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Episodic Memory in Minicolumn Associative
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Abstract— A generalization of active neural associative knowl-
edge graphs (ANAKGs) to their minicolumn form is presented
in this paper. Each minicolumn represents a single symbol,
and the activation of an individual neuron in a minicolumn
depends on the context of the activation of the presynaptic
neuron. The implemented memory model combines the ANAKG
associative spiking neuron idea with the idea of the hierarchical
temporal memory. This new associative memory organization
preserves all properties of ANAKG memories, such as storage
of knowledge based on the association of spatiotemporal input
sequences, self-organization, quick learning, and recall of the
sequential memories, while increasing the recall quality and
the memory capacity. The recall quality advantage of the new
approach over ANAKG increases with the length of the recalled
episodes and the number of neurons used in each minicolumn.
We introduced a new distance measure to compare the recalled
sequences and defined a recall quality to determine the memory
capacity. Performed tests confirmed our claims. Additional tests
were performed to illustrate the computational complexity and
the efficiency of the developed approach.

Index Terms— Associative episodic memory, distance measure,
knowledge representation, minicolumn structure, recall quality.

I. INTRODUCTION

MEMORY plays an important role in a cognitive system,
providing it with the knowledge about its environment

and how to deal with it. Its structure self-organizes as a result
of the past observations, actions, and their consequences [1].
The learning process includes changes in the long-term mem-
ory cells and the synaptic connections between neurons. Asso-
ciations between neurons reflect contexts for the learning and
representation building process [2].

Memory is composed of distinct systems that can be divided
into declarative (explicit or conscious) and nondeclarative
(implicit or subconscious). Declarative memories are further
divided into semantic and episodic memories [3]. While
semantic memory is a structured record of facts, concepts,
and knowledge about the world acquired over the lifetime,
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episodic memory is a representation of personal experiences
and specific events (time, place, emotions, and other contextual
knowledge) that can be explicitly stated. Episodic memory
supports learning in the semantic memory by providing a
recollection of past events. Both types of memory require the
storage of sequential information.

Associative networks are content addressable and are able
to retrieve stored data based on only a part of what was
stored [4]. They are resistant to noise and can detect missing
data and sensory failures [5]. Models of associative networks
with feedback loops, called recurrent neural networks (RNNs),
can be trained to predict the next output symbol after reading
a stream of input symbols. In [6], gradient-based RNNs were
used to retrieve the memories of the stored input sequences.
In [7], an unsupervised algorithm that, using RNNs, learns
fixed-length feature representations of sentences, paragraphs,
and documents was proposed. The Penn Corpus and Switch-
board, with about 1 million and 4 million words, respectively,
were used in [7]. Similar to RNNs, this algorithm is trained to
predict words in a document given an input context. Memory
networks [8] are a new class of learning models that combine
the input content with the dynamic knowledge base stored in
the long-term memory to predict the output. Memory networks
represent the input information in the form of features and are
capable of generalization to produce the desired response.

In response to demand for services based on speech recog-
nition and large knowledge bases like Wikipedia, researchers
in recent years have focused on contextual question answering
(QA). Direct approaches to QA such as string matching are
ineffective [9], and solutions that include recursive neural
networks such as QA neural network with trans-sentential
averaging [9] are becoming popular. Neural Turing machines
(NTMs) combine the concept of neural network learning and
classical Turing machines to retrieve context-based input infor-
mation [10]. NTMs can learn simple algorithms from input and
output examples and use them to generalize. Compared with
RNN long short-term memory (LSTM) [6], NTMs show better
accuracy over longer sequences in recall and copy tasks [10].

Semantic knowledge and short-term memory must cooper-
ate to provide a context-based scene understanding and recall
of the useful operations that the system performed in an open
environment. Semantic memory aggregates representation of
the training data and forms a context-searchable knowledge
base. This memory is obtained by binding the semantic
contexts for all trained objects and linking their neuronal rep-
resentations together. Semantic memory can be built using an
active neural associative knowledge graph (ANAKG) that uses
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the associative spiking neuron (as-neuron) model presented
in [11].

RNNs that use artificial minicolumns have a much larger
storage capacity than ordinary networks in which each neuron
represents a single concept as discussed in [12]. Minicolumn
refers to one or more neurons that function as a unit. We use
this property of artificial minicolumns to increase the memory
capacity and improve the quality of knowledge representation
in ANAKG memories.

In this paper, we present a generalization of ANAKGs to
their minicolumn form known as lumped minicolumn asso-
ciative knowledge graph (LUMAKG) memory. We present
LUMAKG organization and a learning process to establish
spatiotemporal associative connections between neurons. In
LUMAKG, each symbol is represented several times follow-
ing the idea of minicolumn organization presented in [12].
LUMAKG uses the same spiking neuron model as ANAKG
and similar self-organization principles. The most signifi-
cant difference between the two memory structures is that
LUMAKG uses columnar organization and a new mechanism
for selection of synaptic connections between neurons. While
the columnar organization increases the memory capacity,
the new mechanism for synaptic connections improves the
resolution of context-based sequence recognition.

The major contribution of this work is to demonstrate
that LUMAKG organization preserves all the properties of
ANAKG memories such as storage of knowledge based
on the association of spatiotemporal input sequences, self-
organization, quick learning, and recall of the sequential
memories, while increasing the recall quality and the memory
capacity. LUMAKG is better suited to store and recall time
domain sequences that are critical to formulating a context-
based episodic memory.

The remainder of this paper is organized as follows.
Section II briefly introduces the major features of ANAKG
memories. Section III contains the organizing principles of
LUMAKG memory and a description of the algorithm to
locate neurons with predicted activation (PA). Section IV
presents the LUMAKG design example and details of the
memory organization algorithm. Section V describes a testing
methodology and introduces the reciprocal word position
(RWP) distance and recall quality used in the evaluation of
the memory properties. Section VI discusses the conclusions.

