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Abstract —In code division multiple access (CDMA) system, 
receivers spend long time to acquire the signals. This is mostly 
due to the use of expensive FFT-based convolvers in the 
acquisition process. This paper shows a substitute algorithm for 
calculating the convolution that requires less computation time. 
The algorithm uses Walsh transform instead of FFTs. FFT-
based algorithm requires 2 FFTs and one IFFT in addition to 
complex multiplications and additions. On the other hand, in the 
Walsh-based method the Walsh transform is required once and 
there is no multiplications. Therefore, using the Walsh-based 
algorithm can cut the processing time to about 5 percent of the 
required time. The additional steps in this algorithm are the 
permutation of the input samples and the output results. The 
design uses a field programmable gate array (FPGA) to apply 
parallel processing concept. This paper discusses the algorithm 
and the implementation issues. A case study of a large code was 
applied. The whole system is implemented and showed high 
performance that speedup the process 2500 times the speed of a 
microprocessor based design.         

 
 

I. INTRODUCTION 
 

 
In a code division multiple access (CDMA) system, 

information is modulated with a pseudo random noise (PN) 
code. The used PN codes have autocorrelation property only 
with a synchronized copy of it self [1-2]. A receiver should 
generate a synchronized copy of the code and multiply it by 
the received signal. If the local code is perfectly 
synchronized, then its correlation with the original signal is 
maximum; otherwise the correlation is very low. 
Synchronizing a CDMA signal with local code is called 
acquisition. Acquisition, in GPS system for example, is used 
to calculate the code phase (or shift) and find the 
pseudorange, which is used to calculate the position. 
Acquisition of the signal in GPS receivers is the most critical 
part due to the required number of processing steps and long 
processing time. It is important to perform the acquisition as 
fast as possible in order for auto-navigation system to be 
practical [2-3].  
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Recent research has implemented the acquisition process 

using the circular convolution that can check all the phase 
shifts in one step. This is usually done by using the known 
FFT-based convolution (Fig.1). Each FFT (or IFFT) requires 
NlogN complex multiplications and NlogN complex 
additions. Therefore, this algorithm requires approximately 
3N(logN)+N complex multiplications and 3N(logN)+N 
additions [4]. Implementing the algorithm in a parallel 
hardware will speedup the process but the implementation 
itself is very complex and requires a huge silicon area. To 
alleviate these difficulties, a new algorithm for fast 
convolution is proposed in this paper. A binary 
transformation (such as Walsh transform) is suggested since 
it requires only NlogN additions and subtractions. Finding a 
method to perform the convolution using only Walsh 
transforms and then implementing it using parallel processing 
units such as those in the FPGAs will definitely speedup the 
acquisition process. 
 
 In the next sections, a Walsh-based convolution 
algorithm is presented. First, the similarity between the 
Walsh transform and the PN sequences is described. Then, 
the Walsh-based convolution algorithm is provided. This 
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Fig. 1 FFT-based convolver 



algorithm requires functions that need to be implemented 
efficiently in hardware to build a very fast convolver.  The 
hardware implementations of the main functions are 
presented next. Then a discussion of the design and its results 
is provided. Evaluations of the design performance, based on 
clock frequency and system latency, are presented.  

 
 

 
II. PN SEQUENCES AND WALSH TRANSFORM 

 
 

 The Walsh function can be transformed into a set of 
different phase shifts of a single PN sequence using suitable 
permutations [5-6]. This can be noticed if the first row and 
the first column of a Walsh matrix are omitted. Permuting the 
remaining rows and columns using specific permutation 
method will produce a matrix with a PN code in the first row 
and all the shifted copies of this code are surprisingly the 
remaining rows [ 6-7]. This is a useful property since all the 
PN code shifts are available in one matrix. If a received 
signal contains this PN code, then it is clear that multiplying 
the signal by the obtained matrix will generate a vector that 
has a large multiplication value only with one of the PN shift 
copies (or Walsh rows). This means that the Walsh transform 
can be used to implement convolution with a PN sequence 
[7].  
 
