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Abstract—This paper focuses on challenges of designing 
working models of embodied intelligence (EI).  Formal defini-
tions of embodied intelligence and its embodiment are given.  
Three self-organizing hierarchical structures – sensory, motor, 
and goal creation pathways form the core of EI.  The three 
pathways are developed simultaneously extracting knowledge 
and learning skills through interaction with the environment.  
Technological challenges of building human-level intelligence 
are discussed. 

I.  EMBODIED INTELLIGENCE 

There is no agreement how to define intelligence; how-
ever, there is a good understanding of what an intelligent 
agent (biological, mechanical or virtual) must be capable of.  
Scientists list such capabilities as abstract thinking, problem 
solving, intuition, creativity, consciousness, emotions, learn-
ing, memory and motor skills as traits of intelligence.   They 
use various tests and measures to compare the levels of 
intelligence and differentiate between intelligence of hu-
mans and other species.  In fact, passing various tests for 
(human level) intelligence was used as a substitute for its 
definition.  Complex skills and behaviors were used to de-
fine how intelligence manifests itself.  This was a result of 
poor understanding of what is needed to create intelligence.  
Such approach was inconsistent, because once a machine 
that was obviously not intelligent satisfied one test, another 
test was used in its place. 

In order to build working models of intelligent machines, 
an arbitrary and utilitarian definition of intelligence is 
adopted in this work.  We will demonstrate that the defini-
tion is general enough to characterize agents of various 
levels of intelligence including human.  To differentiate it 
from enigmatic meaning of intelligence, we will limit it to 
embodied intelligence suggested by Brooks [1] and de-
scribed in more detail by Pfeifer [2].   

Embodied intelligence (EI) has developed into a multidis-
ciplinary field, including biology, neuroscience, electrical 
engineering, robotics, biomechanics, material science, and 
dynamic systems.  It focuses on understanding biological 
intelligent systems, extracting general principles of intelli-
gent behavior and applying this knowledge to design robots 
and intelligent devices.  Traditional artificial intelligence 
(AI) has focused on developing computational aspects of 

intelligence, looking at cognition as a form of computation, 
and developing special high level skills (like logical reason-
ing or theorem proving) in abstraction of embodiment and 
environment.  However, all natural intelligent systems have 
biological bodies and are situated in a set environment.  The 
working principles of a biological system can not be fully 
understood in purely computational terms as they are func-
tions of its environment, its ecological niche, and its evolu-
tionary history.  This includes the type and the number of 
sensors it uses, the actuators it employs, and the dynamics 
of its physical body.   

It is our aim to base the design concepts of embodied in-
telligence on a minimum set of requirements and mecha-
nisms from which all traits of intelligence can be derived. 

Definition: 
Embodied intelligence (EI) is defined as a mechanism 

that learns how to survive in a hostile environment. 
A mechanism in this definition applies to all forms of 

embodied intelligence, including biological, mechanical or 
virtual agents with fixed or variable embodiment, fixed or 
variable sensors and actuators.  Implied in this definition is 
that EI interacts with environment and that the results of 
actions are perceived by its sensors.  Also implied is that the 
environment is hostile to EI so that EI has to learn how to 
survive.  This hostility of environment symbolizes all forms 
of pains that EI may suffer – whether it is an act of open 
hostility or simply scarcity of resources needed for the sur-
vival of EI.  The important fact is that the hostility is persis-
tent.  For example, battery power is a persistent threat for an 
agent requiring it.  Gradually the energy level goes down, 
and unless the EI replenish its energy, a perceived discom-
fort from the its energy level sensor will increase.  This 
perpetual hostility will be a foundation for creating a value 
system and the goals that the EI sets for itself while interact-
ing with its environment.   

A critical element of EI is learning.  Thus an agent that 
knows how to survive in a hostile environment but cannot 
learn new skills is not intelligent.  Learning to survive re-
quires not only memory but its management, so that only the 
important memories must be retained.  Learning also re-
quires ability to associate sensory and motor signals so that 
outcomes can be linked with causes. 



 

Hostile action of the environment towards EI is necessary 
for it to develop environment related skills, build models of 
the environment and its embodiment, explore and learn 
successful actions.  Thus, to paraphrase a quote by the Field 
Crown Hetman, Stefan Czarniecki “I am not from the 
reaches of the land but from what pains me”, (in Polish – 
jam nie z soli ani z roli jeno z tego co mnie boli), pain is 
necessary to develop intelligence.   In our model, pain and 
pain management in EI will become a foundation for build-
ing a value system, learning, goal creation, planning, think-
ing, problem solving, creativity, and developing motor 
skills.  In more advanced forms of EI it will also lead to 
intuition, consciousness, and emotions.  Thus all forms and 
levels of intelligence can be considered under the proposed 
definition of EI. 

Notice that this definition of EI clearly differentiates 
knowledge from intelligence.  While knowledge is the ac-
quired set of skills and information about the environment, 
intelligence requires the ability to acquire knowledge.  

In this work we will show how some elements of EI can 
be implemented in a hierarchical, self-organizing, learning 
network of processing elements called neurons.  We hope 
that this paper will contribute to building working models of 
EI. 

II.  EMBODIMENT AND INTELLIGENCE 

Intelligence cannot develop without an embodiment.  The 
intelligence core interacts with the environment through its 
embodiment, as shown in Fig. 1. 
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Fig. 1. Intelligence core with its embodiment and environment 

The embodiment is at the same time a part of the envi-
ronment that can be perceived, modeled and learned by 
intelligence, as it is an extension of the EI interface that 
interacts with the environment.  Through this extension of 
its interface, which could be in the form of motor actions, 
the EI affects the environment.  The response of the envi-
ronment is registered through sensors implanted in the em-
bodiment.  Properties of these sensors, their status and limi-
tations can be studied, modeled and understood by EI.   

However, the embodiment does not have to be constant 
nor physically attached to a body.  The boundaries between 
embodiment and the environment change during the interac-
tion which modifies the EI’s self-determination.  This inter-
action can be viewed as the closed-loop sensory-motor co-
ordination, which will be discussed in detail in later sec-
tions.  Because the boundaries between embodiment and 

environment are dynamically changing, the definition of 
embodiment has to reflect this fact and contain elements of 
indetermination. 

Definition: 
Embodiment of EI is a mechanism under the control of 

the intelligence core that contains sensors and actuators 
connected to the core through communication channels. 

A first consequence of this definition is that the mecha-
nism under control may change.  For instance, if one loses 
an arm its embodiment changes in an obvious way.  The 
embodiment may also change due to a disease, affecting the 
way it works or how it interacts with the environment, etc. 

