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ABSTRACT 

Tolerances of electronic circuit parameters play an 
important role in our judgement of circuit functionality. 
They must be considered both at the circuit design and 
testing stages. This paper discusses a problem of tolerances 
in a symbolic network analysis. Using topological analysis 
combined with operations on discrete random variables, we 
can predict behavior of a circuit with toleranced parameters. 
Automatic simplification of symbolic network functions is 
used to facilitate operations on discrete variables 
representing network parameters. Our discussion is 
complemented m'th illustrative ezamples. 

INTRODUCTION 

Due to imperfections of technological processes, 
parameters of fabricated circuits differ from the designed 
values. Consequently, variations of circuit parameters 
change the expected circuit response. Predicted chan es 
must be compared against the design requirements in orier 
to qualify a design' as a working one. Our knowledge of 
statistical properties of the circuit response can be used to 
determine economics of circuit fabrication in terms of a 
production yield or a cost per working unit. - 

Various tools are used to perform tolerance analysis. 
We can classify them into two groups. The first group 
contains deterministic methods like small and large change 
sensitivity analysis, and worst case analysis. However, 
these methods are not very accurate and cannot 
accommodate real probability density functions of the 
network parameters. The second group contains statistical 
methods like Monte Carlo analysis, analytical method or 
moments method. Monte Carlo method is very popular 
and gives results of good accuracy [I]. Its drawback is very 
high computational cost caused by repetitive analysis of a 
circuit with parameters statistically varied. Analytical 
method, which determines probability density function of 
the circuit response analytically, is very com lex and until 
now is limited to very simple or special casesp2]. Moments 
method, which expands circuit transfer function in Taylor 
series, is relatively fast but not very accurate [3]. A 
compromise based on the generalized quantile arithmetic 
was-proposed by Glesner el al. [4]. This last method gives 
results comparable to Monte Carlo method in time which is 
two orders of magnitudes smaller. 

In our paper we combine Glesner's approach with the 
topological analysis [5 ] ,  where tolerances of all network 
parameters can be represented. Hierarchical topological 
analysis can be performed for large circuits in time 
comparable to numerical analysis [6,7]. Both direct and 

hierarchical topological analyses may face a problem of a 
large number of terms in topological formulas. In the 
following section we discuss how to ease this problem by 
simplification of symbolic network functions. Then we 
discuss tolerance analysis by discretization of random 
variables. 

SIMPLIFICATION OF NETWORK FUNCTIONS 

Symbolic form of a network function is often preferred 
over numerical results a8 it gives a designer better insight 
to the effect of network parameters on the network 
function. However, this is hardly true if the number of 
components in symbolic formula increases. Number of 
te rm can become large in networks having as little as 5-6 
nodes. A practical solution to this problem in hand 
analysis is to neglect some of the less important 
parameters. However, this approach can only be used by 
experienced designer, who knows which parameters play 
dominant role in different frequency intervals. On the 
other hand, the process of simplification of symbolic 
network function can be performed automatically using 
topolo 'cal analysis. In this section we describe such 
simplifcation for the direct topolo 'cal analysis, however 
similar approach can be used in azerarchical topological 
analysis. 

A symbolic network function obtained by topological 
analysis is a multivariable rational function and both its 
numerator and denominator can be sorted according to 
powers of complex variable s: 

M(s,y) = si Wi , 
1 

where Wi is a polynomial of network parameters y: 

w.= c w t =  c n y e .  (2) 
t€T t cTe€ t  

and a network parameter ye may be a symbol or a 
numerical value. Let us consider the following example. 

Example 

An equivalent model of a simple transistor circuit is 
shown on Fig.1. Symbolic voltage transfer function of the 

(3) 

N(s,y) and D(s,y) can be enerated using a direct 
topolo ical analysis program 101. Let us assume that 
symbofic parameters have the following nominal values: 

ISCAS '89 
810 

CH2692-2/89/0000-0810 $1 .OO 0 1989 IEEE 



2 

Fig. 1 A simple transistor circuit. 

G=0.1 mS, G1=0.5 mS, C=10 nF, Cb=50 pF, Ch=3 pF, 

Analyzing the symbolic formula, we have observed that 
components having the same power of complex variable s 
differ by several orders of. magnitude. For example 
components of denominator, which are multiplied by 8, 
vary from 7.53-24 for the term ChG$b up to 83-12 for 

gbb'lo d, gbe=0-8 d, gk'l@s,b=80 mS,G2=2.5 /&a 

g b b b  

In order to simplify further analysis we propose to 
replace the components satisfying condition 

wt c Ai (4) 

Ai = c Wi (5) 

A i =  cmax(lwtl) (6) 

by their nominal values, where the truncating level Ai is 
determined either from 

or 

and c ( c <c 1 ) depends on the desired accuracy of 
symbolic expression. 

