
1

Reconfigurable Self-Organizing NN Design Using Virtex FPGA

Janusz Starzyk and Yongtao Guo

School of Electrical Engineering and Computer Science
Ohio University, Athens, OH 45701, U.S.A.

Tel: 740-593-1580 Fax: 740-593-0007
Email: {starzyk, gyt} @bobcat.ent.ohiou.edu

Abstract In this paper, a self-organizing neural network
model with entropy-based evaluator called EBE is
proposed. An FPGA based design that implements the
EBE model is presented. The PCI bus interface including
DMA transfer is embedded into the design. 8-bit test data
is fed into the design to verify the correctness of the
algorithm and its FPGA implementation.
Topic Area No.5 : Algorithms and Optimization
and/or No.4: Reconfigurable Hardware Architectures

I. INTRODUCTION

 Artificial neural networks (ANNs) are systems based on
mathematical algorithms, which are derived from the field of
neuroscience and are characterized by intensive arithmetic
operations [1]. These networks display interesting features
such as parallelism, classification, optimization, adaptation,
generalization and associative memories [2,3]. To implement
NN algorithm, custom hardware, although fast and compact,
require significant non-recurring engineering (NRE) cost
which makes NN difficult to implement. Fortunately,
technological developments have substantially increased gate
densities, making reconfigurable computers, based on field
programmable gate arrays (FPGAs), an attractive alternative.
FPGAs provide effective programmable resources for
implementing self-organizing digital ANNs. They are readily
available, reconfigurable and have smaller NRE costs– all
important advantages for ANNs applications. ANNs have two
phases of operations, the learning phase and the retrieve
phase. During the learning phase, a flexible and space-
efficient hardware of self-organizing neural classifiers is
constructed using FPGA from the elementary modules and the
processing functions evolve from connecting a number of
modules in every layer. The self-organization architecture can
structure itself to execute the algorithm and restructure itself
during execution depending on results. So it can make the NN
structure solve the different application tasks such as pattern
recognition, image processing and so on. Using the training
data, the structure defining decisions is obtained by the
evaluator circuit using entropy-based algorithm [4].
 Relative entropy represents the information we can
extract from the training data. The algorithm within the
evaluator circuit evaluates the training data and defines a self-
adapting learning architecture mapping it to specific
functional units. A hardware unit which computes the entropy
based information is called Entropy-based Evaluator (EBE)
which searches for the maximum mutual information using
one-dimensional searching space. The learning algorithm
searches the sample space in parallel and finds the locally

optimal arithmetic and logic operation threshold for the input
signal values. This learning process results in fewer
connections and can provide a very high-speed classifier for
many real-time image recognition and other machine learning-
based applications.
 The algorithm is first verified in Matlab at system level
simulation. Then the Matlab bit level simulation results give
us a realistic reference to hardware implementation at RTL
(Register Transfer Level). First, a behavioral model of the
EBE algorithm is implemented by using VHDL. VHDL is the
name of the IEEE 1076 Hardware Description Language
standard for very high-speed integrated circuits design [5].
Then the neural network organization and the learning
algorithm are modified for easy implementation in Field
Programmable Gate Arrays (FPGA).
 The 8-bit length stochastic input signals are serially read
into the input buffer via PCI bus by control module
implemented with finite state machine. Counter and
comparator are implemented with simple accumulator and
shift register. Complex Logarithm-based entropy computing is
obtained by a fully exploited look-up-based architecture of
many FPGAs. The Look-up-table (LUT) input pointer is
combined with a simple shift-add-based structure to obtain the
entropy information with probability scaling. Different
modules are connected using 8-bit data bus and synchronously
operated under 32MHz PCI clock extracted by the control
unit.
 The hardware organization using FPGA has been
modeled and simulated in VHDL. Leanardo, an RTL/logic
synthesis tool from Mentor Graphics Corp., has been used to
generate the gate level of the proposed structure. The Xilinx
family (XCV800 Virtex FPGAs) is chosen as target
technology [6]. The FPGA implementation performance
results have been verified by efficient and fast classification of
two experimental classes. Each class has three dimensions
with 1000 normally distributed samples in each dimension
with different mean values and variances.
 In section II, the self-organization structure is introduced.
Section III deals with the design methodology followed by an
FPGA-based architecture for the algorithm. Section IV talks
about the synthesis and implementation results and finally, a
discussion is given in Section V.

II. SELF-ORGANIZING NN STRUCTURE

 Self-organization is a transit process. In our self-
organization model, the NN is a feed forward structure that
can decide about its own interconnections and neuron
operations. It has a prewired organization that contains a

2

number of identical processing blocks (called neurons), which
are pseudorandomly connected to the input nodes and other
neurons. In addition, the Entropy-based Evaluator (EBE) is
utilized to select a proper operation and input selection for
each neuron.
 Entropy is a nonlinear function to represent information
we can learn from unknown data. In the learning process, we
learn some constraints on the probability distribution of the
training data from their entropy. So we can choose a
probability model that is optimum in some sense given this
prior knowledge about the training data. Here we choose the
entropy based information index to built the neural network
structure in the learning process.