Secondly, embodiment does not have to be permanently 
attached to intelligence in order to play its role of sensory- 
motor interaction with the rest of the environment.  For 
instance, if we operate a machine (drive a car, use keyboard, 
play tennis), our embodiment dynamics can be learned and 
associated with our action to the extent that reduces the 
distinction between the dynamics of our own body and the 
dynamics of our body operating in tandem with the ma-
chine.  Likewise, artificially enhanced senses can be per-
ceived and characterized as our own senses (e.g. glasses that 
improve our vision or a hearing aid that improve our hear-
ing).  Another example of sensor extension could be an 
electronic implant stimulating the brain of a blind person to 
provide visual information.  

Extended embodiment does not have to be of a physical 
(mechanical) nature.  It could be in the form of remote con-
trol of tools in a distant surgery procedure or monitoring 
Martian landscape through mobile cameras.  It could also be 
our distant presence at the soccer game through received TV 
images or our voice message delivered through a speaker-
phone to a group of people at the teleconference.   

Finally, extended embodiment of intelligence comes in 
the form of organizations and their internal working mecha-
nisms and procedures.  A general directing troops on a bat-
tle field feels a similar power of moving armies as a crane 
operator feels the mechanical power of the machine while 
he operates.  The president also feels the power of his ad-
dress to the nation and the large impact it makes on people’s 
lives. 

This extended embodiment enhances EI’s ability to inter-
act with the environment and thus its ability to grow in com-
plexity, skills and effectiveness.  If the President learns how 
to address the nation, his ability to affect the environment 
grows differently than that of a woman in Darfur trying to 
save her child from violence. 

Our knowledge of embodiment properties is a key to its 
proper use in interaction with the world.  We rely on this 
knowledge to plan our actions and predict the responses 
from the environment.  A change in the way our embodi-
ment implements desired actions or perceives response from 
the environment introduces uncertainty in our behavior and 
may lead to confusion and less than optimum decision mak-
ing.  If a car’s controls were suddenly reversed during op-



 

eration a user would require some adaptation time to adjust 
to the new situation and probably would not be able to be-
fore crashing.  Therefore, what we learn about our environ-
ment and our ability to change this environment is affected 
not only by our intelligence (ability to learn, understand, 
represent, analyze and plan) but by correct perception of our 
embodiment as well. 

III. DESIGNING THE EMBODIED INTELLIGENCE 

Learning is an active process.  EI acquires information 
about its environment through sensors and interacts with it 
by sensory-motor coordination.  The motor neurons fire in 
response to excitations provided by sensory and goal crea-
tion neurons according to desired actions associated with the 
perceived situation.  The agent learns which actions are 
desirable and those that are not by using a value system.  
One mechanism to build an internal value system uses the 
reinforcement learning [3].   

Learning which actions are desirable and which are not 
makes the learning agent more fit to survive in the hostile 
environment.  There are several means of adapting to the 
environment that an agent can use to survive: evolutionary - 
by using the natural selection of those agents that are most 
fit; physiological - by developing new motor skills like 
sweating in the hot weather or new sensors like cell sensitiv-
ity to light; and cognitive - by learning, using spatio-
temporal memory, pattern recognition, and associations.  
Here we address only the later, and the most critical, form of 
adaptation for the development of EI. 

R. Brooks [1][4], the father of embodied intelligence, 
proposed to design this system through layers of simple 
sensory-motor coordination built on finite state machines 
(FSM).  In his subsumption architecture higher levels are 
built upon the lower levels subsuming the lower levels func-
tionality.  In subsumption architecture, each layer consists 
of asynchronous modules that send messages to each other.  
Each module is an augmented FSM.  Inputs to such modules 
can be suppressed and outputs inhibited by signals from 
other modules.   

Although a subsumption architecture may be an efficient 
design approach to build robots with complex behavior, it 
cannot lead to intelligence.  A designer must be involved in 
developing each FSM.  These FSMs do not know how to 
modify their own structures to handle new tasks.  There is 
no self-organization and no learning. 

Moreover, since new tasks may not be compatible with 
old ones, modification of the machine behavior to incorpo-
rate new tasks may become extremely difficult.  Very 
quickly complexity exceeds understanding of the machine’s 
operation by the human designer, who no longer under-
stands how to add a new layer of functionality.   

R. Pfeifer [2] modified the subsumption architecture ap-
proach to include self-organization and the emergence of 
necessary links between lower level processes that control 
sensory-motor coordination.  He also added a value princi-

ple to his design approach, requiring a mechanism for self-
supervised, perpetual learning that employs the principle of 
self-organization.  The value system acts as a teacher telling 
an agent what actions are good for its objectives.  Memory 
of the recent history is necessary to implement this value 
system.  This memory is accomplished by time-averaging 
neuron activities.  But as Sporns and Edelman pointed out 
[5] “the issue of value constraints and their number presents 
one of the greatest future challenges to selectional theories 
of brain function.”  In our work we try to address this issue.  

A practical effort to design structural and algorithmic 
properties of the neocortex was undertaken by J. Hawkins 
from Numenta Inc.[6].  Numenta develops software code for 
Hierarchical Temporal Memory (HTM).  HTM uses a hier-
archy of spatio-temporal associations and learns complex 
goal oriented behaviors.  The information, in the form of 
probability distributions, passes up and down the hierarchy 
to represent the sensory inputs and to make predictions.  It 
uses a combination of unsupervised and supervised learning 
to make associations.  In the authors’ opinion HTM may 
yield machines that exceed human level performance in 
cognitive tasks. 

Earlier attempts to design working models of intelligence 
include for instance GOMS [7], SOAR [8][9], and ACT-R 
[10] software systems.  GOMS (Goals, Operators, Methods, 
and Selection Rules) is a software system for modeling and 
describing human performance that provides a framework to 
analyze human computer interactions. Goals, that a user is 
trying to accomplish, are organized hierarchically.  Methods 
describe sequences of basic operations used to accomplish a 
goal.  Selection rules describe which method should be used 
in a particular situation.  It uses a production-system repre-
sentation of human procedural knowledge required to ac-
complish production goals.  It gives good quantitative pre-
dictions of performance time and learning.   

SOAR (State, Operator, Application, Result) is a cogni-
tive goal-oriented architecture that develops a minimal set of 
rules to support intelligent behavior in a specified environ-
ment.   It uses symbolic knowledge and knowledge-based 
symbolic reasoning to solve problems.  It creates subgoals 
even with incomplete or inconsistent knowledge.  SOAR 
can also generate rules for the implementation of goals us-
ing a process called chunking.  The SOAR program learns 
using explanation-based learning, macro-operator learning, 
strategy acquisition, and learning by instruction.  