Thus, taking into account numerical a d  symbolic 
parameters separately, we obtain components of symbolic 
formula in the following form: 

Wi8W0+ c w n ye, 
t€T, td eEt, 

(7) 

where wo is the sum of all components with no symbolic 
terms and nominal values satisfying (4), w is the 

numerical part of a significant component, and t, is its 
symbolic part. 

td 

In this simple example number of symbolic terms in 
numerator and denominator was reduced from 62 to 24, 
however much larger reductions exceeding 99% are 
observed in larger networks, particularly when circuit 
parameters vary several orders of magnitude. 

symbolic network functions has the following properties: 

- a symbolic function obtained is valid for all 
frequencies, which is an advanta e over simplifications 
introduced by a designer, usualfy valid in a limited 
frequency range [8], 
symbolic parameters are present only in those parts of 
a formula where they are significant, again this is in 
contrast to designer sim lification where some 
parameters will be removed %,m the circuit model as 
nonsignificant, 
formula is exact if network parameters assume their 
nominal values, 
by appropriate selection of f ,  accuracy of a symbolic 
function may be kept as high as required. 

Automatic simplification of network functions neither 
accelerate topological analysis nor allow to increase the size 
of a circuit analyzed. This problem has to be resolved by 
using effective to logical analysis techniques like these 
TFntec i  in [6,7pP However, automatic simplification 
mhtates further work in applications, where the 

knowledge of symbolic functions is essential. One such an 
application is tolerance analysis by discretization of random 
variables, which is discussed in the next section. 

The proposed algorithm of automatic simplification of 

- 

- 
- 

TOLERANCE ANALYSIS 

discretization of random variables introduced in E wit[ 
topological analysis. We dim= properties of such 
approach and present results of computer simulation. 

operations on Discrete Random Variabla 

In this section we combine tolerance anal is b 

Let X be a continuous- random variable with 
Variable X will be probability density function v(X). 

approximated by N-point discrete random variable X [4] 

= [ 9 3 9 9 xN 1 
with probability density function 

P(X) = I P(X,), P ( q '  * * a  1 P(XN)I (9) 
Let us assume that circuit parameters y1,y2,...,yn are 
described by N-point discrete random variables 
Y1,Y 21...,Yn. Assume also that we know symbolic form of 
a network function 

f = f(Yp Y2' a.. 9 Y,, w 1 (10) 
Probability dpsity function of the random variable 
F = f(Y1, Y2, ... ,Yn, w ) will be approximated by a 
discrete random variable F = f(Y1, Y2, ... ,Yn, w ). 

Evaluation of F is much easier than evaluation of $ 
due to operations on discrete random variables. Basic 
operations needed to evaluate function f are: addition(+), 

811 

- -  

rurtiicr imvrrnarlvn can ~e oDraineu mom ut-. w.  nennetn JenKins. -~ 
(217) 333-4789 



subtraction( -), multiplication( *), and division( /). Symbol 
(0) is used to represent any one of these operations. 

Let U, V, and Z be discrete random variables, and let 

z = u o v  (11) 

Probability of combination 

z.. = U. 0 v. 
1J 1 1 (12) 

is described by P-dimensional discrete probability density 
function 

"ij = (1 - IPUVI) PU(Ui) PV(Vj) + IPUVl *,(U,,Vj), (13) 
i,j=1,2, ... ,N. 

where pUv is the correlation coefficient of variables U and 
V. and 

i ~~- 
for i # j  

pu(Ui) for i=j 

w ( V j )  for i+j = N + l  

PUV> 0 

p u v <  O 
for i+j # N + l  (14) 

Having all values Z.. and corresponding probabilities r.. 
1J 11 ' 

pairs (Zij, a..) are ordered in increasing values of Z.. and 

resulting N2-point discrete vatiable is reduced to an 
N-point discrete variable 

1J 11 

z = [Z,, Z2' ... J n 1  

dZ) = [P('1)7 P(z2)l "*  ,p(zN)] 

(15) 

with probability density function 

(16) 

While the correlation coefficients of circuit parameters can 
be determined from their probability densify functions 
(assumed to be known), further analysis requires 
determination of covariances and correlation coefficients of 
discrete variables Z, described by (15). Correlation 
coefficient of two variables Z, and Z can be calculated 
from 

P 

(17) 

where covariance of Z, and Z is 
P 

n cov(ZulYi) cov(Z ,Yi) 
COV(Z,, z ) = c (18) 

