
Hardware Implementation for Fast Convolution with a PN Code Using
Field Programmable Gate Array

Abdulqadir Alaqeeli and Janusz Starzyk

Ohio University
School of Electrical Engineering and Computer Science

Athens, OH 45701, USA
Fax: (740) 593 0007

e-mail: (alaqeeli, starzyk)@bobcat.ent.ohiou.edu

Abstract —In code division multiple access (CDMA) system,
receivers spend long time to acquire the signals. This is mostly
due to the use of expensive FFT-based convolvers in the
acquisition process. This paper shows a substitute algorithm for
calculating the convolution that requires less computation time.
The algorithm uses Walsh transform instead of FFTs. FFT-
based algorithm requires 2 FFTs and one IFFT in addition to
complex multiplications and additions. On the other hand, in the
Walsh-based method the Walsh transform is required once and
there is no multiplications. Therefore, using the Walsh-based
algorithm can cut the processing time to about 5 percent of the
required time. The additional steps in this algorithm are the
permutation of the input samples and the output results. The
design uses a field programmable gate array (FPGA) to apply
parallel processing concept. This paper discusses the algorithm
and the implementation issues. A case study of a large code was
applied. The whole system is implemented and showed high
performance that speedup the process 2500 times the speed of a
microprocessor based design.

I. INTRODUCTION

In a code division multiple access (CDMA) system,

information is modulated with a pseudo random noise (PN)
code. The used PN codes have autocorrelation property only
with a synchronized copy of it self [1-2]. A receiver should
generate a synchronized copy of the code and multiply it by
the received signal. If the local code is perfectly
synchronized, then its correlation with the original signal is
maximum; otherwise the correlation is very low.
Synchronizing a CDMA signal with local code is called
acquisition. Acquisition, in GPS system for example, is used
to calculate the code phase (or shift) and find the
pseudorange, which is used to calculate the position.
Acquisition of the signal in GPS receivers is the most critical
part due to the required number of processing steps and long
processing time. It is important to perform the acquisition as
fast as possible in order for auto-navigation system to be
practical [2-3].

 0-7803-6661-1/01/$10.00 c2001 IEEE

Recent research has implemented the acquisition process

using the circular convolution that can check all the phase
shifts in one step. This is usually done by using the known
FFT-based convolution (Fig.1). Each FFT (or IFFT) requires
NlogN complex multiplications and NlogN complex
additions. Therefore, this algorithm requires approximately
3N(logN)+N complex multiplications and 3N(logN)+N
additions [4]. Implementing the algorithm in a parallel
hardware will speedup the process but the implementation
itself is very complex and requires a huge silicon area. To
alleviate these difficulties, a new algorithm for fast
convolution is proposed in this paper. A binary
transformation (such as Walsh transform) is suggested since
it requires only NlogN additions and subtractions. Finding a
method to perform the convolution using only Walsh
transforms and then implementing it using parallel processing
units such as those in the FPGAs will definitely speedup the
acquisition process.

 In the next sections, a Walsh-based convolution
algorithm is presented. First, the similarity between the
Walsh transform and the PN sequences is described. Then,
the Walsh-based convolution algorithm is provided. This

FFT

FFT

IFFT ×

Local PN Code

Input Samples

Fig. 1 FFT-based convolver

algorithm requires functions that need to be implemented
efficiently in hardware to build a very fast convolver. The
hardware implementations of the main functions are
presented next. Then a discussion of the design and its results
is provided. Evaluations of the design performance, based on
clock frequency and system latency, are presented.

II. PN SEQUENCES AND WALSH TRANSFORM

 The Walsh function can be transformed into a set of
different phase shifts of a single PN sequence using suitable
permutations [5-6]. This can be noticed if the first row and
the first column of a Walsh matrix are omitted. Permuting the
remaining rows and columns using specific permutation
method will produce a matrix with a PN code in the first row
and all the shifted copies of this code are surprisingly the
remaining rows [6-7]. This is a useful property since all the
PN code shifts are available in one matrix. If a received
signal contains this PN code, then it is clear that multiplying
the signal by the obtained matrix will generate a vector that
has a large multiplication value only with one of the PN shift
copies (or Walsh rows). This means that the Walsh transform
can be used to implement convolution with a PN sequence
[7].

