting module group and 
includes controller, MUX, DMUX and interface to PCI and 
calculating module. The last level is the core EBE module which 
is divided into calculating unit, LUT, comparator and  registers. 
In the VHDL description in RTL level, we divide the module 
according to its hardware function division as seen in Fig.2. The 
searching threshold step, maximum threshold and data width are 
generic and can be configured easily.  
        The Plog(P) function is  implemented by the ROM LUT 
with 5-bit width address. Other units adopt 8-bit data flow. The 
outer modules like PCI interface, FIFO and so on are linked to 
EBE module by 32-bit data bus. In the process of simulation, we 
use the lowest 10 bits as the data channel I from Class I  and the 
upper 10 bits as the data channel II from Class II. From the 
simulation results, we can see that the data are transferred and 
controlled by the signals-Request, Start, Done, OE and current 
state. 
        As seen in Fig.2, these interface and control signals are 
transferred between EBE interface and PCI and between Control 
unit and other modules. After the current threshold reaches the 
maximum threshold set by the generic parameter, the Done 
signal will be set to High and the simulation process will be 
over.   The  last  output threshold will be the classification 
threshold for the current dimension of the classes. In the EBE 
calculating process, the input data will be resended once the 
threshold is updated by the generic threshold step parameter 
while the signal Request to the interface model will be set to 
low. The  Request, Done, Start,  OE are also used as the 
handshake signal groups for the synchronized work of the whole 
hardware module. The simulation results are obtained by using 
Aldec-HDL simulator [8]. 
 

IV. SYNTHESIS AND PERFORMANCE 
 

        Most of units including PCI bus interface are synthesized 
using logic synthesis tool, Leanardo yielding the gate level 
structure of the full EBE model. The logic synthesis tool starts 
with two kinds of information: the RTL specification given in 
VHDL and a functional unit library, which can include 
complex functional units. The RTL description accesses these 
functional blocks through VHDL procedure calls. For each 
procedure or function used, the library must induce at least 
one functional unit able to execute the corresponding 
operation. The synthesized results are tested using  
commercially-available FPGA board (Nallatech Ballynuey 
board [9]) provided by Nallatech Inc. UK. The Ballynuey 
board is a PCI compatible expansion board that can be used 
via a PCI-compatible PC. The host PC stores all configuration 
information and collected data. And the configuration data can 
be downloaded to the Virtex FPGA board via PCI bus. Part 
utilizations for the PCI interface and EBE module were 
respectively 385 slices and 96 slices. The following table 
shows the synthesis report of the design and Fig. 5 shows the 
synthesized schematic and Virtex floorplan.  We use VC++ as 
the software debugging tool to test the circuits and the design 
has been verified by functional level simulation and gate level 
simulation. 
----------------------------------------------------------------- 
Vendor: Xilinx 
Family: VIRTEX 
Device: V800BG432 
Speed: -4 
----------------------------------------------------------------- 
Number of External GCLKIOBs     1 out of 4      25% 
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 Number of External IOBs                47 out of 316          14% 
 Number of BLOCKRAMs              4 out of 28               14% 

    Number of SLICEs                          463 out of 9408       4 % 
 Number of DLLs                             1 out of 4                25% 
 Number of GCLKs                          1 out of 4                25% 
 Number of TBUFs                          256 out of 9632        2% 

Number of flip-flops:                                          336 
-------------------------------------------------------------- 
Minimum period:  24.838ns  
Maximum frequency:  40.261MHz 
Total equivalent gate count for design:  88,186 
Additional JTAG gate count for IOBs:  2,304  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        
        As can be seen from the synthesized design, many EBE 
units  can be implemented on a single Virtex chip together with 
the self-organizing neural network structure. Thus the entire 
classifier can be incorporated in this technology. 
 
V. SUMMARY AND CONCLUSION 
 
        In the paper, we have presented an algorithm for digital 
implementation of ANNs based on system entropy. The 
developed models have been verified by VHDL simulation 
results. We use behavioral level to validate if the selected bit 
widths for internal and external signals are sufficient for 
achieving a required computation precision. In classification 
area, the necessary  calculation accuracy varies by application. 
The low precision can simplify the hardware implementation 
complexity and speedup the performance. The EBE module, 
consisting of calculating unit, a memory unit  and a few   digital 
components, has been modeled and simulated in VHDL. 
Experimental results show that the obtained classification of the 
training data obtained by behavioral VHDL model match closely  
with that anticipated from the analysis results. Our next 
objective is to construct a parallel self-organizing neural 
network, verify hardware training phase and test the approach in 
the real world applications.  
        Another important development we are searching for is to 
use analog circuits to implement the algorithm. The Logarithm-
based non-linear function can be easily implemented by the non-
linear characteristics of  analog circuit in a small design area 
[10]. Higher speed, smaller area and power dissipation of analog 
circuits constitute a potentially powerful improvement over 

digital circuits. This will be stated in the next phase of our 
research. 
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