A. Information Index and Information Deficiency

 In the learning process, the training set of signals is
searched sequentially class by class to establish the optimum
point (threshold) which best separates signals of the various
training classes. The quality of the partition is measured by
the entropy based information index defined as follows:

max

1
E

E
I

∆
−=

where

∑∑∑ +−=∆
s

sssc
s c

sc PPPPE)log()log(

and

∑−=
c

cc PPE)log(max

here cP , sP , scP represent the probabilities of each class,

attribute probability and joint probability respectively. The
summation is performed with respect to all classes and two
subspaces (for training samples in a given subspace that either
satisfy or do not satisfy threshold respectively). The
information index should be maximized to provide an
optimum separation of the input training data. When the limit
value of the information index equals to 1, the problem at
hand is solved completely, i.e. the training data is correctly
classified (separated into various classes) by the NN. In order
to accumulate learning results from different subspaces we
consider what is the amount of added learning and weight it
against increased system complexity and resulting error of
statistical learning. This is the case when a set of training data
is obtained from a small subspace of the original space and it
is related to less reliable statistics about the training data. So
we also define the subspaces information deficiency as
following to indicate how much knowledge must be gained to
resolve the classification problem in the given subspace.

∑
∑∑∑ −

=
∆

=

c
cc

s
sssc

s c
sc

s
s PP

PPPP

E

E

)log(

)log()log(

max

δ

 Our training objective is to find the vector configuration
and threshold value which maximizes normalized information
index I. The learning process is used to maximize classifying

information for each class. Logarithm function used in
entropy evaluation can be implemented in analog circuits
owing to the nonlinear characteristics inherent in CMOS
devices. In digital implementation, the entropy function can
be approximated either by a lookup table (LUT) or by a direct
calculation. The latter asks for many logic resources and a
long delay time. In the former, the lookup table approach, the
Plog(P) function-value associated with each probability-value
is stored in the memory and P is used as an address to the
lookup table. Many EBE hardware unit will be used to support
the organization and local optimization of evolved learning
structure. Therefore, each of them should be simple and use
small design area.

B. EBE Analysis and Simulation Results

 In order to simplify hardware used for EBE, an effect of
round off errors on the accuracy of the resulting information
index is considered. The first test performed is to determine
the dependence of the information index error on the number
of units used to represent them. For simple verification, we
use two classes training data with three dimensions per class.
In every dimension, there are one-thousand normally
distributed random values with different mean value and
variance.
 The EBE algorithm is first verified by Matlab simulation
in both behavioral and structural level. The simulation results
obtained in structural levels are shown in Fig. 1. In this
example, two one thousand, one-dimensional and normally-
distributed points with different mean values and variances
are taken as training data. In the behavioral simulation, we
use 8-bit widths to represent the input analog data and set
threshold searching step to be maximum quantification noise.
 Using the results obtained in behavioral simulation,
approximation error effects were analyzed and generalized
structural model was developed. In the structural level
simulation, we utilize 5-bit width input pointer to address the
Plog(P) lookup table (LUT) and to cope with the induced
noise in the quantification process of the training data. As
seen in Fig.1, these hardware simplification and
approximation in the process of entropy calculation do not
sacrifice the necessary classification information compared to
the behavioral simulation results.

III. HARDWARE IMPLEMENTATION

A. Design Methodology

 A top-down design methodology was adopted. A high-
level VHDL model [7] for the circuits was generated. The
logic was partitioned. Each part was re-described in a lower
level description (RTL) required for the circuit synthesis,
optimization and mapping to the specific technology by
assigning current FPGA family and device. The resulting
optimized circuit description was verified through extensive
simulation after which the layout was created (Layout
synthesis) and finally, on chip verification was executed by
using C++ programming to connect PCI bus to the design
ports and to test the design.