II. SEMANTIC MEMORIES

An ANAKG can be used to build semantic memories. The
knowledge graphs are dynamically obtained by adding asso-
ciative neurons and changing their synaptic connections based
on the input sequences and activation levels of presynaptic
and postsynaptic neurons. If the updated synaptic weights
provide incorrect activations of postsynaptic neurons, then
the previously activated neurons create inhibitive connections
to the incorrectly activated neurons. The gradual activation
and relaxation of ANAKG neurons enable them to represent
sequences of elements (objects) in their previous contexts.

ANAKG networks are built from as-neurons, with receptors
sensitive to input stimuli and effectors transforming neuronal
stimuli into output data [11], [13], [14]. The as-neurons
can be very quickly adapted to represent any given set of

training sequences of elements in a neural graph structure that
integrates and associates them. The ANAKG networks demand
only a single presentation of each training sequence to create
a neuronal structure and compute all weights. This approach
yields the neural graph structure much faster than training rou-
tines of artificial neural networks. It is also easier to compute
than spiking neural networks, which require solving several
differential equations. The adaptation process of the ANAKG
uses the so-called synaptic efficacy (1) computed according
to the time that elapsed between activities of the presynaptic
and postsynaptic as-neurons that were activated in close time
succession. The shorter this period is, the bigger the impact on
the synaptic efficacy is. The synaptic efficacy is also dependent
on the frequency of synaptic stimulation to the postsynaptic
neuron. It significantly simplifies the adaptation process in
comparison to other models of neurons, both spiking and those
that use nonlinear activation functions.

Assume that we have a training sequence set
S = {S1, . . . , SN } consisting of sequences Sn =
[En

1 , . . . , En
m , . . . , En

m+r , . . . , En
Kn

], of possibly different
lengths, where En

m is an element (object). The synaptic
efficacy is computed for each pair of connected as-neurons
Nm and Nm+r representing two elements Em and Em+r

in each training sequence Sn that contains them. Elements
Em and Em+r , represented by as-neurons Nm and Nm+r ,
in a subset of all training sequences are separated in time
by a number of other elements (r − 1), where r ≥1. The
time difference between observation of Em and Em+r

elements stimulating neurons Nm and Nm+r affects the
computation of various components of the sum (1) that
defines synaptic efficacy. The final synaptic efficacy for
this synapse takes into account all training sequences that
contain time ordered succession of elements Em and Em+r .
The synaptic connection between as-neurons representing
elements Em and Em+r is denoted here as Nm → Nm+r

δEm ,Em+r =
∑

{(Em ,Em+r )∈Sn∈S}

⎛
⎝ 1

1 + �t A−�tC

θNm+r ·�t R

⎞
⎠

τ

(1)

where

δ synaptic efficiency;
�t A period of time that lapsed between stimulation of

synapse between Nm and Nm+r neurons and activa-
tion of the postsynaptic neuron Nm+r during train-
ing;

�tC period of time necessary to charge and activate a
postsynaptic neuron Nm+r after stimulating synapse
between Nm and Nm+r neurons (here �tC =20 ms);

�t R maximum period of time during which postsynaptic
neuron Nm+r recovers and returns to its resting state
after its charging that was not strong enough to
activate this neuron (here �t R = 300 ms);

θNm+r activation threshold of the postsynaptic neuron Nm+r

(here θNm+r = 1);
τ context influence factor changing the influence of

the previously activated and connected neurons on
the postsynaptic neuron Nm+r (here τ = 4).
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Synaptic efficacy is a measure of how strong a given
input stimulation of the synapse influences the postsynaptic
neuron activity due to the elapsed time between activations of
presynaptic and postsynaptic as-neurons. It weighs and sums
up all related activities of the connected neurons during such
an adaptation process.

ANAKG consolidates representations of many training
sequences in such a way that repeated elements occurring
in various training sequences are represented by single as-
neurons. Such neurons bind training sequences together and
thanks to contextual connections between them it is possible to
retrieve many of these sequences using unique initial contexts
for recalling them [11], [13], [14]. When new or nonunique
contexts are used, the ANAKG retrieves the most frequent
training sequences or new sequences that are built either from
parts of the training sequences or their associated elements.

The synaptic efficacy is used to compute a synaptic perme-
ability, which is used in this model as a connection weight (2).
The synaptic permeability values of each synapse are between
0 and θ , where θ is a threshold value of the postsynaptic
neuron Nm+r . The range of permeability values emphasizes
the influence of the presynaptic neuron Nm on the postsy-
naptic neuron Nm+r . It is computed after the activity of the
presynaptic neuron Nm by considering synaptic efficacy that
contains its influence on the postsynaptic neuron activity using
the following equation [13]:

w = θ
ηδ

ηδ + η2 − δ2 (2)

where

w synaptic permeability, that is, connection weight;
η number of activations of a presynaptic neuron Nm

during training for training sequence set S;
δ synaptic efficacy computed for this synapse.

ANAKG-based semantic memory can associate distant time
events and trigger the recalling processes automatically, taking
into account the given context and semantic relations between
objects represented in the neuronal graph structure. Semantic
relations are automatically created on the basis of real relation-
ships between objects presented to this memory in the form
of sequential patterns. They are weighted according to the
strength or the frequency of represented relations in their wider
context comprising previous events. Such a strategy makes it
possible to represent various concepts from different points
of view and in different contexts, forming knowledge about
them. Finally, the ANAKG memory can generalize knowledge
gained during the adaptation process based on the presented
training data. It can generate new responses that were not
previously observed but reflect knowledge accumulated by
the system and the context of the current events [15]. The
generalization is a result of the association and aggregations of
data, symbols, features, objects, and subsequences that occur
in the training data.

