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ABSTRACT 

 
This paper proposes a method to diagnose the multiple faults in the 
linear analog circuits. Test equation establishes the relationship 
between the measured responses and faulty excitations due to faulty 
elements. The QR factorization is applied to identify ambiguity 
groups in the test verification matrix. The suspicious faulty 
excitations of the minimum size are determined. Faulty parameters 
are evaluated using the structural incident signal matrix. Finally 
this method is illustrated with an example circuit. 
 

1. INTRODUCTION 
 
Fault diagnosis is an important problem of analog circuit testing. 
Due to the lack of efficient fault models and limited accessible 
nodes, and due to the inherent features of analog circuits such as 
component tolerance and nonlinearity, the automation level of 
analog fault diagnosis has not yet achieved the same level of its 
digital counterpart. During the past years, many efforts have been 
devoted to this area [1-4] and interests in these subjects are 
continuing now [5-7]. Fault diagnosis methods are generally 
divided into simulation-before-test (SBT) methods and simulation-
after-test (SAT) methods [4]. SBT methods are usually based on 
the fault dictionary techniques that require costly simulation and 
extensive data buses. Parameter identification methods under the 
SAT category can identify all the parameters of the network if 
sufficient measurements are guaranteed. They require sufficient 
number of accessible nodes and may only provide approximate 
parameter solutions due to linearization. When the number of 
measurements is less than the number of elements or nodes of the 
network, but is greater than the number of faults, fault verification 
methods under the SAT category are used. The fault verification 
methods can provide the exact solution to the network parameters 
and can be applied to detect large parameter changes. The network 
is excited once and only voltage measurements are performed. 
  
Most of efforts in this area are paid to the single-fault diagnosis of 
the analog circuits. In [8], multiple port approach was implemented 
by checking the consistency or inconsistency of suitable sets of 
linear equations, with current excitations applied to all 
measurement ports successively. In [9], multiple-fault location is 
based on the decomposition technique and the same current 
excitation is required for different accessible ports. The method 
presented in this paper extends the verification methods based on 
the nodal analysis [10] for linear test equations and provides 
procedures to detect the faulty circuits, locate the faulty elements 
and identify the faulty parameters. The method enhances fault 
verification techniques with efficient search for faulty nodes based 
on the QR factorization. 
 

2. EQUATIONS FOR FAULTY NETWORK 
 
Let us assume that the network under test has n+1 nodes and m test 
points (current or voltage measurements) and f<m is the number of 
faults in the network. The modified nodal equations for the nominal 
values of the elements have the form 

WTX =              (1) 

where T is an nn×  coefficient matrix, X is the vector of nodal 

voltages and parameter currents, and W is the excitation vector. 
 
For the faulty network, assuming the same excitations, we obtain 

WXXTT =∆+∆+ ))((             (2) 

Thus XTXT ˆ∆−=∆             (3) 

XXX ∆+=ˆ             (4) 

where X̂  is the solution vector for the faulty network. We can 
compute X∆  assuming that T is nonsingular and obtain 

XTTX ˆ1 ∆−=∆ −             (5) 

Let us denote 
XTW ˆ∆−=∆             (6) 

W∆  represents changes in excitations caused by faulty elements 
and we call it the faulty excitations. The corresponding nodes or 
parameters are faulty. Similarly, nodes or parameter with zero 
faulty excitations are fault-free. The equation (5) becomes 

WTX ∆=∆ −1             (7) 

We can assume that a few elements are faulty, in which case W∆  
has the form 
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Assuming that the first m elements of X can be measured we obtain 
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N indicates the set of all equations, M the set of measurements (test 
nodes). Hence, 
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Equation (10) has to be satisfied when the set F includes all circuit 
excitations associated with faulty elements in the network. 
 
The columns in BMF correspond to faulty nodes or faulty 
parameters in the circuit. Our aim is to find out the sets of columns 
in B that satisfy equation (10) with the minimum number of faults, 
that is, vector FW∆  has the minimum numbers of nonzero values. 



