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Abstract 
Timebase distortion causes nonlinear distortion of 
waveforms measured by sampling instruments. When 
such instruments are used to measure the rms amplitude 
of the sampled waveforms, such distortions result in 
errors in the measured rms values. This paper looks at 
the nature of the errors that result from nonrandom 
quantization errors in an instrument’s timebase circuit. 
Simulations and measurements on a sampling voltmeter 
show that the errors in measured rms amplitude have a 
non-normal probability distribution, such that the 
probability of large errors is much greater than would 
be expected from the usual quantization noise model. A 
novel timebase compensation method is proposed which 
makes the measured rms errors normally distributed and 
reduces their standard deviation by a factor of 25. This 
compensation method was applied to a sampling 
voltmeter and the improved accuracy was realized. 
 
I. INTRODUCTION 
 
Nominally uniformly spaced sample intervals are 
fundamental for modern sampling instruments. This is 
true whether the samples are taken in real time or 
equivalent time. The deviations away from uniform time 
intervals have two components: a random part called time 
jitter that is not the subject of this paper, and a 
deterministic part called timebase distortion. Uncorrected 
timebase distortion causes nonlinear distortion of the 
sampled waveforms. Several papers have been written on 
techniques for measuring and correcting for deterministic 
timebase distortion [1-6]. These correction techniques 
usually depend on resampling the recorded waveform to 
produce a new waveform that represents the signal 
sampled uniformly. Here we present an alternative 
correction method that does not rely on recalculation of 
the waveform if the quantity of interest is the root-mean 
squared (rms) amplitude of the sampled signal. 
 
Not all instruments have the type of timebase error 
discussed in this paper, although most equivalent-time 
types do. The following describes the type of timebase 

error under discussion. The timebase on many instruments 
use a clock circuit that runs independent of the signals 
being sampled. This clock circuit usually has a smallest 
time resolution unit that can be programmed. This time 
unit is the quantization resolution of the timebase. If the 
instrument makes a measurement that requires sample 
intervals that are not integer multiples of this unit, the 
realized sample times will have a quantization error. Such 
an error can occur when the measurement requires an 
integral number of samples over one or more periods of 
the signal being sampled. In this case the timebase will 
have quantization errors that are dependent on the 
frequency of the signal being sampled. 
 
When designing sampling instruments the timebase 
quantization resolution is usually selected such that its 
effects on the accuracy of the instrument are below the 
random noise level of the sampling process. To do this 
requires estimates of the effects of such an error process. 
The traditional method employed is to treat the 
quantization as a random noise process [7-10]. For an 
instrument used to measure the rms amplitude of the 
sampled signal, such a model leads to an error estimate 
for the calculated rms values characterized by a normal 
probability density error distribution. The timebase 
quantization, however, violates the assumptions necessary 
for use of the random noise model. To use that model the 
errors must be independent and identically distributed 
(iid). As will be shown in this paper, certain timebase 
quantization processes can cause the quantization errors 
to be correlated with each other and with the signal being 
measured. This causes the errors in the calculated rms 
values to be non-normally distributed. A consequence of 
using the wrong error model is that it underestimates the 
probability of large errors. 
 
This paper examines the nature of the sampled waveform 
errors that arise from timebase quantization. A unique 
method of correcting the sampling process is described 
that significantly reduces the errors in the calculated rms 
amplitudes of such sampled waveforms and results in a 
normal error distribution. This modified sampling 



technique requires only a very small change in the way 
that sample times are calculated and no change in the 
basic design of the quantized timebase. 
 
Timebase quantization errors were encountered at NIST 
during the development of a high accuracy sampling 
voltmeter [11]. The NIST Wideband Sampling Voltmeter 
(WSV) measures the rms amplitude of periodic signals by 
sampling the signal’s waveform using equivalent-time 
sampling. The design for this timebase and how it 
interacts with the signals being sampled is described in 
section II. Results from a simulation model of the 
voltmeter indicated the differences between the correct 
error model and a random error model as described in 
section III. A modified quantization scheme, which 
significantly reduces the errors caused by this type of 
timebase distortion, is described in section IV. In addition 
to the simulation studies, measurements on the NIST 
WSV verified the accuracy of the simulations and the 
improvements possible by use of the modified 
quantization scheme as described in section V. 
 