ANAKG networks are robust to distortions in the input
signal, and to some degree their effectiveness resembles that of
the LSTMs [6] that can store short-term sequential information
over longer periods of time through its gating system. LSTMs
are a type of RNNs that are capable of learning long-term

dependencies. While LSTMs and RNNs have a similar form,
a recurrent hidden layer consisting of a chain of recurrently
connected neural network modules, the neural network mod-
ules themselves are different. The neural network modules
in RNNs have a very simple structure, for example, a single
memory cell, whereas the neural network modules in LSTM
have multiple neural network layers, for example, one or more
memory cells and gates to control the flow of information.
In contrast to LSTMs, ANAKG networks are easy to train
and do not require supervised learning, which makes them a
better choice for natural learning in an open environment.

A. Sample ANAKG Structure

This section describes the creation of a sample ANAKG
structure for the following training sequence set: I have a
monkey. My monkey is very small. It is very lovely. It likes to
sit on my head. The developed ANAKG structure is shown
in Fig. 1. Here, each as-neuron represents a single word,
and the numbers under their names represent their number
of activations (η) during the training phase. These numbers
are also equal to the number of occurrences of each word
in all training sequences. The small circles represent the
postsynaptic elements of the synapses, and a red dot inside
them means that the value of the synaptic weight is equal to the
threshold of the postsynaptic neuron (θ), that is, the activation
of this synapse is sufficient to activate the postsynaptic neuron,
whereas numbers in the postsynaptic elements (small circles)
represent synaptic permeability values (w) as a percentage of
the threshold value (θ). Similarly, the crescent shape denotes
the presynaptic elements and shows the direction from which
the stimuli come.

Fig. 1(A) shows the neural network following the presen-
tation of the first sentence: I have a monkey. Following the
process described in [11], for each word in the sentence,
we first check if there exists an as-neuron that reacts to
the presented word. If none of the existing as-neurons are
activated, a new as-neuron is created. This process is repeated
for all words in this sentence. If a word is repeated, the
same neuron represents it. The efficiencies of synaptic connec-
tions following the stimulation of presynaptic as-neurons were
computed using (1). The connection weights were computed
according to (2). Because this is the first training sentence,
and there are no repetitions of words, the activation of
any as-neuron is sufficient to activate the postsynaptic as-
neuron representing the next word in the sentence. Besides,
as-neurons representing subsequent words in the sequence
are also stimulated by the as-neurons representing previous
words of the trained sequence, establishing the context of
the following words. In Fig. 1(A), this context represented
by the additional connections (small circles with numbers)
does not influence the result of stimulation significantly, but
these connections play a substantial role when next sentences
partially composed from the same words will be represented
by this structure [Fig. 1(B)–(D)].

Fig. 1(B) shows the ANAKG network after the presentation
of the second sentence: my monkey is very small. Four new as-
neurons representing the new words {my, is, very, small} are
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Fig. 1. First four steps of a sample ANAKG structure developed after adding
the following sequences: (A) I have a monkey, (B) My monkey is very small,
(C) It is very lovely, and (D) It likes to sit on my head, according to the
associative process using (1) and (2).

created, and the synaptic connections to all their predecessors
in the sentence are added. The synaptic efficiencies and
connection weights are calculated according to (1) and (2),
respectively. Note the aggregation of the representation of
the word monkey occurring in both of the currently trained
sentences. When a word is shared between a few training
sentences, the neuron representing this word does not stimulate
neurons representing subsequent words sufficiently to activate
them. For instance, the word monkey cannot activate the
neuron is from the second sentence by itself, but stimulation
of the neuron representing even earlier word my (the context)
is required. Similarly, following the training with the third
sentence: it is very lovely, the synaptic efficiency and con-

nection weights between very and small change due to the
occurrence of lovely following the word very. The activation of
the presynaptic as-neuron very is not sufficient to activate the
postsynaptic neuron small anymore [see Fig. 1(C)]. It is nec-
essary to use the context of previously activated neurons {my,
monkey, is} or {it, is} to adequately stimulate the neuronssmall
andlovely to activate the right one according to its context.
Fig. 1(D) presents the ANAKG network after the fourth
training sentence (It likes to sit on my head) was added. Further
descriptions of the ANAKG structure associative processes can
be found in [11], [16], and [17].

III. ORGANIZATION OF LUMAKG

A. Minicolumn Organization of the Associative Memory

Hawking et al. [12] proposed a columnar organization
of the associative memory and introduced cortical learning
algorithms in which minicolumns were used to store sequen-
tial information in structures known as hierarchical temporal
memory (HTM). HTM is a theory of intelligence based
on neuroscience research, and structurally it is inspired by
the multi-layer hierarchical network structure of the human
neocortex. Since then, HTMs were further developed, and
their properties were analyzed and tested. In [18], it was
shown that HTM was able to continuously learn a large
number of temporal sequences using an unsupervised learning
neural network model. HTM was shown to have similar accu-
racy as another state-of-the-art sequence learning algorithms
such as echo state networks [19] or LSTM [18]. However,
they also show some drawbacks like larger sensitivity to
temporal noise than LSTM [18]. ANAKG memories do not
have this drawback of HTM networks because as-neurons
use the time delay of the input signal to make associations,
and ANAKG associates not only the individual inputs but
also their sequences spread over time, greatly minimizing the
effect of temporal noise (or any single event). The gradual
change in sensitivity, activation threshold, synaptic weights,
and connections to other neurons and sensors that results
from the model parameters also helps to minimize the effect
of temporal noise. Thus, improving ANAKG by introducing
a minicolumn structure to its architecture provides a better
associative memory capable of storing spatiotemporal relations
between data. Continuous learning from input data and rapid
adaptation to changing environmental conditions are desired
properties of machine learning [18], so it is important that
the algorithm can recognize and learn new patterns quickly.
ANAKG memories have this property.

