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Abstract− In Automatic Target Recognition (ATR) systems there 
are advantages to developing classifiers based on a portion of the 
signal.  A partitioning technique is introduced in this paper that 
allows Rough Set Theory to be applied to real-world size 
problems.  Rough Set Theory (RST) is an emerging concept for 
determining features and then classifiers from a training data set.  
RST guarantees that once the data has been labeled all possible 
classifiers (based on that labeling) will be generated.  There will 
be multiple classifiers for each signal partition and multiple 
partitions for each signal.  Classifiers based on a single reduct 
(classifier) or one partition do not perform well enough to be 
useful.  We fuse all the reducts from all the partitions into one 
classifier. This fusion of partitioned reducts yields a synergistic 
result that produces a classifier with a high probability of 
declaration and good probability of correct classification.   
 

I. INTRODUCTION 
 
     Classification of High Range Resolution (HRR) radar 
signals is difficult.  A typical HRR signal contains 128 range 
bins with values between 0-255 representing the signal 
strength.  A 3-D object is now being represented by a 1-D 
signal. This dimensionality reduction introduces ambiguities.  
In addition, extreme signal variability makes the problem 
difficult.  Because there is no comparable signal that a human 
has experience classifying, human intuition is of a little help.  
Therefore, a computerized learning system is required. 
     Rough set theory is the mathematical foundation for 
developing a classifier [1-3].  Each HRR range bin is called an 
attribute in rough set theory and the target class associated 
with that signal is called the decision attribute.  Rough sets 
provide the mechanism to find the minimal set of attributes 
required to classify all the training signals.  This minimal set 
of attributes is called a reduct and contains the same 
knowledge (ability to classify all the training signals correctly) 
as the original set of attributes in a given information system.  
Therefore reducts can be used to obtained different classifiers.  
Rough sets require the data in the range bins to be labeled.  
Once this labeling has occurred rough set theory guarantees 
that all possible classifiers will be found!  We chose to use a 
binary labeling based on entropy. This scheme reduces 
sensitivity to noise and signal registration.  Information 
entropy is used to select the range bins that are most useful in 
classification and reduce computational time for determining 
reducts. 
     Until recently, rough set theory has not been applied to 
many classification problems because real-world problems are 

too large [4-5].  The determination of minimal reducts 
(minimal classifiers) has been proven to be N-P hard.  We 
have developed a method of reducing the time for finding sub-
optimum reducts to O(n2) making it a useful process for 
finding classifiers in real-world problems.   In addition, we 
have developed a way to fuse results from all reducts to 
improve classifier performance. 
     Fusing the results of the reducts for each partition and 
fusing the reducts for all the partitions improves classifier 
performance as it was demonstrated on high range resolution 
radar signal classification problem.  On the training set using 
one partition the probability of correct classification (Pcc) was 
89% and the probability of declaration (Pdec) was 93%.  
Fusing reducts from all partitions the Pcc was 100% and Pdec 
was 100%.  On the training set one would expect 100% 
performance on both of these parameters.  On the test set Pcc 
for one partition was 79% and Pdec was 90%.  When all 
reducts were fused, Pcc was 92% and Pdec was 99%! 
 

II. ROUGH SET THEORY 
 
     It is not the purpose of this paper to be a tutorial of rough 
set theory.  An introduction to rough set theory may be found 
in [3].  However, some basic concepts need to be introduced.  
With the binary labeling used the set of all labeled training 
signals forms a decision table consisting of 1s and 0s.  Each 
row corresponds to a given target type.  In many cases it is 
possible to use a subset of the entire signal to distinguish 
among different target classes.  For example, it may be 
possible to use range bins 1 through 20 and be able to 
uniquely classify each signal in the training set.  If this subset 
of range bins cannot be further reduced without loosing its 
ability to classify the training set, then it is called a reduct.  
This term comes from the idea that we have reduced the size 
of the table without reducing the information contained in it 
(i.e.; the ability to uniquely classify all the signals).  There 
may be no reducts (we must use all the range bins) or there 
may be many reducts.  It should be noted that a reduct may not 
contain another reduct.  That is, it must be minimal. 
     With this preface we now introduce the mathematical 
formalism. We review basic definitions of rough set theory 
related to selection of the set of attributes for the purpose of 
classifying a given set of objects.  Discernibility function is 
formally defined and an alternative characterization of reducts 
is given which is easier to manipulate for algorithmic 
purposes.  For a full development of this area see [5]. 