 

Recent results [11] to identify the ambiguity group of the test 
matrix are utilized to implement our aim. 
 
Since the measurement set M is known and set of faulty excitations 
F is not known, we will solve our fault diagnosis problem as the 
following ambiguity group problem: find minimum form ambiguity 
group F in the set of columns of the test matrix BM  which satisfies 
the test equation (10). 
 

3. AMBIGUITY GROUPS IN THE TEST 
EQUATIONS 

 
Let us assume that the test equations were formulated and that the 
faulty excitations W∆  are related to test measurements MX∆  
through the test matrix BM as follows: 

WBX M
M ∆=∆          (12) 

Where BM is an nm ×  matrix, W∆  is an 1×n vector and 
MX∆  is an 1×m  vector. 

 
Denote an augmented )1( +× nm   matrix BS as the concatenation 

of the vector MX∆  and the matrix BM: 
][ M

M
S BXB ∆=         (13a) 

We will normalize the first column of matrix BS to have a unit in its 
first row, then eliminate the remaining elements of the first row of 
matrix BS performed in a similar way to Gaussian elimination step 
as follows: 
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The obtained matrix 
SB̂  has the following form: 
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Note that the superscript represents the size of the vector or matrix. 
Matrix B is obtained from BM after elimination of dependence on 

MX∆  and is called test verification matrix. Next we will analyze 
the dependences among the columns of the test verification matrix 
B. The dependences of the desired columns of matrix B surely 
indicate the dependences between MX∆  and the corresponding 
columns of matrix BM. 
 
The rank of B determines a maximum number of faults that can be 
uniquely identified by solving the test equations. Because 

nm <−1 , B can be written as 

[ ]CIBB 1=           (15) 

Where rm ×− )1(  matrix B1 has the full column rank equal to the 

rank r of the matrix B, and )()1( rnm −×−  matrix C expand the 

dependent columns of B into a set of the basis columns B1. Note 
that the selection of independent columns B1 is not unique and is an 
important issue in solving the test equations in the presence of 
ambiguities. Different partitions define different linear combination 
matrices C. 
 
In order to efficiently find such a partition for any ambiguity group 
or its combination, we will look for a partition (15) with the matrix 
C in a minimum form, where matrix C, is in a minimum form if 
one or several of its columns has the maximum number of 
coefficients equal to zero.  

Here we will refer to a numerically robust solution algorithm based 
on the QR factorization [11]. The QR algorithm finds a numerically 
stable solution of over determined system of linear equations that 
minimizes the least square error. 
 
As a result of the QR factorization of nm ×− )1(  test verification 

matrix B, we can formulate the following equation: 
BE = QR           (16) 

Where E is nn ×  column selection matrix, Q is )1()1( −×− mm  

orthogonal matrix, and R is nm ×− )1(  upper triangular matrix. 

Matrix E has only a single nonzero element equal to one in each 
column. Matrix product BE represents a permutation of the original 
columns of the test verification matrix B. Matrix R has its rank 
equal to the rank of test matrix B. Since R is an upper triangular 
matrix and nm <−1 , R can be written as 
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Where R1 is rr ×  upper triangular and has its rank equal to the rank 

of the test verification matrix B. 
 
The following theorem [11] provides a basis for a numerically 
efficient approach to finding the ambiguity groups. 
Theorem: 
A linear combination matrix C can be numerically obtained from 
the QR factorization of the test verification matrix B using 
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To find the minimum form partition, we have to swap an element 
of the basis with an element of the co-basis in the ambiguity cluster 
in order to increase number of nonzero coefficients in C. 
 
Lemma 1 [11]: 
The necessary condition for swapping to increase the number of 
zero coefficients in C is that the columns of basis and co-basis to be 
swapped have a singular 2x2 submatrix of nonzero coefficients. 
Let us consider a linear combination matrix C with a singular 

submatrix ],;,[ imikjmjk cccc  with all nonzero coefficients. The 

jth column of the corresponding co-basis 
22 BB j ∈  is related to 

columns of the basis B1 through the jth column of C as follows: 
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where 
11 BB i ∈  is the ith  column of the basis. Let us consider a 

nonzero coefficient jkc  of the kth column of C in a minimum form. 