III. CONVOLUTION ALGORITHM

 The proposed convolution algorithm requires two
additional steps in order to use Walsh transform to implement
convolution. The complete procedure, which includes these
two steps, is as follows:
1- The input sequence must be permuted to simulate

reordering of rows.
2- The Walsh function is applied.
3- After that, the results will need to be permuted back to

correctly reorder the convolution values to return back to
their original locations.

These two steps of permutation processes require two
different permutation vectors, S and C [7]. As an example, a
PN code with a period of 7 is used to simplify the description
of the algorithm. This example is presented in details in [7].
An 8-point Walsh transform is used for the 7 bit-length PN
code. After omitting the first row and the first column, the
Walsh transform becomes a 7-point transform. For the PN
code such as (1001110), the input permutation S is
(1,4,6,7,3,5,2) and the inverse permutation of S is
(1,7,5,2,6,3,4). The output permutation Q (or C as in [7]) is
(1,2,4,5,7,3,6). To perform correlation using this method, first
the input sequence is permuted by permutation of inverse S.
Since the Walsh is larger than the sequence by one,
appending (0) to the beginning of the permuted sequence

must be made. After that, Walsh transform is applied. The
results are not in the order they should be in Qs compared to
the convolution results. Therefore, the output should be
reordered based on permutations Q [7]. This method requires
only NlogN real additions (and subtractions). However, the
FFT-based method requires 3 FFTs and N complex
multiplications and N complex additions. If the PN code FFT
was stored in the computer memory, then only 2 FFTs plus N
complex multiplications and additions are required with the
incoming signal. This is approximately 2NlogN+N complex
multiplications and 2NlogN+N complex additions, which is
roughly about 6NlogN real multiplications and 6NlogN real
additions [4,8]. Therefore, the Walsh-based correlation
method is preferable especially in real-time applications,
where the acquisition process needs to be very fast. More
details about the Walsh-based convolution algorithm and its
in-depth theory can be found in [7,9].

IV. HARDWARE IMPLEMENTATION

 The main steps that need to be carefully implemented are
the permutation generators and the Walsh transform. The
permutations usually can be stored in lookup tables (LUTs).
This type of implementation is not efficient since it will cost
additional hardware to store and time to retrieve. Therefore,
the permutations need to be generated on fly when possible to
minimize the required silicon area and to speedup
permutation process. However, the implementation of Walsh
transform must consider two requirements. A Walsh
transform should use the parallel processing method as much
as possible and chose optimum smaller transform block sizes
for building very large transforms.

A. Permutation Generators

PN sequences are generated using linear feedback shift
registers (LFSRs) [2,5-7,10]. If the permutations can be
related to the state of the LFSR, then the permutations can be
generated from the same LFSR. This is true for permutations
S, which are the decimal values of the binary bits in the
register. When initializing the LFSR with (001) for the
previous example, the current state and the next six states (or
values) of the register will be (001, 100, 110, 111, 011, 101,
010), or (1, 4, 6, 7, 3, 5, 2) in decimal which is the required
permutation sequence S. Therefore, the permutations S can be
generated easily. A hardware implementation of generator of
permutations S is shown in Fig. 2. The RAM and the counter
are needed only when storing permutations is desired.
However, in the correlation algorithm, the only inverse
permutation of S is used, therefore no hardware is used to
store S. The hardware implementation of S inverse
permutations generator is shown in Fig.3. The only change

made to Fig.2 is that the LFSR is used to deliver RAM

address while counter output is fed to RAM as data in. As
mentioned before, storing permutations is not efficient, but
since generating inverse permutations of S is required only
once in the beginning of the design, this implementation is
accepted. Permutations Q fortunately, as well, are related to
the content of the LFSR. Each PN code has its unique
permutation of LFSR bits to produce Q. Reordering the
content of the LFSR (i.e. b2b1b0 becomes b2b0b1) will

generate the necessary Q sequence. On other words,
reordering the bits of the content of the LFSR can be
implemented using one-to-many type of LFSR as shown in
Fig.4 [5].

