

Dynamically Reconfigurable Neuron Architecture for the Implementation of Self-
Organizing Learning Array

Janusz A. Starzyk and Yongtao Guo

School of Electrical Engineering & Computer Science
Ohio University, Athens, OH 45701
{starzyk, gyt}@bobcat.ent.ohiou.edu

Abstract: In this paper, we describe a new
dynamically reconfigurable neuron hardware
architecture based on modified Xilinx Picoblaze
microcontroller and self-organizing learning array
(SOLAR) algorithm reported earlier. This
architecture is aiming at hundreds of traditional
reconfigurable field programmable gate arrays
(FPGAs) used to build SOLAR learning machine that
has many advantages over traditional neural network
hardware implementation. Neurons are optimized for
area and speed, and the whole system is dynamically
self-reconfigurable during the runtime. The system
architecture is expandable to a large multiple-chip
system.

Keywords:
Dynamical Reconfiguration, Self-Organization,
Picoblaze, FPGA.

1. Introduction

The immense computing power of the brain is
believed to be the result of the parallel and distributed
computing performed by approximately 1011 neurons,
each with an average of 103 – 104 connections. To
prototype networks that mimic the biological neurons
using hardware, currently we can benefit from the
flexibility of FPGAs used as general-purpose
processors. During the last decade, numbers of
approaches have been attempted for the application
of reconfigurable hardware to the neural networks
[1,2]. However, these implementations are focused
on interconnect weight dominated architectures
which are not easily expandable to multiple FPGAs
with identical cell architecture. Additionally, often
their connections and functionalities are fixed and
predefined by off-line simulation. One exception here
are FPGA based arrays of identical cells to
implement evolutionary computing and genetic
algorithms [3,4,5]. Also, recently cellular neural
networks used in image processing [6] and their
hardware implementation have attracted a lot of
attention.

In this paper, we present a dynamically
reconfigurable (i.e. during runtime), data-based and
expandable neuron architecture to implement a self-
organizing learning array (SOLAR). The neuron’s
functionality is represented in the form of flexible
connections and organization of an array of evolvable
signal processing blocks. Each neuron can implement
various arithmetic and logic functions. The neurons
can self-reconfigure and use local interconnect for
maximum performance.

The rest of the paper is organized as follows. Section
2 talks about our pervious work on SOLAR. Section
3 deals with the architecture of the dynamically
reconfigurable neuron. Section 4 reports the
simulation and experimental results. Finally, Section
5 concludes this paper.

2. Previous Work

Self-organization is important in artificial neural
networks (ANNs) and machine learning. Previously,
a self-organizing learning algorithm that combines
neural networks and information theory was
presented in [7]. This entropy-based neural network
learning algorithm was simulated on standard
benchmarks and proved to be advantageous over
many existing neural networks and machine learning
algorithms in a wide range of technical applications,
in particular, dealing with noisy or incomplete data.
Based on this algorithm, we proposed SOLAR
system which is different from classical ANNs in the
way it is organized and how it learns. SOLAR self-
organizes its hardware resources to perform
classification and recognition tasks. Similar to the
structure of cellular neural networks, SOLAR has a
fixed array of elemental processing units acting as
single neurons, and programmable interconnections
between them. Initially, SOLAR neurons are
randomly connected to previously generated
neurons. They learn adaptively using both primary
inputs and inputs from other neurons. Controlled by
signals from other neurons, they perform basic
transformations of their input signals. A neuron

parameters and connections are re-configured as a
result of training, and effectively, SOLAR’s structure
self-organizes establishing its final wiring.

Earlier work mainly focused on SOLAR algorithm
simulation [7] and its hardware implementation was
limited to a single FPGA chip with the cooperation
from software [8]. This hardware implementation
explored the adaptability of SOLAR to FPGA
implementation, although the cellular neuron
architecture was not fully explored since we utilized
a shared block memory for all neurons. In SOLAR
simulation, we adopt feed forward network structure
for its stability and fast learning. SOLAR
architecuture is divided into three main layers as
shown in Fig. 1– input, processing and output layers.
The interconnections are randomly initialized at the
beginning of training. The basic building blocks of
the architecture are the small neurons, trained using
the entropy-based algorithm [7].

3. Neuron Architecture

The hardware architecture presented in this paper is
based on identical neuron modules. The constant
Coded Programmable State Machine (KCPSM)[9],
an 8-bit micro-controller developed by Xilinx Corp.,
has been modified and embedded into the neuron
module. The module contains circuits to be
reprogrammed dynamically and to execute new
programs without affecting other neurons’
executions. A block level of a single neuron
architecture is shown on Fig.2.