II. RAMP QUANTIZATION 
 
The NIST WSV adjusts the sampling rate to be an integer 
multiple of the signal frequency. However, because the 
timebase is quantized, the actual sample times are not 
uniformly spaced. The following is a simplified 
description of the way the sample times are generated to 
help the reader understand how the time quantization 
process interacts with the signal frequency and results in 
an error in the measured rms value. 
 
The timebase generator makes use of a voltage ramp, a 
reference DAC, and a comparator. Because of the large 
frequency range covered by the voltmeter, 10 Hz to 200 
MHz, multiple ramp slopes are used. Twenty-two slopes 
are used altogether; three are used to cover each decade of 
frequency. During the measurement process the frequency 
of the input signal is determined and used to select the 
fastest ramp such that for one signal period the ramp 
voltage changes by less than the DAC full scale voltage 
range. The ramp start time is synchronized with the input 
signal. The ideal sample interval, ti , is calculated by 
dividing the signal period by the number of samples to be 
taken over one period. Selecting a start delay and adding 
multiples of the ideal sample interval generates the ideal 
sample times. From the known slope of the ramp the 
reference voltage corresponding to each sample time is 
determined and rounded to the nearest DAC level. This 
rounding is the cause of the timebase quantization and 
from the computations the timebase quantization error for 
each sample time is known. For each sample time the 
DAC is set to the corresponding voltage level and a 
sample strobe is generated when the comparator detects 
the ramp crossing the DAC voltage. The signal amplitude 

at each sample time is measured and the signal’s rms 
value is calculated as the rms of all the measured sample 
values. 
 
The time intervals are quantized by the resolution of the 
reference DAC. The weight Q (in volts) of the least 
significant bit (lsb) of the DAC and the ramp slope r (in 
volts per second) determines the timebase resolution tb(r); 
therefore, the smallest time interval that can be realized 
for the selected slope r is given by tb(r)= Q/r. The actual 
time intervals are limited to multiples of this unit of time. 
Since the ideal sample times are rounded up or down to 
the nearest quantized time, the quantized sample sequence 
will have two sample intervals m × tb(r) and (m+1) × tb(r), 
such that 
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where m is the integer number of quantization intervals in 
the ideal sample interval and δ is the fractional ideal 
sample-interval quantization factor. Figure 1 shows an 
example of the relation between the quantized times, the 
ideal sample times, and the quantized sample intervals. 
 
If δ is close to 0.5 then in general the quantized sample 
intervals will alternate between the two quantized sample 
intervals. Occasionally two sample intervals of the same 
size will occur together. For δ close to 0.5 the sequence of 
quantization errors will be negatively correlated. 
However, if δ is very close to 0 or 1, the pattern is 
different. Then the quantization intervals are primarily of 
one size with an occasional interval of the other size. In 
these cases the sequence of quantization errors will be 
positively correlated. Thus the pattern of quantization 
interval is determined by δ. 
 
When used as the timebase for measuring the rms value of 
a sinewave, the errors caused by this quantization process 
vary with the value of δ. Since the value of δ is a function 
of the period of the signal being measured, the errors in 
the rms measurement vary with the signal frequency. The 
rms measurement errors can become large if the 
quantization errors are correlated with the signal being 
measured. Since this timebase increases the probability of 

Fig. 1. Example of timing relation between quantized time, ideal 
sample time, quantized sample times, quantization error, and sample 
intervals. 
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having correlated quantization errors relative to a random 
error process, the probability of large measurement errors 
is increased at select frequencies.  
 
For purposes of this paper, the important features of the 
timebase being described are first that the quantization 
resolution of the timebase remains fixed for a range of 
input signal frequencies, and second that the sampling 
process is adjusted to the signal frequency. This type of 
timebase process is hereafter referred to as a ramp 
timebase. In examining the errors caused by this timebase 
error process it is important to keep in mind the 
differences in its behavior relative to the behavior for a 
random timebase error process. First, for the ramp 
timebase the quantization errors are not random. Rather 
they are a function of the measurement and signal 
parameters. Thus, averaging repeat measurements can not 
reduce the size of these errors caused by this process. 
They cause a bias in the measured values. Second, the 
probability distribution of the errors in the measured 
quantities is changed. These effects are examined using a 
simulation model. 
 