ACT-R (Adaptive Control of Thought - Rational) is a 
model of the human cognitive process focusing on learning 
and problem solving. Cognitive tasks are performed using 
if-then production rules, with working memory (declarative 
or procedural).  ACTR-R uses pattern matching to match 
conditions for its production rules and conflict resolution to 
decide which rule applies.  Using ACT-R requires develop-
ing a domain-specific knowledge model of the cognitive 
task for a specific application.  None of these three systems 
uses self-organization, unsupervised learning, or creates a 
knowledge base for its actions with the environment.  



 

A.  Basic requirements for EI 

The way that the brain stores a pattern in its hierarchical 
memory of the neocortex is very different from the way a 
computer does.  Neurons in the human brain self-organize to 
store the patterns to which the brain is exposed.  Human 
utilizes his senses to build a perception of the environment 
and activates appropriate motor neurons to apply actions.  
This enables a human to build a model of the world in a 
fascinating way.   He uses this model to quickly recognize 
patterns in order to respond to the external stimuli and inter-
act within the environment.  He also uses this model to 
expect future events, accomplish efficient planning, and do 
logical thinking.  The perceptions and actions are activated 
selectively by the brain with attention focused on those 
observations and actions that are related to human objec-
tives.   

Thus a goal driven behavior is one of the required ele-
ments of intelligence.  In addition, since humans and ani-
mals create their own goals, it is desirable for the EI to be 
able to do so too.  While the goal creation mechanism in a 
human is not obvious to behavioral scientists or psycholo-
gists, it may be one of the most important elements of EI 
mechanism.   

In the existing models for designing of intelligent agents, 
the goal is defined by designers and is given to the learning 
agent.  It is desired that the agent finds a way to achieve the 
goal by its own actions.  Having domain specific knowl-
edge, an agent may be allowed to formulate subgoals to 
achieve goals as in the SOAR architecture.  During the 
process of finding solutions, the agent will build a value 
system which evaluates different available actions and 
chooses the best one according to their values.  In such 
cases, the agent is not able to create its own goals or find the 
sub-goals in order to accomplish a complicated task.  In 
fact, we would argue that an agent who only follows exter-
nally set goals would not be able to develop some higher 
level cognitive abilities such as deliberate thought, free will, 
intuition, consciousness or emotions.  To some degree it will 
be more similar to a robot than to an enlightened individual.  
Therefore, we set goal creation ability as one of the funda-
mental requirements for EI.  

Setting a goal makes the machine specialize to perform in 
specific types of operation.  While this may be a useful 
limitation from a utilitarian point of view, and the resulting 
machine may be more efficient in implementing a set task, 
such a limitation will make the machine less intelligent.  
Such a solution would be sidestepping from the main goal 
of designing human level intelligence.   

Since we require that an intelligent machine must have a 
built-in mechanism to create goals for its behavior, devel-
opment of a goal creation system (GCS) should be one of 
our first priorities.  We desire to build a GCS based on a 
simple and uniform structure interacting with its sensory 
and motor functions.  In a sense, goal creation should result 

from the machine’s interaction with its environment, by 
perceiving successes or failures of its actions.  

As we desire to develop the machine with self-organizing, 
hierarchical structures and enable it to make spatiotemporal 
associations between sensory and motor functions, we 
would also expect the machine to use similar mechanisms to 
self-organize the goal creation.   

We propose that in order to build intelligent machines, 
the following elements are essential: 
1. Hierarchical self-organizing learning memory 

(HSOLM) to perceive and act according to machine’s ob-
jectives. 

2. Goal creation system (GCS) to develop sensory-motor 
coordination (SMC) and to act as stimuli for interaction 
with the environment. 
EI must be able to self-organize its learning using internal 

mechanisms to acquire knowledge that is useful for its inter-
action with its environment.  In the proposed model of EI, 
HSOLM will use three basic pathways – a sensory path-
way responsible for perception, a motor pathway responsi-
ble for actions, and a goal creation pathway.  The goal crea-
tion pathway is responsible for goal creation, evaluation of 
actions in relation to its goals, learning of useful associa-
tions and stimulating machine to perform useful actions.  
These three pathways interact on various abstraction levels, 
providing associations between the sensory, motor and goal 
creation pathways.   

Goal creation stimulates the growth of hierarchical struc-
tures representing sensory inputs, actions and skills acquired 
by the machine, and abstract goals that the machine creates 
for itself.  EI learns predominantly in an unsupervised man-
ner by responding to stimuli from the environment.  Learn-
ing is deliberate, perpetual, and related to satisfactory com-
pletion of EI goals.  Hostile stimulation from the environ-
ment is necessary for the EI to grow in sophistication and to 
acquire necessary knowledge and skills.   

B. Hierarchical self-organizing learning memory 

The spatio-temporal patterns that a human experiences 
during his lifetime constitute the knowledge stored in his 
memory.  The patterns have features represented on differ-
ent abstraction levels, so they should be organized hierar-
chically based upon the abstraction levels.   

Such patterns will be accordingly stored in the processing 
units (neurons and their connections) on different hierarchi-
cal levels of HSOLM.  Thus, neurons on different levels 
handle the recognition tasks with different level of abstrac-
tion.  Lower-level neurons are either activated directly by 
the sensory inputs or recognize certain detailed features.  
Subsequent level neurons combine the extracted features 
and represent elements of more complex entities.  The in-
formation is gathered, associated and abstracted (in an in-
variant form) as it flows upwards in the hierarchy.  Finally, 
top-level neurons represent perceived entities.  

The human cognition is a very efficient process.  Typi-
cally, it takes less than one second for sensory information 



 

to be obtained, perceived, processed and acted upon.  Since 
neurons in the human brain take several milliseconds to fire, 
a typical cognition task takes less than 100 sequential pat-
tern-processing steps.  This recognition performed within 
such short period indicates the high efficiency of human 
perception.  Such recognition along with the corresponding 
action is a very fundamental task the human can handle; 
nonetheless, it is already quite complicated for existing AI 
machines.   

Mountcastle argues that all regions of the brain are built 
from the same structural units that perform the same compu-
tational algorithm [11].  These vertical column-like units 
called minicolumns (or microcolumns) contain groups of 
neurons connected locally in a pseudorandom way [12][13].  
Their existence indicates system organization in clusters of 
neurons with possibly higher and more robust computa-
tional ability than a single neuron.  Minicolumn organiza-
tion helps to structure the network of neurons and increase 
sparsity of interconnections, which are useful in hardware 
implementation.   

Another critical aspect of human brain development is 
self-organization.  As the brain develops and learns it 
changes its own structure.  A six year old child has many 
redundant and plastic connections ready to learn almost 
anything.  After years of learning, the connection density 
among neurons is reduced, as only the most useful informa-
tion is retained, and related memories and skills are refined.  
In a sense, neurons self-organize to store information.  As a 
child turns from a novice to an expert, he also looses some 
ability to learn.  To some degree learned knowledge ob-
structs having a fresh look at the old problem as is nicely 
expressed in the proverb “You can’t teach an old dog new 
tricks.” 

