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ABSTRACT

The paper presents a method designed to test
nonlinear circuits using sensitivity approach. Several
excitation levels and signal frequencies are used to improve
system testability. This method is illustrated using
piecewise linear models, however, it can be generalized to
handle other nonlinear characteristics. QR algorithm is
used to select test points and ensure numerical stability. In
case of sufficient number of measurement points a linear,
fault verification technique can be also used.

I. INTRODUCTION

Testing and calibration of electronic devices and
circuits must take into consideration all practical aspects of
both the test itself and the post test operations. The
number of nodes (pins) available for the test is usually
limited, test costs increase with the number of selected test
points, and measurement errors limit the accuracy of the
element identification. Post test operations include
computer—aided solution of the element identification
problem or the numerical evaluation of predicted variations
of the circuit response.

Using the design of experiments approach or other
optimization techniques, one can maximize the accuracy
with a given limitation on the number of tests. One of such
practically acceptable optimization techniques [1] is based
on the QR algorithm, suitable for efficient test point
selection in a large circuit.

Most of the practical systems are nonlinear and can be
handled through an appropriate linearization of system
equations. For large nonlinearities, one can diagnose the
system by using piecewise linear approach and test it under
small signal sinewave excitations. Recent papers [2] and (3]
discuss the problem of nonlinear fault diagnosis through a
linear fault verification process. In both papers, the number
of test nodes have to be greater than the number of faults
and a number of combinations have to be checked in order
to locate and verify faults. Nonlinear elements could be
identified through their values at the system operating
point.

The main objective of this paper is to present a
method, which can be used for fault diagnosis of nonlinear
circuits with small variations of circuit parameters.
Characteristics of nonlinear elements can be identified
either directly or through a piecewise linear approach with
different DC excitation levels. An effect of nonlinearities in
network elements on the rank of the system sensitivity
matrix is studied. It is shown that the presence of nonlinear
elements in the system facilitates fault diagnosis problem
by providing an additional information at the measurement
points.
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1I. FAULT DIAGNOSIS EQUATIONS

Let us consider a nonlinear network described by the
nodal equations. Formulate the system function:

fv.p) = Aip(AT v) - iy (1)

where ib(ATv W= ib(vb) represents the element equations
(branch currents), v, and v, represent nodal and branch
voltages respectively, A is the incidence matrix and j,
represents the nodal current excitations.

For the nominal values of the system parameters p at
a given DC operating point we have

f(v,,p) =0. (2

In our analysis we assume that the system parameters p are
close to their nominal values. The purpose of the fault
diagnosis is to find deviations Ap=p—p0, which characterize

changes in the element equations. Linear elements are
described through their admittances, therefore only one
parameter is required to identify each linear element.
Nonlinear elements have characteristics described through
several parameters p; (e-g. iy =D exp(plvb) + p2), 80 one

nonlinear element may require identification of more than
one value in order to obtain its characteristic.

Let us assume that the excitation currents do not
depend on the network parameters. The sensitivity matrix
at the nominal point can be determined by taking
derivative of (1)

ai v i v i
A(WEAT%E+Wb) = Y, (vyp) 55 + A%b=o.
N ®)
Solution of this equation w.r.t. %—“ yields
v i
= YA 3p_b . (4)

di
Notice that b is calculated at the nominal point and is a
function of both voltage and parameter values. To obtain

Bp_n’ an analysis similar to the adjoint network approach
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can be conducted. The admittance matrix YIl have to be

updated for each new operating point since it is a function
of the nominal solution. Changing operating points of the
system is equivalent to setting the element admittances to
new values.

Fault diagnosis of the nonlinear equations is conducted
as follows:

1. Set DC excitation to a specific value and solve
nonlinear equations to obtain the nominal operating
point.

2. Use a linearized model for the purpose of small signal
analysis and calculate voltage responses at the
measurement points.

3. Use the difference between the measured and the
calculated voltages to formulate the fault diagnosis

equations
Ap _ Av
S P - v ? (5)
where Sij‘ S is as follows:
v. p.
—_17]

4. If additional fault diagnosis equations are needed go to
Step 1, otherwise solve (5) to obtain deviations Ap.

A special case of the discussed method is obtained
when the nonlinear elements have piecewise linear
characteristics. This case may serve well as an illustration
for the proposed approach, and some general observations
are easier to be discussed while illustrated in the piecewise
linear network.

III. PIECEWISE LINEAR FAULT DIAGNOSIS

In the case of piecewise linear characteristics the
differentiations of element equation needed in (4) produces
several discrete values of the element admittances and the
associated current sources. Note that the nodal approach
limits the type of nonlinear resistors to the voltage
controlled characteristics. This limitation can be easily
removed by using the modified nodal approach. The nodal
approach has been chosen only for the purpose of
simplicity.