3

B. FPGA-based Architecture

 The Xilinx Virtex XCV800 was adopted in our study as
the Virtex series offers the improved architecture, high gate
density and connecting line density. The density of XCV800
is 888,439 equivalent gates and it consists of a 56 x 84 grid of
configurable logic blocks. Global Routing resources
distribute clocks and other signals with very high fanout
throughout the device. Some classes of signal require
dedicated routing resources referred to as primary global and
secondary local clock routing resources. In the speed grad-6
XCV800, Global Clock input to output maximum delay is 4.9
ns. Interconnection delay increases with increasing fanout and
routing distance. The Virtex CLBs structure combines two
LUTs and referring to LUT is useful for EBE with the LUT’s
flexible function implementation ability. It also has a fast
propagating adder feature with dedicated circuitry for the
computation and interconnection of carries. The fast
propagate feature provides an implementation with the least
delay and small design area. In our design, we embed PCI bus
interface module including DMA for fast data IO and easy
debugging with software. The system architecture is shown in

Fig.2. In particular, Fig.2 illustrates the EBE hardware model
which is mainly based on a:
Memory circuit unit (LUT) which implements the Plog(P)
function.
• Comparator unit using a fast propagating carry feature to

compare the current maximum entropy index with the
calculated entropy from the entropy calculating unit
(ECU).

• Two registers that are used to store the maximum entropy
index and its corresponding threshold in the process.

• ECU which can produce the 5-bit access pointer for data
acquirement from LUT, calculate the current information
entropy and send the current entropy and threshold to the
comparator unit.

In the four units which comprise the EBE module, ECU is the
main block organized as shown in Fig.3. Other components
are used for control, interface, monitor and so on.
• Control unit produces the control signals for the whole EBE

including system clock, state transfer signals, handshake
signals and so on.

• MUX and DMUX are used for parallel process of the multi-
dimensional data in the input classes.

• Display unit implements the online monitor for the data
transfer.

• EBE interface is used as interface between FIFO control
unit, PCI bus and EBE for rapid data transfer and easy
online system debugging.

• PCI interface core and FIFO unit satisfy PCI 2.0
specification.

C. VHDL Design and Simulation

 We use VHDL to describe a digital system at the behavioral
level so that we can simulate the system to check out the
algorithm used and to make sure that the sequences of operations
are correct. After verification the correctness of the algorithm
and adaptability of the hardware implementation (Shown in Fig.
4), we add the PCI bus interface modules into the design and
organize them as a hierarchical structure. The first level in
hierarchy is the PCI interface includes DMA, FIFO etc.

PC
I Interface C

ore

FIFO
 C

trl

E
B

E
 Interface

R1

R2

Fig.2 FPGA-based Architecture

Control Unit

D
M

U
X

Threshold

MaxInfo

LUT

ECU

Comparator

Unit

O
utput

PCI

Display

Req
Start
Done

EBE

OE

 M
U

X

SEL SEL

Fig.1 Structural Simulation

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15
computation comparation with quantization and lut

I

Threshold Index

caculated
hardware simulated

4

The second level is the EBE supporting module group and
includes controller, MUX, DMUX and interface to PCI and
calculating module. The last level is the core EBE module which
is divided into calculating unit, LUT, comparator and registers.
In the VHDL description in RTL level, we divide the module
according to its hardware function division as seen in Fig.2. The
searching threshold step, maximum threshold and data width are
generic and can be configured easily.
 The Plog(P) function is implemented by the ROM LUT
with 5-bit width address. Other units adopt 8-bit data flow. The
outer modules like PCI interface, FIFO and so on are linked to
EBE module by 32-bit data bus. In the process of simulation, we
use the lowest 10 bits as the data channel I from Class I and the
upper 10 bits as the data channel II from Class II. From the
simulation results, we can see that the data are transferred and
controlled by the signals-Request, Start, Done, OE and current
state.
 As seen in Fig.2, these interface and control signals are
transferred between EBE interface and PCI and between Control
unit and other modules. After the current threshold reaches the
maximum threshold set by the generic parameter, the Done
signal will be set to High and the simulation process will be
over. The last output threshold will be the classification
threshold for the current dimension of the classes. In the EBE
calculating process, the input data will be resended once the
threshold is updated by the generic threshold step parameter
while the signal Request to the interface model will be set to
low. The Request, Done, Start, OE are also used as the
handshake signal groups for the synchronized work of the whole
hardware module. The simulation results are obtained by using
Aldec-HDL simulator [8].

IV. SYNTHESIS AND PERFORMANCE

 Most of units including PCI bus interface are synthesized
using logic synthesis tool, Leanardo yielding the gate level
structure of the full EBE model. The logic synthesis tool starts
with two kinds of information: the RTL specification given in
VHDL and a functional unit library, which can include
complex functional units. The RTL description accesses these
functional blocks through VHDL procedure calls. For each
procedure or function used, the library must induce at least
one functional unit able to execute the corresponding
operation. The synthesized results are tested using
commercially-available FPGA board (Nallatech Ballynuey
board [9]) provided by Nallatech Inc. UK. The Ballynuey
board is a PCI compatible expansion board that can be used
via a PCI-compatible PC. The host PC stores all configuration
information and collected data. And the configuration data can
be downloaded to the Virtex FPGA board via PCI bus. Part
utilizations for the PCI interface and EBE module were
respectively 385 slices and 96 slices. The following table
shows the synthesis report of the design and Fig. 5 shows the
synthesized schematic and Virtex floorplan. We use VC++ as
the software debugging tool to test the circuits and the design
has been verified by functional level simulation and gate level
simulation.