Both in HTM and ANAKG, neurons do not perform a
simple weighted sum of their inputs as in most neural net-
work models [20]–[22], but integrate them over time. This
is similar to spiking neuron networks [23]. Spiking neurons
are biologically motivated and produce patterns similar to
biological neurons. Several computationally efficient models
of spiking neurons have been developed [24]. Networks of
spiking neurons spontaneously self-organize into groups and
generate polychronic patterns of activity, and this property is
believed to be necessary for cognitive neural computations,
symbol grounding, attention, and consciousness [25]. ANAKG
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achieves similar properties to spiking neurons by using a much
simpler spiking neuron model and self-organization principles
to capture the spatiotemporal relationship between data [13].
LUMAKG maintains these properties of ANAKG while
increasing its recall quality, memory capacity, and resolution.

Following HTM organization, we replace each neuron in
ANAKG with a minicolumn of several neurons, where all
the minicolumn neurons represent one unique symbol (e.g.,
a single word). Individual neurons in the active columns
represent information regarding the learned temporal context,
and they may be activated by different learned temporal
contexts. Like in HTM, the neurons in LUMAKG receive three
types of inputs. The input from the lower layer network carries
the sensory information and is used to recognize the learned
sequences, the input from the higher layer represents feedback
prediction, and the input from the same layer represents
context-based prediction and lateral inhibition used to create
self-organizing maps.

While the neurons in a minicolumn are duplicates of each
other, their inputs, outputs, and synaptic connections (weights)
are not. Using the design principles from HTMs [12], the
inputs and outputs are distributed across all the minicolumn
neurons so that multiple sequences can be represented using
the same set of minicolumns. Individual neurons in each
minicolumn use the ANAKG algorithm to establish associative
connections and their synaptic weights. Like ANAKG neu-
rons, LUMAKG neurons modify their thresholds to stimulate
learning by various minicolumns and their neurons.

Like in HTM, LUMAKG minicolumns have three output
states, active from feed-forward input (can be input from the
sensor), active from lateral input (representing a prediction),
and inactive. Thus, LUMAKG neurons can fire even without
sensory input stimulation. In the predictive mode, activation
of neurons from the lateral input is used to complete the
sequence. During learning of new sequences, prediction and
input activation should match for the learning (changing the
synaptic weights) to take place.

B. Organizing Principles of LUMAKG

We illustrate the design of LUMAKG memory by using
sequences of words as its input. Each minicolumn in the
developed structure represents a different word. Although
a minicolumn-based memory is capable of handling raw
sensory data to obtain its symbolic representations [26], we
use this simplified approach where the input signals are the
sequences of symbols. We do so in order to have a simple
interpretation of the neurons’ activities and to use simple
measures to compare test results with ANAKG or other neural
networks that use symbolic inputs. A distributed version of
the minicolumn associative knowledge graph (DIMAKG) is
currently under development.

The LUMAKG structure is obtained dynamically. New
minicolumns and synaptic connections are added each time
a new input sequence is provided to the network. Specifically,
if a new symbol is observed, a new minicolumn is added, and
at least one of its neurons is linked to other minicolumns estab-

lishing new synaptic connections. The organizing principles of
LUMAKG are as follows.

1) Duplicate each symbol m times to form an individual
symbol minicolumn.

2) If a neuron in a minicolumn is activated above its
threshold from the associative connections, it is called
to be in a predictive mode.

3) A sensory input activates either all the neurons in a
given minicolumn that are in the predictive mode or
the whole minicolumn if no neuron is in a predictive
mode.

4) Activated neurons that were in a predictive mode are in
PA.

5) An activated minicolumn without any neuron in a pre-
dictive mode has all the neurons in unpredicted activa-
tion (UA).

6) Synaptic weights of connections between activated neu-
rons in the predecessor and the successor minicolumns
are changed according to (2).

The number of neurons in each minicolumn m is set arbi-
trarily. In the NuPIC software that implements HTM memory,
m is set to 32 [26], [27]. In the human cortex, the number
of neurons in each minicolumn is between 80 and 120 (with
twice this number in the visual cortex area) [28]. Since in our
approach we demonstrate that the memory and its resolution
depend on this number, m is an important network design
parameter. We hypothesize that larger memory networks need
a larger number of neurons in their minicolumns for their
optimum performance.

C. LUMAKG Algorithm

According to the described organizing principles, the
LUMAKG algorithm can be organized as follows. The individ-
ual steps of this algorithm are explained and illustrated using
a design example.

The LUMAKG Algorithm:
I. Read the consecutive elements of the input sequence to

activate the corresponding minicolumns.

1) Check if the symbol from the input sequence is repre-
sented by a minicolumn.

2) If it is not, add a new minicolumn.
3) Put all neurons of this new minicolumn in the state of

UA.

II. Establish the predecessor–successor neurons in all the
minicolumns activated by the input sequence.

1) Find the nonoverlapping sequences of the previously
stored episodes.

2) Establish a sequence of linked PA neurons in all the
activated minicolumns.

III. Update the synaptic weights in the synaptic connections
between all predecessor-successor neurons.

Update all the synaptic weights between all the PA neurons
in the predecessor and successor minicolumns according to
the rules developed for ANAKG [11].
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Fig. 2. Activated minicolumns with the existing synaptic connections.

IV. LUMAKG DESIGN EXAMPLE

Since the LUMAKG algorithm has a convoluted process
for modification of synaptic connections, we use an example
to illustrate how the algorithm works. First, we will illus-
trate how to find nonoverlapping sequences of the previously
stored episodes in all the minicolumns activated by the input
sequence (point II.1 of the LUMAKG algorithm). In this
example, we assume for simplicity of the graphical illustration
that the number of neurons in each minicolumn is equal to 5.
This, however, should be optimized depending on the desired
memory size.

For each consecutive activated minicolumn, activate all the
neurons in the minicolumn that corresponds to the input
symbol according to point C of the organizing principles.
Typically, the first activated minicolumn has no PA neurons,
unless it is considered in the broader context of associative
learning and was a part of the previously stored episode. Thus,
typically all neurons in the first activated minicolumn are in
the state of an UA.