P i = l  U2Yi 
and 

cOV(ZA, Yi) = (19) 

c0V(ZY,Yi) + cov(Z ,Y.) 
P I  

cOV(Z,,Yi) - c 0 V ( Z  ,Y.) 
P '  

ZP cOv(Z,,Yi) + Z, cov(Z P 1  ,Y.) 

for ZA=Zy+Zp 
for ZA=Zu-ZP 

for ZA=Zu*ZP 

zP c0V(zy,yi) - Z, COV(Z~,Y~)/ Z: for zA=z JZ,, 

where Z is the expected (nominal) value of a variable Z . 
P P 

Standard deviations needed in (17) can be obtained from 

(20) 

If the tolerance analysis is performed for specific 
frequencies, then the network functions are described by 
complex variables. In this case we may use complex 
random variables with operations performed according to 
the rules for complex variables [9]. 

Topological Approach 

In what follows we discuss tolerance analysis based on 
direct topological approach, in which a circuit is 
represented by its unistor graph. Such approach is limited 
to analysis of small circuits only, but the results are 
applicable to hierarchical analysis suitable for large circuits 

At this point let us assume that topological analysis 
has been performed with automatic simplification of 
network functions, yielding a transfer function described b 
the ratio of polynomials M(s,y) (1). Polynomials Wi in (1J 
are described by (7). If we substitute parameters ye by 
their discrete random variables Ye then we will obtain 
formulas for the random variables describing terms in 
numerator and denominator as well as the transfer 
function. Let discrete variable Ui represents Wi 

[6171. 

ui = W O +  c w n Ye.. 
t€Ts td e€ t s  

It may happen that the same variable appears more 
than once in ts (21). This may be caused by a tree 
branches having the same weight associated with graphs of 
some active elements. To indicate possible repetitions of 
variables, (21) is replaced by 

(22) u i = w o +  c w n Y e .  s, 
ETs td ec t r  

where tr is a subset of t, representing distinct random 
variables Ye with s, > 1. 

Covariance of Ui and Ye can be calculated from 

cOV(Ui,Ye) = (23) 

if e $  t r  else 

and standard deviation 
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After all Ui are found (both for the terms in numerator 
and denominator) the network function will be obtained as 
a rational function of complex variable s with coefficients 
represented by discrete random variable. Number of 
operations needed to obtain all coefficients is equal to 

Nu = card(T) (V - k) (25) 
where card(T) is the cardinality of the set of k-trees T,  v is 
the number of graph vert ices. Nu is large even for small 
networks and in direct topological analysis the size of 
analyzed networks is limited to 10-15 nodes. Using 
topolo 'cal analysis with automatic simplification of the 
s ymbofc network functions reduces computational efforts 
with slight decrease in accuracy of the results. 

Results of Computer Simulation 

Fig. 2 shows an active filter circuit analyzed by 
pro am DISTOR4 [lo]. DISTOR4 implements tolerance 
an$& with automatic simplification of symbolic network 
functions obtained by direct topological analysis of a circuit 
represented by its unistor y p h .  Nominal value assumed 
in tolerance analysis are as ollows: Ra=Rb=Rc=RrlOkrZ, 
Re=lMR, Ca=Cb=2nF. All circuit parameters have 
normal distribution with tolerances t = 3a = *2%. Results 
of tolerance analysis of the voltage transfer function are 
illustrated on Fig. 3. Curves a represent the case where 
circuit parameters were uncorrelated. Curves b show the 
results for all capacitors and all resistors fully correlated. 
Curves c show the case in which ideal operational 
amplifiers were replaced by voltage controlled current 
sources with input resistance 40 kR, output resistance 
lOkR, and mutual conductance 1OmS. Parameters of 
operational amplifiers in case c have n o d  distribution 
with tolerances *lo%. 95% of all circuit responses will be 
placed between the two curves representing each case. 

Fig. 2 Active filter circuit. 

In order to compare exact and simplified analysis, case c' 
was also analyzed with automatic simplification of network 
transfer function. Original symbolic transfer function 
contains 743 terms while the simplified function has only 94 
terms. In both cases predicted response is almost the same 
and is described by the curve c. Time used for the 
symbolic analysis was reduced from 13.099s to 3.238, and 
time for the tolerance analysis was reduced from 65.573s to 
17.709s. 

Tolerance analysis by discretization of random 
variables can be performed in larger networks with the help 
of hierarchical topological analysis [6]. As was discussed in 
the previous section, time needed for the tolerance analysis 
is proportional to the number of terms in topological 
formula for the transfer function. In the upward 
topological analysis [6] number of terms increases almost 
linearly with the network size. 
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Fig. 3 Results of tolerance analysis of 
the voltage transfer function. 
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