Thus self-organization is a critical requirement for build-
ing structural elements of EI.  It is important for three rea-
sons.  First, it is a local, learning driven process, thus it can 
be implemented in a massively parallel way through inter-
acting neurons.  The second reason is that by self-
organization the machine can design its own structures 
without need for a detailed blueprint.  Such detailed blue-
print would be very difficult to design, build, test, or main-
tain.  The opposite is true – we may be able to design a 
complex brain like structure with relatively little informa-
tion encoded in its building blocks.  The third reason is that 
it contains elements of error correction and self-repairing.  If 
a single connection or neuron fails, its function will be re-
placed by other nearby neurons or by newly created connec-
tions.  

  The HSOLM is built as a self-organizing hierarchical 
structure with minicolumns as fundamental processing 
units.  Different layers of the hierarchy represent different 
levels of abstraction.  Inside the minicolumn, the neurons 
are interconnected in a predefined way.  Minicolumns are 
connected with other minicolumns using connections both 
from different hierarchical levels and from the same level.  
Thus we may identify feedforward and feedback connec-

tions between different levels and associative connections 
on the same level.  The architecture of such hierarchical 
memory is shown in Fig. 2 and contains a number of mini-
columns on each level.  The minicolumns contain a number 
of internal connections, associative connections to other 
minicolumns on the same level, feedforward connections 
from minicolumns on lower levels to those on higher levels 
and feedback connections from the higher levels to the 
lower levels.  In such structures the three types of pathways 
(sensory, motor and goal creation) will be built and will 
interact with each other.    

……

……
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Minicolumn internal connections
Associative connections
Feedforward connections
Feedback connections  

Fig. 2. Hierarchical structure to implement an HSOLM memory 

In HSOLM, there are many more units on the higher level 
than on the lower levels in order to store a large number of 
entities.  The feature recognized in the lower-level minicol-
umn may be related to multiple objects represented on the 
higher-level, so the lower-level neurons’ activity may be 
spread to several neurons on the higher level.  However, the 
learning algorithm is set to restrict such activities.  There-
fore, we expect fewer active units on the higher levels than 
on the lower levels. 

1) Sensory Pathway 
The primary objective of neurons in the sensory pathway 

is to register the input information received from the envi-
ronment and to build intentional representations to either be 
acted upon or stored in long-term memory for later use.  The 
intentional representation is an internal representation of 
objects, symbols, abstractions, relations, actions, etc. 
(jointly called entities) related to EI’s interaction with the 
environment.  Thus intentional representations have to be 
related to the machine’s objectives.  EI focuses its attention 
on representation and recognition of entities that are impor-
tant to its goals, values, and motor actions.  These emerge 
gradually through machine’s operations and through its goal 
creation and value system.  The machine determines which 
entities and related actions need to be represented in its 
memory.  Intentional representations generalize the informa-
tion received by introducing some degree of invariance 
which increases with the level of generalization.  Represen-
tations are built using a self-organizing hierarchy of spatio-
temporal patterns, that are a result of deliberate actions and 
learning.   



 

Neurons in the sensory pathway are organized in a semi-
hierarchical way to be able to register a large number of 
intentional representations.  At the bottom of the hierarchy 
lie the raw sensory inputs.  Neurons’ activation on these 
inputs may represent a large number of input patterns that 
the machine receives over time.  Each layer following the 
input layer both increases in overall size as well as has a 
reduced number of firing neurons.  The result is a very large 
increase in storage capacity with each added layer. 

Memories are developed through the modification of the 
interconnection weights between active neurons.  Hierarchi-
cal organization also helps to streamline the input data rep-
resentations, yielding large capacity memory structure and 
efficient signal processing scheme for received data.  This 
system of hierarchical structuring of neurons is important 
for several reasons.     

First, it provides the system with the ability to learn at 
very high capacities.  Weight adjustment has an impotent 
impact on the machines ability to learn.  Our system restricts 
the magnitude of weight adjustment based on the amount of 
times a neuron’s weights have been previously modified.  
As a result of the expanding layers and reduced probability 
of firing, weights on the lower levels are adjusted more 
frequently then upper level weights.  As sensory informa-
tion is presented to the network, lower level connections 
quickly become rigid and can no longer be modified (learn).  
In contrast, upper level neurons are infrequently modified 
and therefore retain their ability to be modified even after 
extensive exposure to input level stimuli.  This results in a 
system which can be trained to form representations on each 
increasing level with an increased ability to represent new 
objects. 

Another reason why this hierarchical organization of the 
sensory pathway is important is related to power dissipation.  
Learning and signal processing consume energy.  Power 
dissipation is one of the most critical design factors, espe-
cially in large, parallel computing systems (discussed in the 
section on challenges of EI implementation.)  Thus, a learn-
ing and processing model that involves only a small subset 
of active neurons will save energy.  A schematic representa-
tion of activations of the processing units in the sensory 
pathway is shown in Fig. 3.   

Environment
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Fig. 3.  Example activations of units in the sensory pathways 

   Two such activated pathways are shown to indicate reuse 
of the same lower level features in the recognition process.  
The figure also shows the increasing number of higher level 
units and the various types of connections among them. 

EI uses two mechanisms to store the information in its 
memories and to build invariances.  One is screening for 
novelty.  Only new and useful information is stored in the 
form of intentional representations.  To accomplish this, 
the machine continuously predicts what information will be 
coming in.  This prediction manifests its understanding of 
the perceived signals and an assumption of sameness of the 
observed scene.  Sensory input changes, are usually the 
result of minor changes in the point of view, motion, light-
ing conditions, or gradual modification of the object shape, 
color or form.  When EI interacts with the environment, it is 
situated in a specific location, observing specific objects, 
and performing a specific task.  Thus the assumed continu-
ity of the observed sensory input is used for invariance 
building.  Although we look at an object from different 
angles, we know that this is the same object and thus these 
various inputs must trigger the same representation on the 
higher level. 

The built-in goal creation and value system provides a 
mechanism that triggers learning of intentional representa-
tions and associations between sensory and motor pathways.  
When the EI realizes that a specific action resulted in a 
desirable effect it stores the representation of the perceived 
entity and learns associations between the activated repre-
sentations in the sensory pathway and the neurons in the 
motor pathway responsible for this action.  If the effect is 
not desirable, it learns not to perform such an action.  Fi-
nally, when no goal is affected, no learning takes place.  The 
machine does not create intentional representation nor does 
it remember the action it took.  Since this happens most of 
the time, such organization of the learning process protects 
the machine’s memory from overloading of unimportant 
information.  In addition, no learning is required if the ob-
tained positive (or negative) outcome was expected.  At 
most, some incremental changes in the interconnection 
strength may be observed in such cases. 