A. Finding Nonoverlapping Sequences

To better explain point II.1 of the LUMAKG algorithm, let
us illustrate it with an example of a sequence of activated
minicolumns. Let us assume that the sequence “A, B, C, D,
E, F, G, H, I, J” was inputted to the LUMAKG memory and
the corresponding minicolumns were activated as shown in
Fig. 2. This sequence could represent a number of sentences
with all different words like the following sentence: I didn’t
really know how to cook these green plantains.

If the previously obtained inputs contained sequences that
used some of these words, then there will be synaptic connec-
tions between possibly different neurons in the corresponding
minicolumns. For instance, suppose the previous inputs to
LUMAKG memory contained the following sentences:

I didn’t really know this. Nuns really know how to cook
oysters. Don’t cook these green mushrooms.

Then the corresponding synaptic connections could start at
various locations in their minicolumns—as we can observe in
Fig. 2.

In order to modify the existing synaptic connections or
to introduce new connections while preserving the episodic
storage, we need to find a sequence of activated neurons in
these minicolumns that preserves the most significant episodes.
This is accomplished by following the existing associative
links to specific locations within each minicolumn.

We first identify which subsequences of the newly activated
minicolumns were parts of the stored episodic memories.
In Fig. 3, we show these neurons in the newly activated
minicolumns that already have synaptic connections to other

Fig. 3. LENs of the previously learned sequences of symbols.

consecutive activated minicolumns and were parts of previ-
ously learned sequences. If activated, they will predict the
activations of the corresponding postsynaptic neurons in the
previously learned sequences. We call these neurons linked
episodic neurons (LENs). In Fig. 3, we mark these LENs using
a darker shade.

Following the directed links from each LEN, we can
find related predictive graphs of minicolumns (PGMs). For
instance, in Fig. 3, we can observe three PGMs: A–D, C–G,
and G–I.

First, we find the PGM with the maximum number of
minicolumns and declare all its linked neurons as PA neurons.
Thus all linked neurons in PGM that contains minicolumns
C–G are PA neurons. In this way, we take advantage of the
previously stored episodic fragments, strengthening their joint
probability of activations.

If a smaller PGM has minicolumns that overlap with the
larger PGM, then its overlapping minicolumns are removed
from the PGM. For instance, PGM composed of A–D has
minicolumns C and D that are also a part of a larger PGM,
and thus this PGM is reduced to two neurons A, B. If after
reduction a PGM has less than two neurons, it is trivial and
does not define any PA neurons. When PGMs overlap, we need
means to determine where the new synaptic connections are
added to represent the new contextual relationship observed.
The process of removing overlapping minicolumns from
smaller PGMs helps to find the nonoverlapping sequences of
previously stored episodes and to determine where the new
synaptic connections are added. Although we could find the
nonoverlapping sequences of previous episodes by removing
the overlapping minicolumns from the larger PGM, doing so
can lead to fragmentation of stored episodes. Note that the
removal of overlapping minicolumns from smaller PGM does
not remove existing synaptic connections.

Similarly, the minicolumn G in the PGM graph G–I overlaps
with the larger PGM graph C–G. Hence, this PGM graph
(G–I) can only define two PA neurons in columns H and I.
Such overlapping PGMs can be merged by removing the
overlapping neurons from the smaller PGMs and adding new
synaptic connections from the predecessor PGM to a successor
PGM as illustrated in Fig. 4, where a predecessor PGM is the
one that has minicolumns whose activation precedes activation
of minicolumns in the successor PGM.

B. Establishing a Sequence of Linked PA Neurons

After merging of the overlapping PGMs, we may end up
with more than one sequence of linked PA neurons (based
on the linked episodes). Fig. 5 shows such a case in which
the previously discussed sequence A–J is just a subsequence
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Fig. 4. Merging of three overlapping PGMs. A new synaptic connections are
added from the end of the predecessor PGM (neurons A and B) to the first
neuron of the successor PGM (neuron C), and from the end of the predecessor
PGM (neurons C–G) to the first neuron of the successor PGM (neuron H).

Fig. 5. Longer sequence of activated minicolumns.

that follows another sequence K–R. Here, for simplicity,
we represent each sequence of the linked episodes by a single
predecessor–successor link with a double solid line.

To establish a sequence of linked PA neurons in all the
activated minicolumns that are needed in II.2 of the LUMAKG
algorithm, we follow the steps specified in the locating PA
neurons (LPANs) algorithm.

LPANs Algorithm:

1) Find the first minicolumn with a PA neuron. If no such
column exists, choose a neuron in the last minicolumn
with the minimum number of outgoing connections
(MNOCs) and treat it as a PA neuron. Name this first
minicolumn with PA neuron FPA minicolumn.

2) Starting from the predecessor minicolumn to FPA

a) Choose a neuron in this minicolumn that has a link
to the PA neuron in FPA and treat it as a PA neuron.

b) If no such neuron exists, choose a neuron in the
predecessor minicolumn with the MNOC neuron
and treat it as a PA neuron. This establishes a link
between the two PA neurons.

Repeat this step for the new PA neuron, selecting a neuron in
its predecessor minicolumn with the MNOCs and treat it as a
PA neuron, until no predecessor minicolumn is found.

3) Starting from the PA neuron in the first activated mini-
column, follow the path to the last connected PA neuron
in the input sequence and repeat this step until no
successor minicolumn is found.

a) If the successor minicolumn has a PA neuron, link
the two PA neurons and follow the path to the last
connected PA neuron.

b) If the successor is a UA minicolumn, choose an
MNOC neuron in this minicolumn and treat it as
a PA neuron. Link the two PA neurons and move
to the successor minicolumn.

C. Design Example

Let us illustrate this location of PA neurons by continuing
our example. In Fig. 5, the first minicolumn with a PA neuron

Fig. 6. New connection between the UA minicolumn L and a PA neuron in
the minicolumn M.