 

III. CONVOLUTION ALGORITHM 
 
 

 The proposed convolution algorithm requires two 
additional steps in order to use Walsh transform to implement 
convolution. The complete procedure, which includes these 
two steps, is as follows: 
1- The input sequence must be permuted to simulate 

reordering of rows.  
2- The Walsh function is applied. 
3- After that, the results will need to be permuted back to 

correctly reorder the convolution values to return back to 
their original locations.  

These two steps of permutation processes require two 
different permutation vectors, S and C [7]. As an example, a 
PN code with a period of 7 is used to simplify the description 
of the algorithm. This example is presented in details in [7]. 
An 8-point Walsh transform is used for the 7 bit-length PN 
code. After omitting the first row and the first column, the 
Walsh transform becomes a 7-point transform. For the PN 
code such as (1001110), the input permutation S is 
(1,4,6,7,3,5,2) and the inverse permutation of S is 
(1,7,5,2,6,3,4). The output permutation Q (or C as in [7]) is 
(1,2,4,5,7,3,6). To perform correlation using this method, first 
the input sequence is permuted by permutation of inverse S. 
Since the Walsh is larger than the sequence by one, 
appending (0) to the beginning of the permuted sequence 

must be made. After that, Walsh transform is applied. The 
results are not in the order they should be in Qs compared to 
the convolution results. Therefore, the output should be 
reordered based on permutations Q [7]. This method requires 
only NlogN real additions (and subtractions). However, the 
FFT-based method requires 3 FFTs and N complex 
multiplications and N complex additions. If the PN code FFT 
was stored in the computer memory, then only 2 FFTs plus N 
complex multiplications and additions are required with the 
incoming signal. This is approximately 2NlogN+N complex 
multiplications and 2NlogN+N complex additions, which is 
roughly about 6NlogN real multiplications and 6NlogN real 
additions [4,8]. Therefore, the Walsh-based correlation 
method is preferable especially in real-time applications, 
where the acquisition process needs to be very fast. More 
details about the Walsh-based convolution algorithm and its 
in-depth theory can be found in [7,9].   
 
 

IV. HARDWARE IMPLEMENTATION 
 
 

 The main steps that need to be carefully implemented are 
the permutation generators and the Walsh transform. The 
permutations usually can be stored in lookup tables (LUTs). 
This type of implementation is not efficient since it will cost 
additional hardware to store and time to retrieve. Therefore, 
the permutations need to be generated on fly when possible to 
minimize the required silicon area and to speedup 
permutation process. However, the implementation of Walsh 
transform must consider two requirements. A Walsh 
transform should use the parallel processing method as much 
as possible and chose optimum smaller transform block sizes 
for building very large transforms. 
 
 
A. Permutation Generators 
 
    

PN sequences are generated using linear feedback shift 
registers (LFSRs) [2,5-7,10]. If the permutations can be 
related to the state of the LFSR, then the permutations can be 
generated from the same LFSR. This is true for permutations 
S, which are the decimal values of the binary bits in the 
register. When initializing the LFSR with (001) for the 
previous example, the current state and the next six states (or 
values) of the register will be (001, 100, 110, 111, 011, 101, 
010), or (1, 4, 6, 7, 3, 5, 2) in decimal which is the required 
permutation sequence S. Therefore, the permutations S can be 
generated easily. A hardware implementation of generator of 
permutations S is shown in Fig. 2. The RAM and the counter 
are needed only when storing permutations is desired. 
However, in the correlation algorithm, the only inverse 
permutation of S is used, therefore no hardware is used to 
store S. The hardware implementation of S inverse 
permutations generator is shown in Fig.3. The only change 



made to Fig.2 is that the LFSR is used to deliver RAM 

address while counter output is fed to RAM as data in. As 
mentioned before, storing permutations is not efficient, but 
since generating inverse permutations of S is required only 
once in the beginning of the design, this implementation is 
accepted. Permutations Q fortunately, as well, are related to 
the content of the LFSR. Each PN code has its unique 
permutation of LFSR bits to produce Q. Reordering the 
content of the LFSR (i.e. b2b1b0 becomes b2b0b1) will 

generate the necessary Q sequence. On other words, 
reordering the bits of the content of the LFSR can be 
implemented using one-to-many type of LFSR as shown in 
Fig.4 [5]. 
 
