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Abstract 
This paper investigates independent feature selection as 
used in neural networks for solving classification 
problems.  Radial basis functions and wavelet transforms 
are used to preprocess the input data.  A class of 
nonorthogonal classifiers is defined and their properties 
are investigated.  It is demonstrated that nonorthogonal 
classifiers perform better than the orthogonal ones.  
Feature selection using mutual information is also 
investigated.  Independence of features based on the 
information content is defined and used to select features 
for synthesis of ontogenic neural networks.  Simulation 
results using synthetically generated radar returns 
showed promise for automatic target recognition. 
 
 
1. Introduction 
 
     Automatic target recognition (ATR) is a difficult task.  
When applied to air-to-air targets using High Range 
Resolution (HRR) radar, the task becomes even more 
difficult.  Figure 1 shows the typical way the HRR signal 
is obtained.  The returned signal is integrated over range 
bins, with each range bin containing the total radar return 
for that time segment.  The difficulty of ATR using HRR 
data lies in the extreme variability in the radar signature 
with minor changes in azimuth, elevation, and time (the 
HRR problem).  Figure 2 illustrates the variability of two 
signals.  Each signal is an HRR radar return separated by 

two milliseconds  In addition to the variability of the 
signal, a further complication arises from the use of 
synthetic data for training and measured data for testing.  
The most attainable data is synthetically generated.  
Measured data is used for test.  Since measured data is 
expensive to obtain and usually in short supply, it is not 
feasible to use it for training.  The inherent differences in 
these two types of data, plus the extreme variability in the 
data itself, causes poor performance in classification 
systems. 
     In this paper we introduce the concept of 
nonorthogonal feature vectors and mutually independent 
information which allows the creation of robust 
classifiers.  Classifiers using these features can be 
implemented in ontogenic neural networks (networks that 
generate their own topology during training) using a 
minimal amount of hardware. 
 
2.  Classifiers 
 
     A fundamental problem in pattern classification is to 
determine class membership with the maximum statistical 
confidence of the correct classification decision.  
Classification can be performed with 100% probability 
for the test data, but there is no proof that this classifier 
yields a similarly high recognition rate for test data.  To 
the contrary, these classifiers are often unable generalize 
and correctly classify new test data. 
     A specific transformation of the input is referred to as 
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Figure 1.  HRR Radar Target Identification
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Figure 2.  HRR Data for two Target Classes 



an input feature.  Using an unlimited number of features 
one can achieve linear separability of any input data.  
However, this selection may lead to costly classification 
procedures, expensive hardware, and an inability to 
generalize and classify new data.  By proper selection of 
the input features we can obtain better classifiers, i.e. 
resistant to noise, local distortions, and with the ability to 
generalize. 
 
3.  Feature Selection 
 
     To learn a nonlinear mapping from the input space to 
the output space, one needs to consider independent 
transformations of the input space.  Such transformations 
can be obtained using a complete set of orthogonal 
functions, in which orthogonality guarantees 
independence, or using successive approximations of the 
learned mapping, where successive transformations are 
found by orthogonalizing the error of the existing fit. 
     Let us define a feature f as an ordered pair (F,Ω) of a 
nonlinear transformation F and a proper subset of its 
output space.  We define a feature domain D as a subset 
of the domain of the transformation F which is mapped 
into Ω, and a feature sample set S as a subset of the 
input training data included in D.   
     For a given transformation F we can define infinitely 
many features by simply modifying the subset Ω.  An 
entire classification task can be based on a single 
transformation F paired with different sets Ω. 
     Definition:  A feature fm is covered by the features f1, 
f2, …, fk  iff D D D Dm k⊂ ∪ ∪ ∪1 2 ... . 
     Definition:  A set of features Φ = { f1, f2, …, fn} is 
independent if none of its elements can be covered by 
others. 
     Consider a set of training data T used for pattern 
recognition.  This set is composed of subsets of vectors 
from different classes T C C Cc= ∪ ∪ ∪1 2 ... , where 
Ci is a set of vectors from the class I.  For simplicity let 

the same symbol represent a class and its set of input 
vectors.  Let us assume that all classes are disjoint, i.e. 
C Ci j∩ = ∅  for i j≠ . 