Fig. 7. New connection between UA minicolumn K and a PA neuron in
minicolumn L.

is M, so according to step 1 of the LPAN algorithm, we name
M the FPA minicolumn and move to step 2. In the predecessor
minicolumn L, there was no neuron that linked to PA in
M. Notice that although there was a link between the fourth
neuron in L and the minicolumn M, it did not link to a PA
neuron in this minicolumn, so it could not be used.

Following step 2.b of the LPAN algorithm, we choose an
MNOC neuron in the minicolumn L and treat it as a PA
neuron. The selected MNOC neuron in L is treated as a new
PA neuron. This established a new link between the two PA
neurons as shown by a dashed line in Fig. 6.

Next, the LPAN algorithm moves back to the minicolumn K.
Applying step 2.b of the LPAN algorithm again, we choose
a neuron in K with the minimum number of the outgoing
connections and link it to the PA neuron in the minicolumn L
as shown in Fig. 7.

Since there is no predecessor to K, according to step 3 of
the LPAN algorithm, we follow the path from K to the last
connected PA neuron in the input sequence which is the neuron
Q. Since the successor minicolumn (R) does not have a PA
neuron, we follow step 3.b of the LPAN algorithm and choose
an MNOC neuron in this minicolumn, and treat it as a PA
neuron. This establishes a new link between these two PA
neurons in Q and R as illustrated in Fig. 8, and we move to
minicolumn R.

Subsequently, following step 3.a of the LPAN algorithm,
we link PA neurons in minicolumns R and A and move to the
PA neuron in minicolumn I. We finish by applying step 3.b of
the LPAN algorithm, which will choose a PA neuron in the
minicolumn J and link the PA neurons in I and J as shown in
Fig. 8.

This completes the LPAN algorithm and at the same
time point II.2 of the LUMAKG algorithm. As a result,
we have a sequence of connected PA neurons from the
first to the last minicolumn activated by the input sequence.
Since there is no successor minicolumn to J, the LUMAKG
algorithm moves to III and modifies the synaptic weights
between all the established predecessor–successor neurons in
the input sequence. Their weights are modified according to
the ANAKG algorithm [11].
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Fig. 8. New connections between the PA neuron in Q and a selected MNOC
neuron in the minicolumn R. Additional connections are established between
the PA neurons in R and A and between I and a new PA neuron in J.

Fig. 9. Modified synaptic connections for the input sequence.

After application of the ANAKG algorithm to modify
weights between the selected PA neurons, we will get all the
updated links as shown in Fig. 9.

V. COMPARATIVE TESTS OF LUMAKG

We performed several tests to observe the efficiency
of learning, memory capacity, and learning resolution for
LUMAKG sequential memory, comparing them with similar
features of the ANAKG memory and LSTM. A single layer
LSTM network with 256 units was created using the Tensor-
Flow library [29] and was used for testing.

A. Test Preparation

The first test is used to compare the resolution of recalled
sentences using LUMAKG, ANAKG, and LSTM. To test
the recall resolution, the memories were self-organized on an
input file containing the text from The Children’s Book Test
(CBT) [30]. Note that special characters, such as commas and
periods, were discarded and not used in training the memories.
We read all sentences that were at least ten words long from
the database, providing us with over 19 000 sentences with
over 9000 unique words. The same sentences were used to
obtain LUMAKG, ANAKG, and LSTM memory structures
and their respective synaptic connections. After the three mem-
ories had been created, their associative memory properties
and recall resolution were tested and compared.

To compare how accurately the memories recall stored
sequences, we first trained the memories with the first ten
words of the sentences. Subsequently, the first six words from
each training sequence were used as an input to the LUMAKG,
ANAKG, and LSTM memories, and the original test sequences
were used as the desired responses. All three memories require
only a single presentation of the input data to learn. To observe
the effect of increasing the training set size, we started with
100 sentences and gradually increased this size to 10 000
sentences, in increments of 100 sentences for the first 1000
sentences and subsequently in increments of 1000. To illustrate
how a number of neurons in minicolumn affects the results,

three LUMAKG memory structures with minicolumn sizes 4,
8, and 12 were tested.

B. Network Response Quality Measures

A variety of heuristics and evaluation measures for
information retrieval and related tasks have been proposed,
for example, answer scoring and/or ranking [31], passage
retrieval [32], and evaluating search engines [33]. These
evaluation measures require the use of tools such as parsers,
and, consequently, are not well suited for evaluation of the
responses generated by the LSTM, ANAKG, and LUMAKG
memories. Consequently, here we make use of the Levenshtein
distance [34], and a new distance measure called RWP based
on the evaluation metrics from [35].

1) Levenshtein Distance Quality Measure: The quality of
results obtained from the LSTM, ANAKG, and LUMAKG
memories was first measured by comparing them with the
desired output using the Levenshtein distance [34]. Since we
are interested in sequences of words rather than individual
characters, the Levenshtein distance measured the number of
words that must be deleted, inserted, or substituted in order
to transform the source sentence to a target sentence. Each
word had a unique symbol in the associative memories, and
sequences of such symbols represented the output from each
memory.

The Levenshtein distance between two strings a and b (of
lengths u and v, respectively) is given by (3)

da,b(i, j)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max(i, j) if min(i, j)= 0

min

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

da,b(i−1, j) + 1 deletion

da,b(i, j − 1) + 1 insertion otherwise

da,b(i−1, j − 1) + 1(ai �=b j ) substitution
(3)

where da,b(i, j) is the distance between the first i and j ele-
ments of a and b, respectively, and 1(ai �=b j ) is an characteristic
function equal to 0 when ai = b j and equal to 1 otherwise.
Here, we represent each word in a sentence as a symbol and
in computing the Levenshtein distance measure between two
sentences, we compare two strings of symbols.