If we swap the jth element of the basis with kth element of the co-
basis, then 
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In addition, all other columns of the co-basis will be equal to 

∑
≠

+









−=

ji
k

jk

jm
i

jk

ikjm
imm B

c

c
B

c

cc
cB 212

       (21) 

After swapping, all zero locations in the kth column of C will 
remain zero as they were in the original C. However, as can be 

deducted from (21), a nonzero location imc  in column m and row i 

will become zero. 



 

Any column of C with zero coefficients form an ambiguity group F 
and has to be consider for further processing. 
Lemma 2: 
A necessary condition for an ambiguity group F of the linear 
combination matrix C to contain the set of all faults in the tested 
circuit is that the rank of the corresponding columns in the original 
test matrix is equal to the cardinality of F. 

)()( FcardBrank MF =          (22) 

Thus according to Lemma 2 any ambiguity group of test 
verification matrix which do satisfy (22) does not have to be further 
analyzed. 
 

4. COMPUTATION OF FAULTY ELEMENTS 
 
After location of faulty excitations, the deviation of the excitation 
vector can be derived by solving test equation (10). Assuming that 
BMF is a full column rank matrix: 
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Where superscipt T denotes transpose of matrices and vectors. 
Then the deviation of the excitation vector can be obtained by 
filling out the remaining elements with zeros: 
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The deviation of the solution vector and entire solution vector are 
computed from: 

WTX ∆=∆ −1             (7) 

XXX ∆+=ˆ             (4) 

In order to compute the deviation of faulty elements bT∆ , the 

incident matrices P and Q of the circuit are utilized: 
T

b QTdiagPT )(∆=∆          (25) 

Note that T∆  is an nn ×  matrix, but bT∆  is an 1×p  vector. 

Combining this equation into 

XTW ˆ∆−=∆           (26) 

We can get 

binc
T
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where )ˆ( XQdiagPX T
inc −=  is called the incident signal 

(voltages and currents) matrix. 
Assuming that k of p elements are faulty and f of n of excitations 
have faulty excitations, we re-arrange the equation (27) as follows: 
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Here the superscript indicates the size of the matrix or vector. The  

equation (28b) is worth consideration. Obviously with nonzero 

values of k
bT∆ , kfn

incX ,−  must be kfn ,0 −  with probability equal  

to 1.  We can obtain the position of faulty elements k
bT )(∆  from 

the solution of equation (28b) as follows: 
Lemma 3: 
The k faulty elements are included in the element sets whose 
corresponding columns have all zero elements in the 

matrix
pfn

incX ,−
. 

The faulty elements then can be derived by solving (28a):

 ( )( ) fTkf
inc

kf
inc

Tkf
inc

k
b WXXXT )()()( ,

1
., ∆=∆

−
       (29) 

assuming that kf ≥ and that kf
incX ,  has full column rank. 

 
5. EXAMPLE CIRCUIT 

 
To illustrate the approach proposed above, let us discuss an 
example of a linear circuit described by nodal equations with the 
number of measurements less than the number of nodes, but greater 
than the number of faulty nodes. 
 
Example: 
The resistive network shown in Figure 1 has 21 nodes and 39 
resistors with the following nominal values (all resistors in Ω):  
R1=2.125, R2=3.6, R3=4.7, R4=11.5, R5=12.6, R6=21.2, R7=3.7, 
R8=0.54, R9=3.54, R10=3.125, R11=6.6, R12=5.7, R13=19.5, 
R14=12.8, R15=12.2, R16=3.2, R17=1.54, R18=8.7, R19=2.27, 
R20=3.16, R21=41.7, R22=31.5, R23=22.6, R24=51.2, R25=13.7, 
R26=3.44, R27=13.4, R28=31.9, R29=16.1, R30=11.7, R31=11.5, 
R32=17.8, R33=22.2, R34=23.2, R35=11.4, R36=18.7, R37=3.12, 
R38=33.2, R39=8.67. The current source is J = 1A. 
 