 
B. Walsh Transform 
 
 

Designing transforms in parallel processor platform such 
as field programmable gate arrays (FPGAs) is recommended 
since transforms need large number of operations that can be 
easily mapped into FPGAs. Hardware design of Walsh 
transform using butterfly structure is very efficient because of 
many reasons. The most important reason is that Walsh 
butterfly has only one type of operation which is the add 
operation (subtractions are similar to additions) as shown in 
Fig.5. Therefore, when a designer wants to partition the 
Walsh butterfly, all what he cares about is the locations of the 
inputs, intermediate values, and outputs. The fastest Walsh 
butterfly should be implemented in parallel fashion to reach 
the maximum speed. Unfortunately, for DSP applications, 
Walsh size can be huge. Since the number of processors 
required to implement a completely parallel transform is very 
large and requires large number of input and output pads. 
Therefore, a completely parallel design is impossible since 
there is no chip that can support these requirements. A 
solution to this problem would be partitioning the butterfly 
into smaller butterflies. The size and the necessary number of 
smaller butterflies will play a role in the design organization 
and performance of the Walsh transform chip. For a 1024-
point Walsh butterfly, a designer can use partition of 128, 64, 
32 or 16 –point butterflies for example. 128-point butterfly 
may not be a good choice because 8-point butterflies will be 
also required to build the 1024-point Walsh transform. 
Therefore, choosing a different size of butterfly could help in 
reducing the number of blocks and will help in designing a 
well-organized structure.  Another factor that controls the 
design is, the available resources in board or chip. This means 
that even if the designer found an optimum size of smaller 
butterflies, he may need to split it too in smaller butterflies  
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because of the lack of resources. Using large FPGAs such as 
the Virtex FPGA series will provide more resources for 
designs as large as 1024-point transforms. For 1024-point 
Walsh butterfly, 64 blocks of 32-point Walsh butterflies is the 
optimum solution if the 32-point Walsh block is designed 
completely in parallel method. This is explained in the next 
section. 

 
 

V. CASE STUDY 
 
 

 To implement a Walsh-based convolver, a PN code of 
period 1023 is used. A 1024-point Walsh transform is 
necessary to implement the convolution. The optimum size of 
smaller blocks of butterflies is chosen to be 32-point. This is 
because 32 point Walsh butterfly needs to be processed 64 
times and there will be no other smaller size of butterflies 
required. This is not the case if different size was chosen for 
the implementation. Since the platform is the 0.8 million gate 
FPGA (Virtex), the 32-point butterfly is implemented in 
parallel and used to calculate the first 5 levels of the 1024 
butterfly.  A similar block is also used to calculate the second 
5 levels of the 1024 butterfly (Fig. 6). The second block was 
used to provide a pipelined type of system that reduces the 
latency of the system compared to a system with only one 32-
point Walsh butterfly and one RAM.  The completed design 
used more components to be able to provide updated 
evaluation of phase shifts every 3 code lengths (3069 clock 
cycles). These components are required to perform Walsh 
transform computations, permutations generation, correlation 
peak search, RAMs to store intermediate butterfly results, 

counters for RAM addresses, and state machines to control 
the whole system to continuously provide phase information 
in constant time space. The whole design used about 60% of 
the Virtex chip (approximately 264K gates). The maximum 
frequency for this design is 96 MHz.  The results showed that 
this design can be used for real time processing when 
skipping 2 code periods and loading the next period-length 
information is acceptable. 
 