     Consider the information system ),( AU , where 
},...,{ 1 nxxU =  is a nonempty finite set called the universe, 

and },...,{ 1 maaA =  is a nonempty set.  The elements of A, 
called attributes (in our case range bins), are functions 
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where iV  is called the value set of ia .  In a practical rough set 
system Vi is a discrete and finite set of values.  In the case of a 
binary labeling used in this work Vi ={0, 1} .  The 
discernibility matrix of A is the nn ×  matrix with th, ji  
entry 
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The  associativity property 
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confusion; moreover we can now define ∧  for any finite 
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The discernibility function of the information system is 

)(:   

}1,0{)(:

0 
 ,1

CC

APf

ijc

ijc
nji

A














∧

→

≠
≤≤

χ
χ

a
 

where “ 0 ” is the constant function 
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If Af  is an empty conjunction we define Af  to be the constant 
zero function.  This is an uninteresting case and we assume 
throughout that Af  is not an empty conjunction. 

     The condition 0≠
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discernibility function is equivalent to the condition that 
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Using the fact the discernibility matrix is symmetric and 
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Let AB ⊆ .  The B-indiscerniability relation is 
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The following lemma is an immediate consequence of the 
definition. 
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Essential for the information system are the reducts that 
describe knowledge represented in this system.  A set AB ⊆  
is a discern in A if )()( AIndBInd = .  A discern is called a 
reduct if )(}){(  )( BIndaBIndBa ⊃−∈∀ , where “⊃” 
denotes a proper subset relation.  The set of all reducts of A is 
denoted )(ARed .  The reduct generation procedure developed 
in [6] is based on the expansion of the discernibility function 
into a disjunction of its prime implicants by applying the 
absorption or multiplication laws.  This procedure is not 
sufficiently efficient to allow us to use it with real-world size 
problems.  The core of the information system is defined as a 
set P A⊆  such that 
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     Let AB ⊂ .  A focused information system 
),( BU represents local properties of the information system.  

A focused reduct F is a reduct of the focused information 
system, so we have Ind(F)=Ind(B).  A focused reduct in 
general is not a reduct of the original system as it may not 
differentiate all objects and in general we have 
Ind A Ind B( ) ( )⊆ .  The power information system is 
defined as a set of all focused information systems.   
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In other words the power information system of a given 
information system (U, A) is a set of information systems 
defined on the power set of A.  The power information system 
is more robust than the original information system and can 
extract useful knowledge from incomplete or corrupted data.   
We define a covered information system as 
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     In order to reduce computational cost, focused reducts will 
be chosen from a covered information system.  In general, a 
covered information system is redundant, which means that 
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     Conjecture. A covered information system yields a 
combined classification performance of focused reducts 
exceeding performance of the reducts of the original 
information system.  In addition, the obtained classification is 
more robust to signal distortion and can work with partially 
determined signals.                          � 
 

III. PARTITIONING OF A SIGNAL 
 
In our HRR classification system we have found that using a 
Haar wavelet transform on the original signal yields a more 
powerful feature set from which to build a classifier.  The 
disadvantage is that we now must find reducts from a possible 
1024 range bins.  This is not possible to do in a reasonable 
time.  Therefore we use an entropy measure to select the range 
bins that have the most information theoretic value in 
classifying the training signals.  Using our algorithms, 50 
range bins is a practical limit for an 800 MHz desktop 
computer. 
     If we use the entire original signal and its wavelet 
coefficients we are able to consider only 50 out of 1024 range 
bins or less than 5% of the range bins.  Table I shows the 
lackluster performance of a classifier built this way.  If we 
partition the signal in two pieces, build a classifier for each 
partition and fuse the results, our classifier is now based on 
twice as many range bins.   Continuing this reasoning, if we 
make eight classifiers and fuse their results we will be using 
400 range bins and fusing the results of each of these 
classifiers.  We are thus considering more range bins with 
potentially more information for our classifier. 
     The next question is how to partition the signal.  The first 
method that comes to mind is to use a block partitioning as 
illustrated in Fig. 1.  This method looks at each portion of the 
signal in isolation.  Normally the ends of a signal contain 
noise and are not useful.  The classifiers based on theses areas 
tend not to have good performance.  However, the fusion 
equation takes this into account.  This partitioning method 
allows classifiers to be generated which can focus on the more 
important aspects of the signal.  Another advantage of this 
method is that should a portion of the signal be obscured for 
any reason, there are still multiple classifier that do no depend 
on that portion of the signal thus still allowing classification.   
     Another possible method would be to use an interleaved 
selection illustrated in Fig 2.   The easiest way to explain this 
method is to describe dividing the signal into two parts.  The 
first partition would consist of all the odd numbered range 
bins and the other partition would consist of all the even 
numbered range bins.   This concept is easily extended to four 