2) Motor Pathway 
The primary objective of neurons in the motor pathway is 

to represent and control execution of actions.  The motor 
pathway represents skills learned by the EI.  EI interacts 
with environment through actions, controlled by spatio-
temporal sequences of motor neurons firing.  The ability to 
perform these actions (skills) emerges gradually from the 
machine operations and learning related to its goals and 
values.  These are built using a self-organizing hierarchy of 
spatio-temporal patterns that result from learning useful 
actions.   

Neurons in the motor pathway are organized in a semi-
hierarchical way to be able to store a large number of skills 
and actions.  At the bottom of the hierarchy are row motor 
outputs.  Memories are developed through registering these 



 

activities by modifications of the interconnection weights 
between neurons on the lower levels and activated neurons 
on the higher level.  

As in the sensory pathway, hierarchies of action represen-
tations are built bottom-up, from the simplest actions that 
require little sensory-motor coordination or sequential 
memories, to the most complex ones, that may last for a 
long period of time and require lots of memories and sen-
sory-motor coordination.  An example of a simple action 
may be a reactive response to a painful shock, while driving 
home may be an example of a more complex action.  Higher 
level actions can only be obtained after lower level skills are 
learned.   

Similar reasons that were presented to the sensory path-
way can be given to justify a hierarchical organization of 
motor actions.  First is the large capacity to learn various 
skills.  In the motor pathway hierarchy, the number of motor 
neurons on the higher levels is much greater than that of the 
lower levels; however, the number of activated neurons that 
represent skills and actions on the higher levels is less than 
that on the lower levels.  Lower levels may no longer be 
capable of storing any new information since they were 
involved in learning many patterns.  Instead they represent 
simpler actions that are used to implement actions on the 
higher levels.  This results in lower plasticity of the inter-
connections on the lower level and higher plasticity on the 
higher levels.   

EI activates motor neurons in response to a request for ac-
tion from the value system in coordination with the sensory 
neuron activity representing the perceived state of the EI.  If 
an action was taken that resulted in a positive value, an 
association between the sensory and the motor neuron’s 
activity is learned.  This makes it more likely that a similar 
action will be executed again when the EI is exposed to a 
similar environmental situation.  The same complex opera-
tion may be executed using various simpler operations, 
which leads to a similar concept of invariance building in 
the motor pathway as that in the sensory pathway.  Continu-
ity of a higher level action is used for invariance building 
between an action represented on the higher level and its 
lower level implementations.   

A prediction mechanism is also used in the motor path-
way.  At every step of a motor action, a prediction is made 
regarding expected inputs from the sensory pathway and the 
value system.  If the prediction is correct there is no need to 
learn any new associations.   

Fig. 4 shows a schematic representation of interactions 
between sensory and motor units on different levels of 
HSOLM hierarchy.  In this figure, representation connec-
tions indicate entity recognition along the upward sensory 
pathway and represent downwards activations along the 
motor pathways.  Feedback connections represent expecta-
tions of future inputs in the sensory and motor pathways.  
These expectations are provided by both motor neurons as 
well as higher level sensory neurons.  The direction arrows 
indicate stimulation links from sensory and goal creation 

pathways to motor neurons, while planning arrows connect-
ing motor neurons to the sensory neurons predict the sen-
sory inputs after the action represented by this motor neuron 
was completed. 
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Fig. 4.  Sensory-motor coordination links in HSOLM  

3) Goal creation pathway 
The primary objective of neurons in the goal creation 

pathway is creating goals, evaluation of actions in relation 
to its goals, learning the useful associations and stimulating 
the machine to perform useful actions.  Goals are created 
based on external signals and internally generated stimuli 
that prompt the machine to do a desired action.  A positive 
outcome of these desired actions will be the reason to learn 
internal representations, skills and useful associations.   

Similar to neurons in the sensory and motor pathways, 
neurons in the goal creation pathway are organized hierar-
chically in order to represent a large number of goals and 
the means of their realization.  Lower level goals are exter-
nally stimulated through special type of sensory inputs.  
Neurons’ activation on these inputs may represent a large 
number of situations that the EI encounters while interacting 
with the environment.  Higher level goals are developed 
through associations between activities on these lower level 
goal creation neurons and other neurons in the sensory-
motor pathways.  Hierarchical organization helps to obtain 
high goal capacity that the machine can develop through its 
interaction with the environment.   

The goals emerge gradually from the machine operations.  
By using its goal creation system the machine defines higher 
level goals and determines the ways to implement them.  
The goal creation system generalizes the information re-
ceived, introducing some degree of invariance for its higher 
level goals which increases with the level of generalization. 

In the goal creation hierarchy, goals represented on the 
lower levels correspond to simple, externally driven objec-
tives, while those on the higher levels correspond to com-
plex objectives that are learned over the machine’s lifetime 



 

and are related to its understanding of the best ways to ac-
complish the lower level goals.  Since the lower level goals 
may be satisfied in many different ways, the correlations 
that result from their satisfaction are well defined and there-
fore less variable.  We observe a similar level of increasing 
plasticity of the goal driven correlations on higher levels as 
we observed in the sensory and motor pathways.  The ma-
chine self-organizes its goal creation process to formulate 
most of its goals on the higher levels of hierarchy. 

As in the sensory pathway, the EI uses two mechanisms 
to create higher level goals and build invariances to imple-
ment these goals.  One is screening for novelty.  Only new 
and useful goals are stored.  To do so the machine continu-
ously predicts the level of satisfaction of the lower level 
goals.  This prediction manifests its expectations regarding 
the lower level goals and an assumption of sameness of the 
rules under which such goals can be satisfied.     

When EI is situated in a specific environment, its goals 
can be satisfied in a certain way, and the rules for achieving 
its objectives do not change drastically.  Stationarity of the 
rules that affect goal satisfaction are used for invariance 
building of higher level goals and the way they are imple-
mented (through various subgoals).  For instance if we do 
not want to be hungry, we should keep our job to get money 
for food.  Keeping the job is this higher level objective 
related to not feeling hungry.  It must not be easily changed 
by temporary signals of feeling hungry that can be satisfied 
by lower level goals (like buying and cooking the food).   

Goal creation is less understood than the other two path-
ways of EI.  Therefore, in the following sections we devote 
more attention to developing the concept and structures for 
the goal creation pathway. 

C. Goal Creation System (GCS) 

1) Fundamental characteristics of the goal creation sys-
tem 

Before presenting details of the proposed goal creation 
system (GCS), we will discuss the basic desired features of 
the GCS in intelligent machines.  First, an agent must be 
forced to explore the environment seeking solutions to 
achieve its goals.  By interacting with the environment the 
agent accumulates the knowledge about the environment 
and its own embodiment.  Without interaction with its envi-
ronment, the machine will not be able to accumulate knowl-
edge, develop its skills, nor formulate and implement its 
goals.  Without such interaction we would not be able to call 
the machine intelligent.    