     Definition a feature f(Ci) is a distinguishing feature of 
class Ci if its domain includes only the input vectors from 
class Ci. 
     Whether a feature is distinguishing or not depends on 
the complete training set T.  Adding or deleting training 
data may change a distinguishing feature to a non-
distinguishing feature or vice versa. 
     Definition:  A dominating distinguishing feature is a 
distinguishing feature with the highest ratio of the 
cardinality of its feature set over the cardinality of the 
associated class set. 
     Definition:  A set of distinguishing features Φ(Ci) = 
{f1(Ci), f2(Ci), …, fn(Ci)} is an orthogonal classifier for 
class Ci if the sum of the domains of its features includes 
the set Ci.  The classifier is a minimal classifier if the 
distinguishing features are independent. 
     To classify input data, we can use a set of orthogonal 
classifiers defined for all classes.  Orthogonal classifiers 
yield 100% recognition for the training data.  However, 
the recognition rate for new data may be significantly 
less, as often the orthogonal classifiers are based on many 
independent features, leading to small feature domains 
and poor generalization ability. 
     To design a simple classifier, we need a set of 
independent features of minimum cardinality which 
differentiates all classes.  In this paper, we introduce 
feature selection based on a sequential classifier.  A 
sequential classifier is obtained as follows: A 
differentiating feature is selected and its sample set is 
removed from the input space.  Then, another 
differentiating feature is selected and its sample set 
removed.  This process repeats until all training samples 
are classified.  A sequential classifier is a nonorthogonal 
classifier.  We demonstrated that nonorthogonal 
classifiers are able to obtain correct classification of 
trained data with better generalization ability than 
orthogonal classifiers.  Sequential classifier 
implementation will result in a multilevel neural net 
structure where the number of neurons, processing layers 
and the overall organization is a function of the input 
data, a feature of the ontogenic neural net [2]. 
     Since an input vector may or may not exhibit an 
individual feature, we can design combinational 
classifiers in which a decision regarding an input 
classification is expressed by a combinational logic 
function which depends on several features.  This leads to 
the construction of pattern recognition neural networks in 
which classification decisions are made by a network of 
logic gates.  Such classifiers will be extremely hardware 
efficient.  Probabilistic or fuzzy classifiers can also be 
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Figure 3.  Features and Cluster Sizes



designed by using fuzzy logic instead of binary logic. 
 
4.  Simulation Results 
 
     In this work, sequential classifiers demonstrate the 
potential of  nonorthogonal classifiers for ATR.  A simple 
feature selection method was used to demonstrate that the 
nonorthogonal classifiers work even with the simplest 
thresholding features.  It is expected that, when used with 
more elaborate feature selection processes, nonorthogonal 
classifiers will maintain their advantage over the 
orthogonal classifiers.  The experiments described used 
synthetically generated HRR data.  The data set has six 
targets, each target has 1071 profiles of 128 range bins.  
The training and test sets consisted of 60 randomly 
selected profiles for each target, giving 360 profiles for 
each set.  In actual usage, much larger training and test 
sets would be used. 
     The input space includes the original signal, its 
amplitude range, average value, standard deviation, 
Shannon entropy, log energy, and lp norms.  A Haar 
wavelet transform of the original signal was used to 
enhance the input space.  Figures 1 and 2 show examples 
of raw signal data.  Figure 4 shows an example of a signal 
and its Haar transforms. 
     Feature selection was based on the slicing approach in 
which input data are projected onto one dimensional 
subspaces.  In these subspaces, intervals which include 
input vectors from different classes  were found.  These 
intervals define slices in the multidimensional input space 
which contain only the samples of a single class.   
Features were selected based on the cardinality of input 
vectors in these slices.  Figure 3 illustrates maximum 
cluster sizes for different transformation functions of the 
input data.   Notice that the best features are based on the 
signal transforms rather than the raw data (represented by 
features 7-134.)  This is in agreement with other research 
results in ATR, which indicate that preprocessing may 
enhance classifiers’ recognition ability [1]. 