B. Walsh Transform

Designing transforms in parallel processor platform such
as field programmable gate arrays (FPGAs) is recommended
since transforms need large number of operations that can be
easily mapped into FPGAs. Hardware design of Walsh
transform using butterfly structure is very efficient because of
many reasons. The most important reason is that Walsh
butterfly has only one type of operation which is the add
operation (subtractions are similar to additions) as shown in
Fig.5. Therefore, when a designer wants to partition the
Walsh butterfly, all what he cares about is the locations of the
inputs, intermediate values, and outputs. The fastest Walsh
butterfly should be implemented in parallel fashion to reach
the maximum speed. Unfortunately, for DSP applications,
Walsh size can be huge. Since the number of processors
required to implement a completely parallel transform is very
large and requires large number of input and output pads.
Therefore, a completely parallel design is impossible since
there is no chip that can support these requirements. A
solution to this problem would be partitioning the butterfly
into smaller butterflies. The size and the necessary number of
smaller butterflies will play a role in the design organization
and performance of the Walsh transform chip. For a 1024-
point Walsh butterfly, a designer can use partition of 128, 64,
32 or 16 –point butterflies for example. 128-point butterfly
may not be a good choice because 8-point butterflies will be
also required to build the 1024-point Walsh transform.
Therefore, choosing a different size of butterfly could help in
reducing the number of blocks and will help in designing a
well-organized structure. Another factor that controls the
design is, the available resources in board or chip. This means
that even if the designer found an optimum size of smaller
butterflies, he may need to split it too in smaller butterflies

RAM

WA

+

Y(2:0) 3

Address 3

3-bit
Counter

Fig. 2. Generator of permutations S

Fig. 3. Generator of inverse permutations of S

RAM

WA

+

Y(2:0) 3

3 Address

3-bit
Counter 3

+

 Q2 Q1 Q0

Fig. 4. Generator of permutations Q

+

+

+

+

+

+

+

+

Positive Connection

Negative Connection

Fig. 5. Walsh butterfly

because of the lack of resources. Using large FPGAs such as
the Virtex FPGA series will provide more resources for
designs as large as 1024-point transforms. For 1024-point
Walsh butterfly, 64 blocks of 32-point Walsh butterflies is the
optimum solution if the 32-point Walsh block is designed
completely in parallel method. This is explained in the next
section.

V. CASE STUDY

 To implement a Walsh-based convolver, a PN code of
period 1023 is used. A 1024-point Walsh transform is
necessary to implement the convolution. The optimum size of
smaller blocks of butterflies is chosen to be 32-point. This is
because 32 point Walsh butterfly needs to be processed 64
times and there will be no other smaller size of butterflies
required. This is not the case if different size was chosen for
the implementation. Since the platform is the 0.8 million gate
FPGA (Virtex), the 32-point butterfly is implemented in
parallel and used to calculate the first 5 levels of the 1024
butterfly. A similar block is also used to calculate the second
5 levels of the 1024 butterfly (Fig. 6). The second block was
used to provide a pipelined type of system that reduces the
latency of the system compared to a system with only one 32-
point Walsh butterfly and one RAM. The completed design
used more components to be able to provide updated
evaluation of phase shifts every 3 code lengths (3069 clock
cycles). These components are required to perform Walsh
transform computations, permutations generation, correlation
peak search, RAMs to store intermediate butterfly results,

counters for RAM addresses, and state machines to control
the whole system to continuously provide phase information
in constant time space. The whole design used about 60% of
the Virtex chip (approximately 264K gates). The maximum
frequency for this design is 96 MHz. The results showed that
this design can be used for real time processing when
skipping 2 code periods and loading the next period-length
information is acceptable.

To evaluate the performance of this design compared to
FFT-based design, an assumption needs to be made. If we
assume that a multiplication takes as much as two additions,
then the total number of operations in FFT-based method is
about 18 times larger than the Walsh-based algorithm. This
means that this algorithm reduced the processing time to 1/18
(about 5%). In addition an N-bit multiplier takes N times
larger area than N-bit adder, so for instance if input signals
are 8-bit long, then the time area efficiency of this algorithm
is about 144 times better than FFT-based method. This is in
case the whole transforms are computed completely in
parallel. However, this is not the case. Therefore, design
analysis within limited area is more appropriate. Let assume
that the design is limited to area necessary for 32-point Walsh
butterfly. Then, using Walsh-based method, the convolver of
1023-length PN code requires 64 blocks of 32-point Walsh
transforms. Therefore, it will take 64*32 (=2048) clock
cycles. While on the other hand, the maximum size of FFT