Second, we assume that EI value system will evolve 
through self-organization, association, and learning using a 
simple built-in mechanism.  We propose to base such 
mechanism on dedicated sensory inputs, called “primitive 
pains”, which trigger learning of values.  The “primitive 
pain” inputs include pain, hunger, urge, discomfort and 
other special signals.  The agent has a desire to reduce the 
pain or equivalently to pursue pleasure/comfort.  Pain detec-
tion and moderation of pain by detecting a change in the 

pain (pleasure) intensity will represent the most primitive 
values.  We imply that such requirements will make the 
proposed goal creation system biologically plausible even at 
the level of human intelligence.  In a new-born baby, a hier-
archical goal creation system and value system has not been 
yet developed.  If he is exposed to a primitive pain and 
suffers, he will not be satisfied until the pain signal is re-
duced.  When the pain is reduced the baby learns objects 
and actions that helped to lower that pain. 

Since the pain signal comes from the environment (in-
cluding embodiment of EI), we must make sure that it is 
inevitable unless the machine learns how to avoid it.  Thus a 
mechanism must be put in place to gradually increase the 
pain level unless the machine does something to reduce its 
pain.  This is needed to prevent the machine from choosing 
not to do anything or to quit trying.  Thus, an unstable envi-
ronment perception (in this case in the form of the increas-
ing pain level) is a necessity for learning in this model.   

Pain reduction is desirable while pain increase is not.  
Since the machine has several primitive pains, each one of 
them has its own changing intensity, and requires its own 
solution.  At any given time, the machine suffers from the 
combination of different pains of different intensity, as 
shown in Fig. 5.   
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Fig. 5. Changes in temporal intensity of primitive pain signals. 

It is easy to make references to biological systems where 
a similar mechanism is used to induce activity-based explo-
ration and learning.  For instance, one of the fundamental 
instincts we have in order to survive is to find and eat food 
to sustain our activities.  A gradually increasing discomfort 
coming from our sensors in the stomach tell us that we must 
eat.  Similar urges pressure us to go to the bathroom, use 
clothes when it is cold, or not touch a burning coal.  The 
pain warns us against incoming threats, but also forces us to 
take an action.  We also feel relief if we take an action that 
reduces this pain.  Thus pleasure can be perceived as oppo-
site to pain.   

The intensity of the perceived pain may serve as a regula-
tor to set priorities on our actions and thus be responsible 
for goal creation.  For example, the urgent need to go to the 
bathroom may easily overtake our desire to eat, or even 
more so to sit through an interesting lecture.  In general, the 
strongest pains will determine the most pressing goals.  
Thus the pain based GCS will also yield a goal management 
scheme.  

A primitive pain may be responsible for primitive goals, 
but it can also be a trigger for developing higher level 
pain/pleasure centers and a mechanism for the creation of 
higher level goals.  This is based on a fundamental mecha-
nism for need to act and a simple measure for satisfying 



 

such a need.  We would like to argue that this simple need 
to act may lead to complex goal creation and its implemen-
tation.  The mechanism of goal creation in a human is not 
obvious to behavioral scientists or to psychologists.  It is 
likely that the mechanism we propose has nothing to do 
with the way people create their goals.  However, it is bio-
logically feasible, simple, and it satisfies our need to estab-
lish goal creation for machine learning.  In addition, this 
goal creation system stimulates the machine to act. 

2) Basic unit of GCS 
The proposed goal creation mechanism is a simple one, 

yet it may lead to formulation of complex goals and checks 
for their implementation.  This mechanism is based on three 
groups of neurons that interact with each other and with the 
machine’s memory.  In the first group, the pain detection 
center (showing the pain level) is stimulated by the sensory 
inputs and represents the negative stimulation, pain, discom-
fort, or displeasure.  A delayed pain center stores the de-
layed pain level.  The second group of neurons compares 
signals from the pain detection center and the dual pain 
center and registers a decrease or increase in the pain level.  
This group sends a positive or a negative reinforcement to 
learn the sensory-motor coordination.  Finally, the third 
group contains active neurons in the sensory and motor 
pathways of the EI.  

Outputs of the second group of neurons correspond to the 
reinforcement learning signals used to instruct the machine 
regarding desired or undesired state/action pairs.  In a clas-
sical reinforcement learning control structure, state/action 
pairs are evaluated by a critic network and the machine 
adjusts its actions to optimize the output value of the critic 
network.  A critic network learns the values of state-action 
pairs through the reinforcement signals it receives from the 
environment or a teacher.  While, in the proposed GCS, 
neurons in the second group, which monitor changes in the 
activity of the pain levels, create the reinforcement signals 
automatically.  Their activation indicates either a positive or 
a negative value.  The third group are normal sensory and 
motor neurons.  The basic goal creation cell structure is 
shown in Fig. 6.  This cell triggers exploration for a proper 
action and learning.   

A gradually increasing pain level forces the machine to 
explore, since this is the only chance that the machine will 
learn a proper action when it has yet to learn anything about 
its environment.  The machine explored its environment by 
switching among motor actions.   This exploration comes 
with no learning until a reward (positive or negative) is 
received.  Once the pain reduction or increase is detected by 
the second group of neurons, a learning signal is produced 
to reinforce or weaken the value of an action by strengthen-
ing or weakening its interconnection links.   

Pain increase will be a control signal for currently acti-
vated motor signals not to fire (thus making the sensory-
motor link more inhibitory).  Pain reduction will make links 
between active sensory and motor neurons more excitatory.  

The stronger the change in the pain level, the stronger the 
reinforcement signal and the link weight adjustment is.  
Therefore, the neurons in the second group act as rein-
forcement neuro-transmitters stimulating the machine learn-
ing.  In this model we assume that a positive reinforcement 
satisfies one of the goals, and is perceived as a reduction of 
a pain signal. 

This mechanism alone is not enough.  After several un-
successful motor actions, all sensory-motor links would 
become inhibitory and the machine would quit doing any-
thing.  To prevent this from happening, a direct link from 
the pain center and the increasing level of pain force explo-
ration.  The described interaction of various groups of neu-
rons in the goal creation mechanism is illustrated in Fig. 6. 
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Fig. 6. Basic goal creation cell and learning of sensory-motor coordination.  

This simple mechanism is easy to expand and generalize.  
In order to generate abstract and complex goals, we will 
incorporate basic goal creation units into different hierarchi-
cal levels of the goal creation pathway as discussed next. 