Vendor: Xilinx
Family: VIRTEX
Device: V800BG432
Speed: -4

Number of External GCLKIOBs 1 out of 4 25%

From
LUT

From
LUT

CLK

DATA

Start

Request

Done

N_1

N_2

OE

MuxSelect1

MuxSelect2

in_data

Threshold

in_threshold

Curr_Entropy

Max_Entropy

out_data

OutThreshold

State

Nextstate

34 45 56 67 78 89 9A AB BC CD DE

0E 17

3 3 3 3 3 3 3 3 3 3 3

0E 17 1E 1B 10 06

34 45 56 67 78 89 9A AB BC CD DE

0E 17

0E 17 1E 1B 10 06

1 1 1 1 1 1 1 1 1 1 1

67

EF

1E

0

0

00

EF

1E

00

3

0

ns6 8 10 12 14 16 18 20 22 24 26 28

Fig. 4 VHDL Simulation at RTL

To
LUT

To
COM

Fig.3 Entropy Calculating Unit

M

R

>

Threshold

N

T

>

R

>

Threshold
Adjustment

R
MUL

DIV

SHI

R

+/-

R

 5

 Number of External IOBs 47 out of 316 14%
 Number of BLOCKRAMs 4 out of 28 14%

 Number of SLICEs 463 out of 9408 4 %
 Number of DLLs 1 out of 4 25%
 Number of GCLKs 1 out of 4 25%
 Number of TBUFs 256 out of 9632 2%

Number of flip-flops: 336
--
Minimum period: 24.838ns
Maximum frequency: 40.261MHz
Total equivalent gate count for design: 88,186
Additional JTAG gate count for IOBs: 2,304

 As can be seen from the synthesized design, many EBE
units can be implemented on a single Virtex chip together with
the self-organizing neural network structure. Thus the entire
classifier can be incorporated in this technology.

V. SUMMARY AND CONCLUSION

 In the paper, we have presented an algorithm for digital
implementation of ANNs based on system entropy. The
developed models have been verified by VHDL simulation
results. We use behavioral level to validate if the selected bit
widths for internal and external signals are sufficient for
achieving a required computation precision. In classification
area, the necessary calculation accuracy varies by application.
The low precision can simplify the hardware implementation
complexity and speedup the performance. The EBE module,
consisting of calculating unit, a memory unit and a few digital
components, has been modeled and simulated in VHDL.
Experimental results show that the obtained classification of the
training data obtained by behavioral VHDL model match closely
with that anticipated from the analysis results. Our next
objective is to construct a parallel self-organizing neural
network, verify hardware training phase and test the approach in
the real world applications.
 Another important development we are searching for is to
use analog circuits to implement the algorithm. The Logarithm-
based non-linear function can be easily implemented by the non-
linear characteristics of analog circuit in a small design area
[10]. Higher speed, smaller area and power dissipation of analog
circuits constitute a potentially powerful improvement over

digital circuits. This will be stated in the next phase of our
research.

References

[1] S.Titri, H.Boumeridja, D.Lazib, N.Izeboudjen. “A Reuse
Oriented Design Methodology for Artificial Neural Networks
Implementation”. IEEE,1999.
[2] Martin T. Hagan, Howard B. Demuth, Mark Beale.
“Neural Network Design”. PWS Publishing Company. 1995.
[3] S.Y.Kung.“Digital Neural Networks”. PTR Prentice Hall,
1993.
[4] J. A. Starzyk and J. Pang , “Evolvable binary artificial
neural network for data classification.”, The 2000 Int. Conf.
on Parallel and Distributed Processing Techniques and
Applications, (Las Vegas, NV, June 2000).
[5] K.C.Chang, “Digital Design and Modeling with VHDL
and Synthesis”, IEEE Computer Society Press,1997.
[6] Xilinx, “The Programmable Logic Data Book”, San Jose.
1993.
[7] S.S.Erdongan, Abdul Wahab, T. H. Hong. “VHDL
Modeling and Simulation of the Back-Propagation Algorithm
and its Mapping to the PM”. IEEE 1993 Custom Integrated
Circuits conference.
[8] Aldec, “Aldec-HDLTM Series User Guide Version 4.1”,
August 2000.
[9]“BALLYNUEY 2 VIRTEX PCI CARD USERS GUIDE”.
Nallatech Ltd.1993-1999.
[10] Carver Mead “Analog VLSI AND NEURAL
SYSTEMS”. ADDISON-WESLEY Publishing Company,
1989.

Fig.5 Synthesized Schematic & the Corresponding Floorplan in Virtex