address

RAM

RAM

WT32

WT32

Control Unit

address

To
Peak Search

Circuit

Permuted
Signal

 WT32 : 32-point Walsh butterfly

Fig. 6 Simplified block diagram of the 1023bit PN sequence convolver

butterfly that can be mapped to the limited area is only 4-
point FFT. This means that 4*256*5 (=5120) clock cycles are
necessary to compute a 1024-point FFT. In addition, in each
clock cycle required in 32-point Walsh butterfly we need to
perform 5 consecutive additions, while in 4-point FFT we
need to do 6 multiplications and 10 additions. Relatively,
1024-point FFT requires about 10 times longer than a 1024-
point Walsh transform needs. Since FFT-based convolver
needs two FFTs, the minimum time required for FFT-based
convolver is about 20 times larger than what is required for
Walsh–based method. In other words, Walsh-based method is
at least 20 times faster than FFT-based method when the
design area is limited (for instance in Virtex FPGA
implementation). When comparing this implementation with
a software-based implementation of the Walsh transform on
Matlab on PC, the FPGA-based implementation was about
2500 faster than a 233MHz processor. This is only using a
1MHz clock in the FPGA design. To speedup the processing
time more, another fast clock can be used with the internal
processing parts and using multiplexers to switch between the
two clocks. For example, if the loading of incoming samples
uses 1MHz of clock frequency, then we can speedup the
convolution process by allowing the internal parts of the
design (such as reading from memories, 32-point Walsh
transform, and finite state machines) to use different clock
frequency such as 16MHz. This insures that the system can
be used efficiently and the design can provide new phase shift
every 2 code periods instead of three code periods. This may
cause synchronization problems and therefore it will need a
careful study.

VI. SUMMARY

 This paper presented a design of fast convolver for
CDMA signals. This is based on avoiding complex
operations such as the ones in FFT-based convolvers. The
substitute of the FFT is a binary transform, such as Walsh,
that should reduce the operations 3 times because it uses only
real additions. Surprisingly, the used algorithm does not
require using the transform more than once. This made the
method more efficient. The Walsh function can be
transformed into a set of different phase shifts of a single PN
sequence using suitable permutations. The convolution can be
then performed by reordering the input sequence, performing
the Walsh transform, and then permuting the output samples.

This method beats FFT-based convolution since it requires
NlogN additions while FFT method requires about 6NlogN
multiplications and 6NlogN additions. For a PN code of a
period length equal to 1023, a 10-bit LFSR is used to
generate the permutations in real time. This is more efficient
than storing them in Lookup Tables. A Walsh transform can
be implemented in an FPGA using butterfly structure.
However, since it is impossible to perform the Walsh
transform of all the input samples completely in parallel,
partitioning the method into smaller size blocks was used.
These smaller blocks use parallel architecture to speedup the
operations. On the other hand, each time the Walsh
Transform is calculated for a single block, the result values
need to be stored sequentially into local memories. The size
of the used FPGA and the size of the blocks played the main
role in the overall performance of the algorithm. The
implemented design has speeded up acquisition of CDMA
signals many times, and opened new research topics for the
applications where real-time acquisition is needed.

VII. REFERENCES

[1] F. Mazda, Telecommunications Engineer’s Reference Book ,2nd edition,

Focal Presss,1998, p. 27/13.

[2] E. D. Kaplan, Understanding GPS Principles And Applications, Artech

House Inc., MA: 1996, p. 100-104.

[3] M. Kayton, W. Fried, Avionics Navigation Systems ,2nd edition, J. Wiley

& Sons Inc,1997.

[4] W. W. Smith, J. M. Smith, Handbook Of Real-Time Fast Fourier

Transforms, IEEE Press, 1995, p. 28.

[5] M. Cohn, A. Lempel, “On fast M-Sequence transforms”, IEEE Trans. On

IT, Jan. 77, pp 135-137.

[6] A. Lempel, “Hadamard and M-Sequence transforms are permutationally

similar”, Applied Optics, Vol. 18, No. 24, 15 Dec1979, pp4064-4065.

[7] Srdjan Z. Budisin, “Fast PN Sequence Correlation By Using FWT,”

Mediterranean Electrotechnical Conference Proc., 1989, p. 513-515.

[8] M. Uijt de Haag, An Investigation Into The Application of Block

Processing Techniques For The Global Positioning System, Ph.D.
Dessirtation, Ohio University, 1999.

[9] K. G. Beauchamp, Applications Of Walsh And Related Functions,

Academic Press Inc., 1984.

[10] S. W. Golomb, Shift Register Sequences, Holden-Day Inc., 1967.