 

 
 
5.  Mutual Information Measure 
 
     A sequential classifier is a special case of a more 
general combinational classifier.  In a combinational 
classifier, independent features can be selected in a 
number of ways.  It is our aim to select these features in a 
way that yields optimum neural network structures.  A 
natural way of achieving this is to select a classifier 
which contains a minimum number of features satisfying 
a specified selection criteria.  In this section, feature 
selection based on the mutual information measure is 
investigated.  It yields a maximally informative set of 
features which minimizes the initial uncertainty in the 
object class. 
     It is expected that this approach yields the minimum 
number of features to perform the classification task.  The 
mutual information between a feature f and a set of 
classes G is defined as follows [3]: 

I f C P C f
P C f

P C P fC G
( , ) ( , ) log

( , )
( ) ( )

=
∈
∑  

where P(C,f) stands for the joint probability for class C 

 Training Data 
 Orthogonal Sequential 

Target 
Number 

Recognition 
Rate % 

Error  
Rate % 

Recognition 
Rate % 

Error  
Rate %

1 87 0 83 0 
2 53 0 60 3 
3 50 0 63 0 
4 37 0 67 3 
5 28 0 78 2 
6 28 0 48 2 
Table 1.  Classification Training Results 

Test Data 
Orthogonal Sequential 

Target 
Number

Recognition 
Rate % 

Error  
Rate % 

Recognition 
Rate % 

Error  
Rate %

1 83 0 85 0 
2 28 18 32 8 
3 40 2 73 3 
4 25 18 53 15 
5 12 0 48 10 
6 18 7 35 15 

Table 2.  Classification Test Results 

Figure 4.  Haar Wavelet of a Signal 



and feature f, P(C) is the class probability, and P(f) is the 
feature probability.  In general, the conditional entropy, 
which measures the uncertainty in the object class, will be 
reduced when a new feature is added to the classifier.  It 
remains unchanged if and only if P(C,f)=P(C)P(f), in 
which case the feature does not bring new information 
and should not be used in the classifier.  Batti presented 
convincing arguments why the mutual information 
measure is useful in feature selection for object 
classification.  His selection procedure uses a sequence of 
features fi which maximizes I(fpC).  He realized that this 
selection may introduce features which are strongly 
dependent and in spite of having large I(fpC) values their 
contribution to the classification problem may be much 
less than expected.  To alleviate this problem he uses a 
feature selection that maximizes: 

I f C I f f p
f Fp p

( , ) ( , )−
∈
∑β  

where fp is the set of the previously selected features, 
I(f,fp) is the mutual information (which measures 
dependence) between candidate feature f and the already 
selected features fp and β is a parameter between 0 and 1 
which regulates the relative importance of the mutual 
information between features f and fp. 
     The problem with this approach is that β is arbitrarily 
selected and cannot correctly remove the mutual 
information between features.   The major reason why no 
single value of β can be found is that all previously 
selected features may be mutually dependent.  The more 
dependence there is between previously selected features, 
the smaller the β value must be used.  But this, in turn, is 
very much case dependent.  What is more important, 
features selected using this criteria may be completely 
dependent on features previously selected and will not 
contribute to information increase.  As a result, the 
obtained classifier is not minimal from an information 
theory point of view.  In addition, the method gives no 
clue as to how many features should be selected to reach 
the optimum level of information accuracy possible with 
a given training set. 
     Motivated by the above deficiencies, a new method 
called the maximum information increase feature 
selection (MIIFS) was developed and tested on a selected 
set of input features.  The method is computationally 
efficient and provides optimum feature selection based on 
the exact information measure.  In this method, both the 
feature domain and its complement are considered in 
reaching the classification decision.  As a consequence, 
each feature partitions the input space into two subspaces.  
If several features are considered the input space is 
partitioned into a number of subspaces.  Each subspace is 
included in a unique combination of feature domains or 
their complements.  In the MIIFS approach, the mutual 

information is computed based on these subspaces.  The 
mutual information between a set of features P and the set 
of classes G is computed from: 