III. SIMULATION MODEL 
 
A simulation model of the NIST WSV was developed to 
examine the effects of timebase errors on the rms 
measurement process. The simulations allowed either a 
truly random timebase quantization or the nonrandom 
ramp-dependent quantization patterns. The random time 
base errors used a uniformly distributed random timebase 
error of amplitude ±0.5 tb(r). For both timebase error 
types the resultant rms measurement errors were 
determined for a large number of input signal frequencies, 
phases, and other parameters.  

 
Figure 2 shows the cumulative normal distribution plots 
of the rms measurement errors for both timebase error 
types. For this plot the rms measurement errors are sorted, 
the inverse normal probability of the sample number in 
units of standard deviation are plotted on the vertical axis 
and the rms error values are plotted on the horizontal axis. 
Thus, if the errors are normally distributed this plot will 
show a straight line. The plot for the random timebase 
errors is a straight line showing that the errors in these 
rms measurements are normally distributed. The line for 
the ramp- timebase errors is not straight. The line deviates 
significantly from a straight line before reaching ±2 
standard deviations. Thus, about 5 percent of the errors 
are significantly larger than would be expected from a 
normally distributed random error mechanism. 
Conversely, almost 95 percent have an error significantly 
less than expected. 
 
Since many of the errors for the ramp-quantization 
timebase are less than expected, is there some way of 
modifying the quantization error patters to take advantage 
of this and eliminate the large errors? The next section 
shows how this can be done and how it should not be 
done. 
 
IV. MODIFIED RAMP QUANTIZATION 
 
Looking at the timebase quantization errors associated 
with the largest rms measurement errors shows that these 
errors are associated with positively correlated 
quantization errors. These result from the fractional 
quantization factor δ being close to 0 or 1. A useful 
quantity for understanding how this correlation affects the 
measured rms values and which plays an important role in 
the modified quantization scheme that reduces this effect 
is the cumulative sum of the quantization errors from the 
first sample to sample j, Cq(j). This quantity is given by 
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where qi is the timebase quantization error for time 
sample i. The ramp-quantization process holds the 
magnitude of each quantization error qI to less than half 
the timebase resolution, i.e., | qI | < 0.5 tb(r). If the 
quantization errors were random the standard deviation of 
Cq(j) would be proportional to j  tb(r). Figure 3 shows a 
plot of Cq(j) for a frequency with large error where δ is 
close to 0. Because the quantization errors are correlated 
Cq(j) become large compared to tb(r) much more quickly 
than would be expected in a random model. 

Fig. 2. RMS measurement error for ramp quantization (gray 
squares) is non-normally distributed, and rms measurement error for 
random quantization (dark diamonds) is normally distributed. 
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One, not so good, way to break up this correlation is to 
add a random dither to the ideal sample times before 
quantizing them. Figure 4 shows the cumulative error 
distribution for rms measurements taken with a uniformly 
distributed random time dither of amplitude ±0.5 tb(r) 
added to each ideal sample time before being quantized. 
The resultant distribution is now normal but at the 
expense of being larger. 
 
A better way of breaking up this correlation is to restrict 
the size of the cumulative sum of quantization errors, 
Cq(j). This can be accomplished by adding the cumulative 
sum of previous errors, Cq(j-1), to the ideal sample time 
before quantization. The value of Cq(0) is taken to be 
zero. The new set of values for Cq(j) will be between 
±0.5 tb(r). Figure 5 shows a simple feedback computation 
that performs this operation without the need to calculate 

the cumulative sums. This quantization method is referred 
to as the cumulative-sum-limited (CSL) quantization 
scheme. The distribution of rms errors that results from 
the use of the CSL quantization scheme is shown in fig. 6. 
The rms errors are now normally distributed and have a 
standard deviation of about 1/25 of the standard deviation 
from the ramp timebase. The next section shows that this 
improvement was realized in the NIST WSV. 
 
During the simulations each of the parameters that affect 
the rms error was varied to determine their effects. The 
primary factors that determine the rms error caused by 
timebase quantization are the number of bits, b, used in 
the timebase DAC; the number of samples, N, used in the 
rms computation, the number of cycles, n, of the signal 
that are sampled; the quantization error for the first 
sample, ε0 ; and the fraction of the DAC range that 
represents one signal period. For the data given above and 
in much of this paper, the parameters are often chosen as 
128 samples, over one cycle of the signal, with the 
timebase DAC resolution set at 10-bits, the signal phase at 
0 degrees, the initial quantization value as zero, and the 
fraction of the DAC range that represents one signal 
period between 0.5 and 1.0. The empirical relation for the 
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Fig. 3. Example of quantization errors (dark diamonds) and 
cumulative sum quantization errors (gray squares) showing 
correlation of quantization errors and large cumulative sum values. 