Assume that the faulty elements are R9, which was changed from 
3.54Ω to 7.9Ω, and R37 changed from 3.12Ω to 2.8Ω. The 
admittance deviations of faulty elements 
are Ω−=−=∆ /1559.054.3/19.7/19G  and 12.3/18.2/137 −=∆G  

Ω= /03663.0 . Obviously there are 3 faulty nodes here: nodes (1, 

14, 16). The measurement nodes are nodes (2, 4, 15, 16, 17). The 
measured changes of nodal voltage are: 
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After QR factorization, the order of columns is (15, 16, 4, 17, 5, 6, 
7, 8, 9, 10, 11, 12, 13, 14, 1, 2, 3, 18, 19, 20). So the basis is (15, 
16, 4, 17) and co-basis is (5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 2, 3, 
18, 19, 20). 

 
Figure 1. Resistive network example 



 

Analyzing the obtained matrix C, we find out the 10th column (node 
14) and the 11th column (node 1) in matrix C having one zero 
element, 
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The non-zero elements in the 10th column are in rows (1 2 4), so the 
corresponding nodes in basis are (15 16 17), and the corresponding 
ambiguity group is F=(14 15 16 17). The corresponding ambiguity 
group for the 11th column of C is F=(1 15 16 17). 
 
Checking the rank of the corresponding columns in the original test 
matrix BM, we obtain the following results: rank(BMF) = 3 for the 
first suspicious solution set while rank(BMF) = 4 for the second 
suspicious solution. By Lemma 2, the first set does not contain all 
the faults in the circuit and the second set F=(1 15 16 17) may 
provide a solution to the fault verification problem. 
 
Swapping the first column of basis (node 15) with the 10th column 
of co-basis (node 14), we got the new matrix C with two zeros in 
the 11th column corresponding to node 1.  
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The corresponding ambiguity group is the node set F=(14, 16, 1), 
which are the exact faulty nodes of the circuit. This set satisfies 
Lemma 2 with rank(BMF) = 3 and yields a minimum number of 
faulty parameters consistent with test equation (10). 
 
Thus equation (10) has the following form: 
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According to Equation (23), the deviations of faulty excitations are: 
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To locate the faulty elements, we compute the incident signal 
matrix and locate its zero sub-matrix pfn

incX ,− . Analyzing the 

matrix Xinc as required by Lemma 3, we found out that the columns 
of the incidence signal matrix which correspond to the elements 
(R9, R37, R39) has zeros in n-f rows, which means that (R9, R37, 
R39) are identified as suspicious elements. The corresponding 
parameter deviation values computed from equation (29) are 
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The first two values are the exact deviation values of the faulty 
elements R9 and R37 and the R39 is faulty-free. 
 
 

6. SUMMARY 
 
Fault verification methods applied to linear analog circuits required 
combinatorial searches of suspected faulty components [4] which 
made them computationally expensive. In this paper a new fault 
verification method is proposed based on the modified nodal 
analysis and identification of the ambiguity groups in the test 
equation in order to diagnose the multiple faults in the linear analog 
circuits. Test equation is constructed using the measured circuit 
responses and the inverse of the coefficient matrix. A developed 
approach to identify ambiguity groups in the test verification 
equation is based on the QR factorization techniques. This yields a 
numerically efficient search for the sets of candidate faulty 
components. Candidate faulty components are verified by checking 
independence of the corresponding columns of the original test 
matrix. Faulty components can be identified in the number of 
operations )( 3nO rather than 
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required for combinatorial 

searches in existing fault verification methods, which is a 
significant improvement in the computational efficiency. Finally 
faulty parameters are evaluated through the structural incident 
signal matrix. An example circuit is provided to illustrate the 
proposed method. 
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