and eight partitions.  This partitioning scheme reduces the 
effects of registration of the signals.  That is, if the first range 
bin of a test signal does not match the first range bin of the 
training signal we might not get classification at all.  However, 
with interleaved partitioning there would be a classifier which 
would classify.  Theoretically this method would allow a 
misregistration of up to eight range bins. 
     The conjectures put forth regarding misregistration and 
obscuration have not been tested as of this writing. 

 
IV.  FUSION OF MULTIPLE CLASSIFIERS 

 
     Having many advisors is valuable in the world (especially 
if you have a measure of how reliable they are).  Therefore, 
we theorized that by fusing multiple classifiers from multiply 
partition signals we would produce a better and more robust 
classifier. 
     In is not the purpose of this paper to completely describe 
the fusion process.  However, to help you understand the 
results the fusion equation is presented here.  Each classifier 
votes as to which target it believes the signal belongs to (Pcci).  
All votes for each class are fused and given a score (Wt).  The 
class with the highest weight is the class selected.  If no 
weight is greater than a user set threshold (0.50) then the 
signal is unclassified.  The unclassified signals affect the 
probability of declaration (Pdec). 
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Fig. 2. Interleave Partitioning 
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This equation guarantees the Wt will be at least as large as the 
greatest Pcc, (Pccmax).  Further Wt is limited to the range of 0 
to 1. 
 

V.  RESULTS 
 
Table I shows the test classification results from each partition 
type and the fusion of differing levels of partitioned 
classifiers.  The column titled Sel. Indicated what partitioning 
method and which partition is being evaluated..  Entries 
followed by st, nd, or th indicated that block partitioning was 
used and that it is the first , second, etc block.  Entries where 
there is no suffix indicated that interleaved partitioning was 
used.  In this cast the entry would mean that the first, second, 
third, etc element of each block was combined to make a 
partition.  Previously it was mentioned that the first part of a 
signal and the last part may contain noise an therefore would 
not be able to perform well.  This is confirmed by the zeros in 
8-1st, 8-2nd, 8-7th, and 8-8th.  Other partitions perform very well 
(2-1st).  The final results support the conjecture that properly 
fusing many classifiers will result in a better, more robust 
classifier.  The robustness improvement is indicated by the 
Probability of Declaration being almost 1.  This indicates there 
are very few signals unclassified.  Even with this high 
classification rate, the classifier is still very accurate. 
     We are currently exploring ways to tradeoff the probability 
of declaration to achieve a higher probability of correct 
classification.  Additional experiments will be performed to 
verify the conjectures regarding limited sensitivity to 
registration and obscuration.  Because of the binary labeling 
scheme, we also believe that this classifier may be resistant to 
signal noise as well. 
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TABLE I.  TEST CLASSIFICATION RESULTS 

Div. Sel. Pcc Pdec Pcc Pdec Pcc Pdec Pcc Pdec
1 1 0.79220.90381   

2 1 0.790950.79726   
2 2 0.793810.75705 0.81229 0.94424  

2 1st 0.917040.73964   

2 2nd 0.43967 0.7954 0.79694 0.94942 0.88116 0.992

4 1 0.723690.80949   
4 2 0.742610.85531   

4 3 0.75740.83313   

4 4 0.636390.75311 0.82266 0.9971  

4 1st 0 0   

4 2nd 0.880510.80846   

4 3rd 0.652410.76575   

4 4th 0 0 0.83239 0.94983 0.882 0.999

8 1 0.637220.81882   
8 2 0.589470.78317   

8 3 0.599950.75808   

8 4 0.517470.65858   

8 5 0.498590.80618   

8 6 0.506730.72367   

8 7 0.51172 0.7073   

8 8 0.536310.64511 0.77047 0.99979  

8 1st 0 0   

8 2nd 0 0   

8 3rd 0.664440.68138   

8 4th 0.818290.51451   

8 5th 0.704850.41439   

8 6th 0.374940.82546   

8 7th 0 0   

8 8th 0 0 0.75351 0.97388 0.84906 0.999 0.9230.999

 
 