3) Building goal hierarchy 
A primitive pain is a signal received from the primitive 

pain sensors.  It stimulates the primitive pain detection cen-
ter.  An agent is thus stimulated to explore for actions or to 
exploit the action that relieves its pain.  The exploration is 
based initially on the random associative links or links that 
were initially (genetically) set to facilitate the reduction of 
the primitive pains.  Such genetically set links facilitate 
learning of higher level skills and correspond to built-in 
skills.  This may be a preferred solution to designing ma-
chines that need to develop complex skills. 

Genetically set associations between the primitive pain 
centers and actions also exist in humans.  A baby cries when 
it is wet or hungry, it also has well developed sucking re-
flexes to eat.  A burning pain from touching a hot plate 
triggers an automatic pull back reflex.  These sensations and 
actions become gradually associated with circumstances 
under which they occurred, leading an intelligent agent to 
learn basic skills or improve upon them.  

By detecting the change in the pain signal level rein-
forcement neuro-transmitters are activated and send out the 
positive or negative reinforcement signals to change the 
weights of the sensory-motor connections.  After several 
random trials, the action “eat”, connected with perception of 



 

“food”, will be rewarded.  As a result, the strength of links 
from “food” and “hunger” to “eat” will be increased.  
Whenever the “hunger” pain center sends out pain signals, 
the “eat” will be excited prompting machine for this action.   

Primitive pain centers are connected through excitatory 
links to a number of abstract pain centers.  Each time the 
primitive pain center is excited, it sends activation signals to 
the abstract pain centers linked to this primitive pain center.  
Thus abstract pain centers echo the primitive pain.  How-
ever, since these centers are not stimulated from the original 
pain sensors, they only symbolize the real pain.  They can 
be inhibited by sensory neurons that are associated with 
elimination of the primitive pain. 

When “food” is available and the agent “eats”, this sup-
presses the primitive pain as well as the abstract pain.  The 
pain signal disappears and the agent goes back to its normal 
state.  As a result an inhibitory link is developed between 
sensory signal “food” and the abstract pain center.  When 
“food” is not available, the agent cannot reduce the real 
pain.  However, he may be able to do something to reduce 
an “abstract pain”.  Thus a new, higher level goal is created 
to reduce the “abstract pain”.  Although reduction of the 
abstract pain (getting “food”) does not directly reduce the 
real pain (“hunger”) it is may be a prerequisite for such 
reduction.  

The agent is forced to explore to solve the abstract pain.  
Again, exploration is done based on initial associative con-
nections between sensory and motor pathways.  The abstract 
pain center will force this exploration.  The reinforcement 
transmitters connected with abstract pain center change the 
interconnection weights.  Eventually, the reduction in the 
abstract pain that indicates no “food” will be associated with 
the sensory-motor pair “refrigerator”-“open”.  It does not 
matter if such action (opening refrigerator) was found by 
pure exploration or by instruction from a teacher, as long as 
it is undertaken, it will be reinforced.  Of course, by explo-
ration and reinforcement, the action “open” will be associ-
ated with the perception “refrigerator” and the abstract pain 
signal “no food”, since once the agent opens the refrigera-
tor, he sees the food and the abstract pain is suppressed.  In 
addition, since there is an association between “refrigerator-
open” and “food”, “food” will be expected through expecta-
tion link from the sensory input “refrigerator” and motor 
unit “open” to the sensory unit “food”.  This expectation 
link will be used for planning future actions in which reduc-
ing this kind of pain may be required.  Such process can be 
illustrated using Fig. 7. 

Normally, the goal creation process is much more com-
plex with many goals created.  The goals on different ab-
straction levels form the hierarchy of goals in the goal crea-
tion system.  Following the previous example, if the agent 
“opens” the “refrigerator”, but the “food” is not found, the 
agent needs other options to suppress the abstract pain, and 
subsequently the primitive pain.  He may explore by random 
search or by instruction.  Once he “spends” some “money”, 
to buy the food the abstract pain (no food) is reduced; such 

action is rewarded and more strongly connected with ab-
stract pain center. 
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Fig. 7. Reduction of abstract pain signal 

When “money” is available and spent, the “food” is ob-
tained.  The “food” is eaten, the primitive pain is sup-
pressed, and the pain signals are reduced.  Otherwise, when 
“money” is not available, an abstract pain center on level II 
is activated with an inhibitory link from “money”.  Subse-
quently, when “money” is not available, the agent needs to 
do something to solve this problem and reduce pain on level 
II.  The pain center on level II is directly stimulated by the 
pain center on level I.  Again, a pain center on level II 
represents a memory of pain on level I and has automati-
cally but slowly increasing excitation level.  After explora-
tion, the agent finds out that the solution to the pain repre-
sented by “no money” is to “work” at a “job”.  The agent 
may also find that “stealing” other person’s “purse” can 
provide “money”.  However, even if such action suppress 
the pain on this pain branch, the agent will be punished by 
inflicting pain on other pain branch so that this association 
will be weakened and “working” at a “job” will stand out as 
the best option.  Subsequently, pain centers on higher levels 
will be created and the hierarchy of pain centers and goal 
creations will be built.   

Accordingly, instead of a computational-based value sys-
tem used in typical reinforcement learning, the value system 
is essentially embedded in such goal creation system.  Ini-
tially, the agent acts on very primitive goals and learns the 
sub-goals or higher level goals through interaction with its 
environment.  At every step, the agent finds an action that 
satisfies its goals and such action may result in creating 
further goals.  Gradually the agent learns values of various 
states for implementing goals.  It also learns to associate the 
primitive goals with its internal states and learns to create 
higher level goals.  At more advanced levels, the agent is 
able to understand external instructions and use them as its 
goals. 



 

D. Goal-driven learning system 

Based on the previous discussion, it is noticed that the 
neurons in GCS form the pain centers on different abstrac-
tion levels.  These pain centers produce the excitation to the 
motor signals on different levels.  Therefore, in the pro-
posed learning system, sensory pathway, motor pathway, 
and the goal creation pathway all have the hierarchical 
structures that interact with each other.  In addition, it is 
stated that the machine may be stimulated from different 
primitive pains.  Each primitive pain has its own hierarchi-
cal pain tree.  It is possible that different pain trees overlap 
on certain pain branches.  The motor neurons will accept 
stimulations from different pain trees and the strongest pain 
signals influence the choice of action.  The motor pathway 
will respond to the pain signals from the goal creation path-
way and to specific situation represented by the sensory 
pathway to initiate the desired action.  The structure of goal-
driven learning system is schematically illustrated in Fig. 8. 
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Fig. 8. Goal-driven learning scheme 

During the process of goal creation, the reinforcement 
signals play a significant role in building sensory-motor 
associations.  The reinforcement signals come from the 
environment, and include autonomous primitive pain signals 
as well as the teacher’s input.  The agent’s experience built 
through interaction with the environment affects the associa-
tions between different sensory inputs and different goals.  
The tree pathways develop simultaneously.  First, low level 
recognition in the sensory pathway and simple motor ac-
tions are developed to manage the primitive pain signals.  
The machine focuses its attention on objects and actions it 
can use to lower the pain; thus learning is selective.  Not all 
the objects in the sensory inputs are of interest to the ma-
chine, and only those that are will be represented in its 
memory.   