The dynamical programming ability is implemented
by a dual-port 256x16-bit memory. The KCPSM
reads the current program on one port while the other
port can be used to store the new program. The two
ports of the dual-port RAM operate independently,

and the operation is via shared programming bus
among all neurons. Therefore, the self-
reconfiguration process can be performed affecting
only the current neuron. The rest of the neurons
inside the chip work with no interruption. The
configuration time and contents can be controlled by
software outside the chip or configuration data that is
located in distributed memory cells in the system.
The neuron inputs are from either primary inputs or
any other neurons via a 30 to 1 multiplexer. The
selection signals are decided by the content of the
programming dual-port memory via execution of the
programming commands for the particular neuron.

The single neuron architecture is expanded to
multiple neurons in a single FPGA chip. In this
work, we use a Nallatech board with Xilinx Virtex
XCV800 FPGA [10]. It can contain an array of up to
28 neurons organized as shown in Fig.3 (The 480
Virtex XCV1000 FPGAs we are using to build 3D
learning machine can contain up to 32 neurons on
each chip.)

These neurons are fully connected via the connection
bus. The neurons connections are decided by the

Fig. 1 Basic SOLAR structure

N
C

neuron

X

ADDR

INS

D

D
M

DATA

SEL

N
C

neuron

X

ADDR

INS

D

D
M

DATA

SEL

N
C

neuron

X

ADDR

INS

D

D
M

DATA

SEL

N
C

neuron

X

ADDR

INS

D

D
M

DATA

SEL

N
C

neuron

X

ADDR

INS

D

D
M

DATA

SEL

N
C

neuron

X

ADDR

INS

D

D
M

DATA

SEL

FULL ROUTING BETWEEN NEURONS

DATA/ADDR/CTRL BUS

DATA/ADDR/CTRL BUS

…

…

…

…

…

…

…

…

Fig. 3 Array neurons’ organization

Fig.2 Single neuron’s schematic

instruction <15:0>

in_port <7:0>

clk

interrupt

reset

address

out_port <7:0>

port_id<7:0>

read_strobe

write_strobe

x
30 inputs

Dual
port

memory

R

R

Neural Controller
(use KCPSM)

address

addr_bus<7:0>

data_bus<15:0>

clk

enable

instruction<15:0>

programming contents of each neuron. The
programming contents can be dynamically updated
via the configuration bus or set locally by a neuron.
The configuration bus used to configure every single
neuron is divided into 16-bit data, 8-bit address and
5-bit neuron selection buses. To demonstrate the
functionality of the 28 neurons, we integrate a PCI
interface controllers to transfer the data/configuration
via the PCI bus to neurons.

4. Simulation and Results

In this section, results from prototyping a simple
SOLAR architecture onto a single VIRTEX FPGA
chip are discussed. The neurons self-organizing
learning process can be configured during chip
programming or dynamically updated while running.
To demonstrate this process, a simple example is
given to illustrate the implementation step of SOLAR
algorithm. The implementation of the whole SOLAR
array is organized in a similar way. In this simulation
example, we have six out of twenty-eight neurons
configured as shown in Fig.4.

The initial connections are shown in solid lines.
Every neuron simply adds two inputs together, for
instance, neuron 1 adds input 1 and 2 to its content;
neuron 3 adds input 2 and the output of neuron 1;
neuron 5 adds the outputs of neuron 2 and 3, etc.
Later, we dynamically reconfigure the connections of
neuron 3 and neuron 5. So neuron 3 has inputs from
the outputs of neuron 1 and 2, and neuron 5 has
inputs from the outputs of neuron 3 and 4 shown by
the dotted lines. The results read out from the chip
via PCI bus are shown in the Matlab console. In the
inserted Matlab command console in Fig.4, “initial”
values show primary input values (6 and 2) and
neuron outputs for two rows of neurons, while
“updated” values show inputs and neuron outputs
after dynamical reconfiguration step. We developed

the Matlab DLLs to implement the I/O functions
including read and write. We can see the results from
the real experiment corresponding to VHDL
simulation results as shown in Fig. 5. In this plot,
“Enable_bus” representing the neuron selection
signal, selects a particular neuron to be configured.
Once the configuration process for all neurons is
over, the outputs from neurons are stable and ready to
be read out. This way we can update any neuron’s
configuration information without affecting the other
neurons. In this example, we only update neurons 3
and 4 connections represented by “Enable_bus”
content 4 and 5. The simulation results after updating
correspond to the real experiments read back from
hardware as the “updated” values in Fig.4.