Test I used training and testing sentences as described in
Section V-A. We tested the responses of the networks to the
same set of inputs, and output sequences obtained by each net-
work were compared with the desired responses using the Lev-
enshtein distance. The larger the Levenshtein distance is, the
less similar stored and recalled sequences are, so this distance
can be used to compare the quality of the sequential memory.

Fig. 10 shows the mean Levenshtein distances for LSTM,
ANAKG, and LUMAKG memories as a function of the num-
ber of symbols used in the training data. The test results show
that the average of the mean Levenshtein distance between the
desired responses and those generated by LSTM and ANAKG
memory across all tests was 3.23 and 3.48, respectively, while
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Fig. 10. Plot of mean Levenshtein distances for the LSTM, the ANAKG
network, and the LUMAKG networks of different column sizes as a function
of the number of symbols.

Fig. 11. Plot of mean Levenshtein distances for the LSTM, the ANAKG
network, and the LUMAKG networks of different column sizes as a function
of the number of unique symbols.

that for the LUMAKG memory was 2.21, 1.65, and 1.30 for
column sizes 4, 8, and 12, respectively.

Since the used symbols may be repeated many times in
the sentences, the number of unique symbols (words) grows
slower than the number of all symbols used in training.
Fig. 11 shows the mean Levenshtein distances for the LSTM,
ANAKG, and LUMAKG memories as a function of the num-
ber of unique symbols used. We see the similar dependence of
the distances between stored and restored sequences as on the
previous figure. This indicates that as the number of words in
the memory grows, it is more difficult to restore the original
sequence. Thus, setting some recall standards will determine
the memory capacity.

The results obtained from LUMAKG were significantly
better than those obtained from both LSTM and ANAKG. The
performance of LSTM, while initially better than ANAKG,
begins to get worse as network size increases and reaches

similar values at 100 000 symbols presented. We can observe
that as the network grows in size, the quality of recall
expressed by the Levenshtein distance is lower. All types
of associative memories showed that they could provide a
reasonable output given a limited training data set. However,
LUMAKG has the promise to significantly increase both the
resolution and storage capacity of the associative knowledge
graphs and become a foundation for the semantic memory
capable of remembering episodes, making associations and
accumulating of knowledge.

2) Reciprocal Word Position: A challenge in evaluating
responses of associative spatiotemporal memories, like those
based on LSTM and ANAKG, is linked to the difficulty in
determining what the correct response is. Thus, the usefulness
of Levenshtein distance, a good measure of text similarity,
is limited. To address this problem, we designed a new distance
measure called the RWP.

The RWP measures the user’s effort in extracting the
desired response from the output generated by the semantic
memory. The RWP distance between two sequences a and b
is calculated as follows.

1) Compare the positions of all the words in the desired
output sequence (desired response) a with those in the
actual memory output sequence (obtained response) b

a) if the positions of a word in both sequences are the
same, the word gets a weight of 1;

b) if the positions are different by ‘n’ locations in the
tested sequence the word gets a weight of 1/(n+1);

c) if a word from the desired response does not exist
in the obtained response, it gets a weight of 0.

2) The RWP distance equals one minus the sum of the
weights of all the words in the desired sequence divided
by the maximum of the number of words in the desired
and actual sequence

dRWP(a, b)= 1−
∑k

i=1
1

|pio−pid |+1

(k, l)
(4)

where k is the number of words in the desired sequence a, l
is the number of words in the obtained sequence b, pio is the
position of the word i in the obtained sequence b, and pid is
the position of the word i in the desired sequence a.

1) [3)]The RWP distance satisfies the following conditions:

dRWP(a, b) = 0 ⇔ a = b identity of indiscernibles
dRWP(a, b) = dRWP(b, a) symmetry
dRWP(a, c) ≤ dRWP(a, b) + dRWP(b, c) triangle inequality.
The measure is normalized since the lowest value is 0 and

the highest is 1, and a lower value of RWP indicates a better
match between the sequences. For example, assume that the
desired output is “likes cold water” and the generated answer
is “cold water likes.” Then the second and third words from
the desired output are shifted by one position, whereas the first
word is shifted by two positions in the generated output, and
the resulting RWP distance is 1 − (1/2+1/2+1/3)/3 = 5/9.

The mean RWP measures for the LSTM, ANAKG, and
LUMAKG memories are shown in Fig. 12 as a function
of the number of symbols. The test results of applying the
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Fig. 12. Plot of mean RWP for the LSTM, the ANAKG network, and the
LUMAKG networks of different column sizes as a function of the number of
symbols.

RWP distance to the different memory outputs show that the
average RWP distance between the desired response and the
one generated by LSTM, and ANAKG memory was 0.81
and 0.87, respectively, while the average distance for the
LUMAKG memory was 0.58, 0.45, and 0.38 for column sizes
4, 8, and 12, respectively.

These results also show that the performance of
LUMAKG-based semantic memory is better than LSTM,
which is better than ANAKG-based semantic memory, and its
relative recall quality over both LSTM and ANAKG increases
as the column size increases.

C. Recall Quality and Memory Capacity

The third type of tests was to show the dependence of
the memory capacity on the number of neurons in each
minicolumn and the number of objects (individual words)
stored. The memory capacity can be established for a specific
level of the recall quality (RQL), where the recall quality for
the results obtained with the Levenshtein distance is defined as

RQL = mean
S

(
1 − DLs

max(Ls1, Ls2)

)
(5)

where DLs is the average Levenshtein distance divided by the
maximum length (number of words) of the stored and recalled
sentences; the average is taken over all the test sentences. The
RQL value is between 0 and 1, with 1 representing a perfect
recall and 0, a completely wrong recall.

We studied RQL as a function of the number of objects used
in sentences—objects are individual words and each repetition
counts as a new object. In general, the larger the size of the
associative memory is, the lower its recall quality is. In our
test, we set the recall quality threshold TRQ = 70% and tested
at which the number of objects stored RQL < TRQ to determine
the memory capacity.