To evaluate the performance of this design compared to 
FFT-based design, an assumption needs to be made. If we 
assume that a multiplication takes as much as two additions, 
then the total number of operations in FFT-based method is 
about 18 times larger than the Walsh-based algorithm. This 
means that this algorithm reduced the processing time to 1/18 
(about 5%). In addition an N-bit multiplier takes N times 
larger area than N-bit adder, so for instance if input signals 
are 8-bit long, then the time area efficiency of this algorithm 
is about 144 times better than FFT-based method. This is in 
case the whole transforms are computed completely in 
parallel. However, this is not the case. Therefore, design 
analysis within limited area is more appropriate. Let assume 
that the design is limited to area necessary for 32-point Walsh 
butterfly. Then, using Walsh-based method, the convolver of 
1023-length PN code requires 64 blocks of 32-point Walsh 
transforms. Therefore, it will take 64*32 (=2048) clock 
cycles. While on the other hand, the maximum size of FFT 
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Fig. 6 Simplified block diagram of the 1023bit PN sequence convolver 



butterfly that can be mapped to the limited area is only 4-
point FFT. This means that 4*256*5 (=5120) clock cycles are 
necessary to compute a 1024-point FFT. In addition, in each 
clock cycle required in 32-point Walsh butterfly we need to 
perform 5 consecutive additions, while in 4-point FFT we 
need to do 6 multiplications and 10 additions. Relatively, 
1024-point FFT requires about 10 times longer than a 1024-
point Walsh transform needs. Since FFT-based convolver 
needs two FFTs, the minimum time required for FFT-based 
convolver is about 20 times larger than what is required for 
Walsh–based method. In other words, Walsh-based method is 
at least 20 times faster than FFT-based method when the 
design area is limited (for instance in Virtex FPGA 
implementation). When comparing this implementation with 
a software-based implementation of the Walsh transform on 
Matlab on PC, the FPGA-based implementation was about 
2500 faster than a 233MHz processor. This is only using a 
1MHz clock in the FPGA design. To speedup the processing 
time more, another fast clock can be used with the internal 
processing parts and using multiplexers to switch between the 
two clocks. For example, if the loading of incoming samples 
uses 1MHz of clock frequency, then we can speedup the 
convolution process by allowing the internal parts of the 
design (such as reading from memories, 32-point Walsh 
transform, and finite state machines) to use different clock 
frequency such as 16MHz. This insures that the system can 
be used efficiently and the design can provide new phase shift 
every 2 code periods instead of three code periods. This may 
cause synchronization problems and therefore it will need a 
careful study.      
 
 

VI. SUMMARY 
 
 
 This paper presented a design of fast convolver for 
CDMA signals. This is based on avoiding complex 
operations such as the ones in FFT-based convolvers. The 
substitute of the FFT is a binary transform, such as Walsh, 
that should reduce the operations 3 times because it uses only 
real additions. Surprisingly, the used algorithm does not 
require using the transform more than once. This made the 
method more efficient. The Walsh function can be 
transformed into a set of different phase shifts of a single PN 
sequence using suitable permutations. The convolution can be 
then performed by reordering the input sequence, performing 
the Walsh transform, and then permuting the output samples.  
 
 
 
 
 
 
 
 
 

This method beats FFT-based convolution since it requires 
NlogN additions while FFT method requires about 6NlogN 
multiplications and 6NlogN additions. For a PN code of a 
period length equal to 1023, a 10-bit LFSR is used to 
generate the permutations in real time. This is more efficient 
than storing them in Lookup Tables. A Walsh transform can 
be implemented in an FPGA using butterfly structure. 
However, since it is impossible to perform the Walsh 
transform of all the input samples completely in parallel, 
partitioning the method into smaller size blocks was used. 
These smaller blocks use parallel architecture to speedup the 
operations. On the other hand, each time the Walsh 
Transform is calculated for a single block, the result values 
need to be stored sequentially into local memories. The size 
of the used FPGA and the size of the blocks played the main 
role in the overall performance of the algorithm. The 
implemented design has speeded up acquisition of CDMA 
signals many times, and opened new research topics for the 
applications where real-time acquisition is needed. 
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