I G P C s
P C s

P C P sC Gs S
( , ) ( , ) log

( , )
( ) ( )

Φ =
∈∈
∑∑  

where S is the orthogonal sum of all the subspaces created 
by the intersection of feature domains and their 
complements.  First, the mutual information is computed 
for each feature with S D D= ⊕ , and Φ = f.  A feature 
f with the largest value of information I(Φ,G) is selected.  
The input space is divided into two subspaces.  Next the 
feature space is searched for a new feature which 
maximizes the information increase 

∆ Φ ΦI I G I Gn n= − −( , ) ( , )1  
where I(Φn,G) is the mutual information between a new 
set of features Φn and the set of classes G.  Φn-1 stands for 
the previously selected set of features.  I(Φn,G) is 
computed on a new set of subspaces which are created by 
intersecting a new feature domain and its complement 
with the previously obtained set of subspaces.  Notice, 
that if Φn has n features, then up to 2n subspaces are 
created.  Feature selection continues until the maximum 
value of ∆I is less than a specified threshold.  This 
method produces a minimum set of independent features 
optimized from an information theory point of view.  If 
the information threshold is set to zero, the method 
produces features capable of 100% recognition of the 
trained data.  Since the method minimizes the number of 
features, it is also capable of good generalization.  
Although the method can achieve 100% recognition, 
statistical confidence in the classification may be lowered 
by small increments of information added by features 
selected later in the process.  This is a direct result of the 
error in estimating the mutual information I  which 
differs from the true value of information I  represented 
by the set of features, where the error of the mutual 
information estimate is: 

∆ I I I
N

K K K KC S C S= − ≈ − −
1

2
( )  

and N is the total number of training samples, Kc is the 
number of classes, Ks is the number of subspaces.  An 
additional issue, that must be investigated to determine 
the confidence in the classification result, is to determine 
the statistical likelihood that a new sample may be of a 
different class than the samples represented by the feature 
domain (subspace) which correspond to the given 
combination of features.  This is directly related to the 
number of training data in the given subspace. 
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Figure 4.  Information Content in a Sequence of 

Features 
     The maximum information increase for feature 
selection was used to select a small number of 
independent features for target classification.  Using this 
approach the initial class uncertainty may be reduced to 
zero with a relatively small number of features.  These 
features, in the combinational classifier, will give 100% 
recognition rate for the training data.  In addition, since a 
small number of features is selected, the obtained 
combinational classifier should have a good recognition 
rate for the test data.  Figure 4 illustrates the total 
information which can be obtained from a sequence of 
features selected using the MIIFS method.  We see that 
the information content of the selected features quickly 
saturates to 100%.  Further increase in the number of 
features will not add new information about the existing 
set of training signals.  It may, however, increase the 
robustness of the classifier to recognize test data. 
(considering that the trained system could have been 
affected by noise). 
 

 
6.  Conclusion 
 
    In this work, feature selection methods for use in 
neural network classifiers for HRR target recognition was 
investigated.  Sequential and combinational classifiers 

were used as an example of nonorthogonal classifiers to 
select distinguishing features for use in synthesizing 
ontogenic neural networks.  An orthogonal classifier, 
based on the dominating distinguishing features was 
selected to compare the classification performance.  
Wavelet transforms and other signal transformations were 
used to preprocess the radar signal data.  Simulation 
results demonstrate the potential benefit of using 
nonorthogonal classifiers for ATR. 
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 Training Data Test Data 
Target 

Number 
Recognition 

Rate % 
Error  

Rate % 
Recognition 

Rate % 
Error  

Rate %
1 100 12 93 28 
2 81 7 65 23 
3 95 12 95 17 
4 75 13 65 28 
5 95 15 87 17 
6 88 7 73 8 
Table 3.  Classification Results Using MIIFS 