Similarly, we may establish the memory capacity using the
recall quality based on RWP distance measure. Since distance
based on RWP is already normalized, we can define recall

Fig. 13. Plot of the mean (a) Levenshtein distances and (b) RWP, for
the LSTM, the ANAKG networks, and the LUMAKG networks of different
column sizes as a function of the number of symbols. The reference line at
recall quality threshold of 70% was added.

quality as

RQL = mean
S

(1 − dRWPs). (6)

There is a strict correspondence between the threshold value
set to establish the memory capacity and the distance measure
used. In addition, although the two distance measures look
similar, recall quality based on these measures are not.

For instance, from (5), it follows that a recall quality
threshold of 70% equals a mean Levenshtein distance of 3, but
this roughly corresponds to RWP distance equal 0.75 with the
recall quality threshold 0.25. Considering that RWP is scaled
between 0 and 1 it may be more convenient to specify memory
capacity based on this measure.

Fig. 13(a) and (b) repeats results from Figs. 10 and 12,
respectively. A reference line in Fig. 13(a) is used to determine
memory capacity for a Levenshtein distance equivalent to the
recall quality threshold of 70%. The test results based on
LSTM, ANAKG, and LUMAKG with minicolumn sizes of 4
show that the Levenshtein distance is less than 3 for networks
with up to 6075, 2820, and 35 230 symbols, respectively.

Similarly, the reference line in Fig. 13(b) shows that
LUMAKG networks with minicolumn sizes of 4, 8, and
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Fig. 14. Learning times of the LSTM, ANAKG network, and the LUMAKG
network of different column sizes as a function of the number of symbols.

12 have RWP less than 0.3 for networks with about 3290,
8995, and 16 000 symbols, respectively. Memory capacity
based on this RWP distance would be zero for LSTM and
ANAKG. To make them similar as obtained in the case of
the Levenshtein distance, we should change the threshold of
average RWP position to about 0.7, which correspond to recall
quality value of 30%.

In summary, the results show that the recall quality and
memory capacity of LUMAKG networks increases as the
size of minicolumn increases and this is better than ANAKG
network. Recall the quality and memory capacity of LSTM is
slightly better than ANAKG but not as good as LUMAKG.

D. Computational Complexity

The fourth type of tests was performed to determine the
computational complexity of LUMAKG memory in com-
parison to LSTM and ANAKG memories. We tested the
time needed to create the associative memory as a function
of the number of objects. The results presented in Fig. 14
show the learning time for LSTM, ANAKG, and LUMAKG
as a function of all objects in the data set. We see that
computational cost for LUMAKG is between 60% and 200%
higher than for ANAKG (depending on the minicolumn size),
whereas that for ANAKG is about 6% higher than LSTM.

The overall increase in the simulation time shows less than
the quadratic relationship to the size of the training data
set, which allows storing a large number of sequences in
LUMAKG memory. In addition, an increase in the simulation
time due to an increase in the number of neurons in each mini-
column is less than linear. Again, this is a desired property of
the developed method, since minicolumns in the human brain
contain upward of 100 neurons each. Tests were performed on
a general purpose computer (i7-4790, 3.6 GHz, 16-GB RAM).

The number of neurons in LUMAKG memory is k times
larger than in ANAKG memory, where k is the number of
neurons in each minicolumn (in our tests k = 4, 8, or 12).
However, the number of synapses does not grow as fast since
the number of associative links between all neurons corre-

sponds to the number of transitions between various words.
These transitions are just spread over the larger number of
neurons. Although the training time is greater for LUMAKG
than for ANAKG due to the larger number of neurons and the
need of finding predecessor and successor for each element
of the training sequence, the quality of results points to better
properties of LUMAKGs, which make them more suitable to
develop short-term associative memories.

One way of addressing the issue of training time would be to
consider the requirements of the application (e.g., performance
vs. computational time requirements) and appropriately deter-
mine the minicolumn size. To do this effectively, the above
tests need to be repeated, with different data sets and with the
randomized order of sequences. There are also some imple-
mentation level options for addressing the issue of training
time. These include parallelization of the algorithms, and the
neuron model to efficiently use multiple cores or CPUs, offload
operations to GPUs, and optimization of libraries used.

VI. CONCLUSION

LUMAKG memory supports continuous online learning,
self-organization without supervised learning, context-based
predictions, and is capable of recognizing time-domain
sequences correctly. In our work, we build on two power-
ful mathematical models of associative memories HTM and
ANAKG. Both methods were developed and tested success-
fully on sequential data, self-organizing the memory structure
and extracting associative information. Our work combined the
two models taking advantage of what they offer best—the large
capacity of the memory as demonstrated in [12], [26], and [36]
and auto-associative properties with fast implementation in
pulsing neurons as demonstrated in [11] and [14]. In our work,
each column represents a separate symbol or feature, and thus
the number of columns in the network equals the number of
distinct symbols. In ANAKG network, the number of synaptic
connections equal to a number of pairs of presynaptic and post-
synaptic neurons in the training sequences. In LUMAKG, this
number is only slightly larger, since columns are connected
considering the broader context of each succession.

Test of recall quality, memory capacity, and computational
complexity of LUMAKG networks were performed and com-
pared to similar tests of ANAKG and LSTM memories. The
effect of varying the number of neurons in minicolumns
on memory performance was also studied. LUMAKG shows
better ability to recall sequences stored in the memories
than LSTM or ANAKG. Using the Levenshtein distance
and another quality measure, we also show that LUMAKG
memory has higher capacity and better resolution for short-
term memory recall. Future work will extend LUMAKG to a
distributed representation of all symbols stored in the memory
which will significantly increase its storage capacity. Further
studies will also be performed on different types of input data,
for example, image and audio, to obtain an assessment of the
network properties in different applications.
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