The design has been described in VHDL and
synthesized using the Xilinx XST and the Xilinx
Alliance tools for place and route. The
implementation results are summed up in Fig. 6.

The implementation results show that this neural
network architecture realizes a maximum parallel
instruction throughput of 23.16x28 MIPs with 28
fully connected neurons. The neuron number is
limited to 28 since there are only 28 BRAM modules

Fig. 6 Implementation report

Fig. 5 VHDL simulation for partial configuration

neuron
outputs

initial updated

Fig.4 Experiment and result

1 3 5

2 4 6

on the chip although we still have some other
resources unused. If we further lower the neuron’s
program memory size, we can put more neurons on a
single chip to overcome the BRAM bottleneck.

The mapping result is shown in Fig. 7. We can see
how the neurons are distributed inside the chip after
the mapping process. Every single neuron occupies a
compact and concentrated logic area. The
compactness depends on the structure-oriented
hardware design, for instance, we adopt LUTs and
dedicated multiplexer module in addition to the
optimized Picoblaze structure to build every single
neuron.

5. Conclusions

This paper has described the architecture and chip
implementation of an array of neurons aimed at
implementation of SOLAR. The self-organizing
learning is based on a new machine-learning
algorithm [7] that combines knowledge from neural
networks (NN) and information theory. SOLAR
represents a new idea in hardware design of neural
networks. It is modular and expandable system. It
also defines a new breed of dynamically
reconfigurable architectures that can dynamically
reconfigure themselves. This presented architecture is
a novel dynamically reconfigurable (via dual-port
memory) neural network implementation based on
simple general-purpose processor (KCPSM)
architecture. Firstly, it has a regular expandable
parallel architecture. Therefore, its speed and
learning abilities can be greatly improved comparing
to software simulation. Secondly, it has data-driven
self-organizing learning structure based on the
proposed self-organizing learning algorithm.
Furthermore, design flexibility is attained by
exploiting the features of self-reconfigurable neuron

units. Finally, hardware reconfigurability is achieved
in this self-organizing learning array by involving
reconfigurable routing modules. According to the
implementation results, this neuron architecture
realizes a maximum parallel instruction throughput of
23.16x28 MIPs with 28 fully connected neurons.
Much higher performance can be achieved by
connecting more neurons. Hence it can be of practical
use for embedded hardware applications in signal
processing, wireless communications, multimedia
systems, data networks, and so forth.

References

[1] Misra, M., 1997, Parallel Environment for
Implementing Neural Networks. Neural Computing
Survey, Vol.1, 48-60,1997.
[2] Glesner, M. and Pochmuller, W., 1994, An
Overview of Neural Networks in VLSI, Chapman &
Hall, London, 1994.
[3] G. Tempesti, D. Mange, A. Stauffer, C. Teuscher
“The BioWall: an Electronic Tissue for Prototyping
Bio-Inspired Systems”, Proceedings, NASA/DoD
Conf. on Evolvable Hardware, Los Alamitos, Calif.,
pp.221-230, 2002.
[4] L. Sekanina, ”Towards Evolvable IP Cores for
FPGAs,” In: Proc. NASA/DoD Conf. on Evolvable
Hardware, Los Alamitos, US, ICSP, 2003, pp. 145-
154, 2003.
[5] Hugo de Garis, Michael Korkin, "The CAM-
Brain Machine for Real Time Robot Control", J.
Neurocomputing, Elsevier, Vol. 42, Issue 1-4, Feb.,
2002.
[6] T.Roska et. al., "The Computational Infrastructure
of Analogic CNN Computing – Part I.: the CNN-UM
Prototyping System”, IEEE Trans. Circuits and
Systems I, vol. 46, pp. 261-268, 1999.
[7] J. A. Starzyk and T-H.Liu, “Design of a self-
organizing learning array system,” IEEE Int.
Symposium on Circuits and Systems (ISCAS),
Bangkok, Thailand, May 2003.
[8] J. A. Starzyk, and Y. Guo, “Dynamically Self-
Reconfigurable Machine Learning Structure for
FPGA Implementation” Proc. Int. Conf. on
Engineering of Reconfigurable Systems and
Algorithms (ERSA) Las Vegas, Nevada, USA,
June,2003.
[9] K. Chapman,“8-Bit Microcontroller for Virtex
Devices.” Xilinx XAPP213, Online
http://www.xilinx.com/xapp, Oct. 2000.
[10] Nallatech Ltd, “Ballynuey 2 VIRTEX PCI card
user guide”, 1993-1999.

Fig. 7 Mapping result