Fig. 4. . RMS measurement error for ramp quantization plus random 
dither of 0.5 lsb amplitude gives normal distribution. 

Fig. 5. Cumulative sum limited quantizer, the quantization error 
from quantizer Q is feedback to an adder via a unit sample delay to 
limit the cumulative sum of quantization errors. 

Fig. 6. RMS measurement error for CSL quantization is normally 
distributed and much smaller than errors shown in figs. 2 and 4. 
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dependence of the rms error on these factors for the ramp-
quantization method is given as 
 

rms
Nrq
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and for the modified CSL quantization is given as 
 

rms n
NCSLq

b
b= × × + ×

−
−5 3 2 1 2

0 82

1 4
2. .46 .

.

.  (4) 

 
Note how the error with the CSL quantization, rmsCSLq , 
drops much more rapidly as a function of the number of 
samples, and has a dependence on the number of cycles of 
the measured signal which is not present in the ramp-
quantization timebase induced error. 
 
The functional dependence of the rms error versus signal 
phase is the same for both timebase quantization schemes. 
When plotted versus signal phase angle at the start of the 
sampling interval the error is a sinewave with a period of 
180 degrees. The amplitude of this sinewave is called the 
phase maximum error, PME. This is the largest error 
possible for a given frequency varying the signal phase 
relative to the sample interval and holding the other 
measurement parameters constant. Because the period of 
this phase dependent error is 180 degrees, the PME can be 
determined by simulating or measuring the rms error for 
two signal phases separated by 45 degrees and calculating 
the root-sum-square of the two error values. The values of 
PME versus frequency were simulated and compared to 
PME values measured on the NIST WSV as described in 
the next section. 
 
V. EXPERIMENTAL VERIFICATION 
 
The validity of the simulation model and the value of the 
CSL quantization scheme compared to the traditional 

ramp-quantization scheme are shown with measurements 
taken on the NIST WSV. The DAC resolution for the 
WSV was reduced to 10 bits for this experiment to 
accentuate the errors. With the traditional ramp-
quantization scheme, the rms errors become very large 
around certain frequencies. One such peak occurs for 
signal frequencies around 77 kHz. Figure 7 shows the 
measured and simulated PME results for frequencies from 
75 kHz to 80 kHz. The two solid lines show the results of 
simulations of the rms error using the traditional ramp-
quantization scheme. The top line shows the largest 
predicted PME for each frequency varying all the other 
parameters. The lower line shows the smallest predicted 
PME for each frequency. Thus, if the voltmeter performs 
the same as the simulation model the measured PME’s for 
ramp quantization should fall between the two curves. 
The series of points with diamonds shows the measured 
PME for the NIST WSV using the traditional quantization 
scheme. All values fall between the two curves predicted 
by the simulation model.  
 
The CSL quantization scheme was implemented on the 
NIST WSV. This was done by a simple software change 
to the sample time computation. The lower curve of 
squares in fig. 7 shows the measured PME using the CSL 
quantization scheme. These values are (as predicted by 
the simulation) much lower and do not show the presence 
of large deviations around certain frequencies. 
 
VI. CONCLUSIONS 
 
The unexpected effects of nonrandom timebase quantized 
errors on the measurement accuracy of the NIST WSV 
was modeled and verified. A new scheme for quantizing 
the timebase, CSL quantization, was described which 
decreased the quantization-related errors by a factor of 25. 
The CSL quantization scheme was demonstrated on the 
NIST WSV and the results showed that the instrument’s 
accuracy could be improved significantly using this easy-
to-implement procedure. In the present NIST WSV 
design, the instrument’s timebase related errors were 
reduced to less than the noise level by using a higher 
resolution newly designed timebase [12]. 
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Figure 7.  Predicted rms error range for ramp quantization 
(maximum-upper solid line, minimum-lower solid line) and 
measurement rms error for ramp quantization (dark diamonds), and 
for CSL quantization (gray squares). 
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