Once representations that are associated with lower level 
goals are formed and the machine is capable to formulate 

higher level goals, it may extend its representations to in-
clude higher level concepts on the sensory pathway, and 
learn a sequence of actions to implement them.  Thus 
memories of more abstract entities and useful actions will be 
formed on the higher levels.  Gradually, the complexity of 
the machine’s operations - its intentional memory of objects, 
actions and goals increases; and its three hierarchical path-
ways are being built.  As a result, complex, long lasting 
goals may be created and managed by such system, resulting 
in a complex, intelligent behavior.  

IV. HARDWARE VS. SOFTWARE FOR EI 

Embodied Intelligence can be implemented in hardware 
or software.  In the following comparison, hardware imple-
mentation will use multiple processors working concur-
rently, while software will run on a single CPU.  This is not 
to say that each processor in hardware implementation will 
represent a single neuron.  The processing speed of today’s 
hardware is much higher than needed to simulate a single 
neuron in a real time.  Thus in hardware implementation a 
hybrid approach can be used, where a group of neurons is 
simulated at each concurrent processor, and a number of 
neurons simulated is set to deliver a real time operation.  
This depends on the speed of operation.  For instance, if a 
concurrent hardware operates at 200 MHz, a single opera-
tion may take 5 nsec, so in 5 msec needed for real time 
neural response, and then up to 1mln operations can be 
performed.  This will set a limit on the number of neurons 
that such concurrent hardware can simulate. 

Software implementation is a convenient choice today 
due largely to inadequate hardware design or programming 
tools for easy implementation and experimentation with 
cognitive mechanisms.  However, software simulation has 
inherent limitations for implementing real-time operation of 
EI with brain level complexity.  The major limitation comes 
from replacing the network of interconnected concurrent 
processors by a single central processing unit (CPU).  Not 
only does the CPU have to run n times faster to compensate 
for the combined processing power of n neurons, but also it 
must simulate the complexity of the interconnections.  With 
the average number of interconnections growing with the 
size of the network and the time the machine spends updat-
ing the interconnections and simulating signal transforma-
tions through these interconnections dominate.  For in-
stance, to simulate the human brain with 1011 neurons and 
each with an average of 10000 connections per neuron, the 
CPU must run 1015 times faster than biological neurons.  
With the average response time of a neuron on the level of 
5msec, the CPU would have to perform 1015 operations in 5 
msec.  Assuming that a single operation can be performed in 
one clock cycle, this would require the clock speed of 
200,000,000 GHz, (or 10mln times faster than current com-
puters).  During the time period that corresponds to such 
switching frequency light travels on the distance of 1.5 nm.  
Thus even if the switching is performed with the speed of 



 

light, the device geometry should be comparable with the 
particle size of silicon.  Operating on such small scale would 
require going beyond the single electron switching or spin 
electronics.  Thus a single CPU may never be able to per-
form the real-time operations of system with human brain 
complexity.  It is very likely that its use would have to be 
limited to modeling small sized networks necessary to de-
velop mechanisms for EI.  It is our opinion that only hybrid 
hardware approach may reach complexity of human level 
intelligence in the predictable future. 

There are other reasons why hybrid hardware implemen-
tation of EI is preferable over software simulation on a sin-
gle CPU.  We will just mention two major ones.   

First, the software operation is synchronized by a central 
clock.  To perform a single interconnection weight update or 
to do a single neuron operation the clock that is powering all 
the circuits is dissipating huge amounts of energy.  The 
essential computing is performed by changing a signal value 
on a small load capacitance, and the related switching en-
ergy that must be delivered to do so is almost negligible 
comparing to the clock energy loss.  Even if some power 
savings techniques are used, the average energy loss per 
operation in the CPU is large.  Currently computers running 
on 3 GHz clock dissipate over 100 W of power.  Increasing 
the clock frequency will significantly increase this energy 
loss.  By comparison, using multiple concurrent processors 
to perform the same number of operations as simulated in 
software would require much lower frequency, therefore 
would consume much less power. 

Second, the hardware implementation of EI with millions 
of processors working concurrently provides robustness 
against hardware failures, similar to the one observed in the 
human brain.  If a single processing unit (out of millions) is 
damaged, it will have only a minor effect on the overall 
performance of the EI.  Neighboring processors will take 
over its function in a similar way that exists in the human 
brain.  This would allow for using wafer scale integration to 
deliver hardware devices for such concurrent systems, re-
ducing the manufacturing and testing cost.  In fact, many 
processing units in the wafer scale array of processors may 
malfunction, and the system may still operate equally well, 
providing that there are still many operational processors in 
the system.  On the other hand, a software system is very 
sensitive to hardware errors, and a single fault can make 
such system not operational. 

A major advantage of the software approach is that it is 
relatively low cost and uses well developed programming 
methods.  Hardware prototypes are harder to built and carry 
a significant development cost.  For this reasons software 
approach is very popular and may be used for many years to 
study and develop models of intelligence. 

V. CONCLUSIONS 

In this paper we presented a framework to design work-
ing models for embodied intelligence.  Structural elements 

of this framework came from our definition of intelligence 
and its embodiment.  Three self-organizing hierarchical 
structures – sensory, motor, and goal creation pathways 
were used to form the core of EI.  The three pathways are 
developed simultaneously extracting knowledge and learn-
ing skills through interaction with the environment.  These 
three pathways interact on various abstraction levels, pro-
viding associations among them.   

The goal creation pathway is responsible for goal crea-
tion, evaluation of actions in relation to its goals, learning of 
useful associations, and stimulating machine to perform 
useful actions.  It also stimulates the growth of hierarchical 
structures representing sensory inputs, actions and skills 
acquired by the machine, and abstract goals that machine 
creates for itself.  EI learns predominantly in unsupervised 
manner by responding to stimuli from the environment.  
Learning is deliberate, perpetual, and related to satisfactory 
completion of EI goals.  Hostile stimulation from environ-
ment is necessary for EI to grow in sophistication and to 
acquire necessary knowledge and skills.   

Technological challenges of building human-level intelli-
gence are briefly discussed by comparing properties of soft-
ware and hardware implementations.  However, it is our 
strong feeling, that technology which supports hybrid im-
plementation of EI must be developed and used to design 
human level intelligence.  Such technology will benefit 
society and stimulate economical growth for the years to 
come. 
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