Test equations

Consider for example an element whose v—i
characteristic is shown in Fig. 1.
. ib(vb )
13 L
Sl slope G 4
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iyt -

Fig. 1 Characteristic of a piecewise linear element.
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In each interval of branch voltages, branch current is
described by a function

ib(vb) =i+ Gy forv,_ <vpsve, (7)

80 its derivatives are

ai

di
b_ and EG% =v,  (®

a
#=Co 7=
b ¢ c
If the element is located between nodes i and j, then
v
_ N n. i ined in the
V= Vi Vy Its derivative '('KT; in (4) will be obtained in
similar way to the sensitivities in the linear network, in
which Y;l is calculated with values G c substituted for each
nonlinear element. We have

av 6vn a a
m%:(v?’—v?‘)(vi—vj) and m—c=—(vi—vj). 9)

System testability

To study properties of the sensitivity matrix we
represent a measured voltage v q in the symbolic form

i<y W) <jek ! (10)

v =
! .G ..G.G. by G:G:Gp+-- -
b0+)i:b1G1+zi: Ejbl]GlG]+§; Ejgk ijk i)k

h0+§hiGi+E Lh.GG+L L h.jkGiGij+- ..

where each ht(hO’ h,, hij""’hijk) is a linear combination of
(n+1) current sources if there are 7 piecewise linear
elements in the circuit.

= i veedai oo i 1
hy=agly + agig +o o agd gt tac, (11)

Coefficients ag and bt depend on the values of linear

elements, i cl""’i e are the cut—off sources from piecewise

characteristics, and J s is the current excitation.

The output voltage v_ will be different when the

nonlinear element values (admittance or cut—off current)
change. Assume that the number of voltage measurements
is m, the upper bound on the number of independent
measurements can be estimated by using the result of [5]

m
R, =T-1 +q§1Tq, (12)

where T and T _are the number of nonzero coefficients in

the denominator and numerator of v q respectively. From

(11) and (12), we get

n
TS

=2
, ) ,

and T, <927, (13)
1 q
s0
— ofl_ * % ol
Ropax=2-1+m*n*2%. (14)



Testability of the circuit can be estimated by the rank
of the sensitivity matrix S of the system equations. The
effect of nonlinearities in the nonlinear network on the rank
of S is similar to that of multifrequency measurements in
the linear reactive network. The upper bound on the rank
of the sensitivity matrix of the system can be approximated
by R, in (14). In the piecewise linear approach, not all

values will be attained independently, therefore the rank of
the sensitivity matrix is lower than (14).

Sensitivity matrix

In order to obtain additional equations, voltage
measurements are taken at the same test nodes under
different DC excitation levels and different frequencies.
Since the voltage measurements are taken at different
rgfions of the piecewise characteristics, this method is
called the multiregion measurements test.

Let Agh 0 be the vector of deviations of linear
elements from their nominal values and A(.}[,” AI[ the

vectors of deviations in nonlinear segments description
(changes in i o and G o in each segment for each nonlinear

element). Change of the region causes the number of
unknowns to increase as new values for AG ¢ and Al ¢ have

to be added. However, if the number of frequency
dependent measurements at each region is larger than the
number of added variables, then we gain additional system
information. In such case we will be able to evaluate all the
unknowns.

Let 1 be the number of regions and s be the number of
segments. The sensitivity matrix has the following pattern

AGlin AG1A11A62A12. . .AGSAIS-
% Y wy
s= : wy w (15)
Example

Consider the nonlinear circuit shown in Fig. 3. The
equivalent circuit is shown in Fig. 4 and the characteristics
of the piecewise linear elements gland g, are given in Fig.

5. Voltage measurements are taken at the nodes 1,2 and 3.
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Fig. 3 An nonlinear circuit
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Fig. 4 The equivalent circuit
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Fig. 5 The characteristics of piecewise linear elements.
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Each piecewise linear element has two segments and
the space is divided into four regions as follows:
r; (segment A and C): v3< 1.0 Vand v4< 0.5 V;

1, (segment B and DY): v3> 1.0 Vand v,> 0.5V,
I3 (segment B and C): v3< 1.0 Vand v,> 0.5 V;
Iy (segment A and D): v3>1.0Vandv,<05V.

The operating point can be moved from one region to
another by changing the level of the DC current excitation
(r): J==2.0 A, 1y: J=3.0 A and rg: J=15.0 A). At each

region , a small AC signal is applied at two test
frequencies: f1=0.075 Hz and £,=0.01 Hz.

Assume that the deviations of element values D
(Ap/p) are small (0.5% — 23%). The QR algorithm was run
on the obtained sensitivity matrix (15) to select 14 test
points. Then the element deviations were computed by

solving (5). The results of computer simulation are listed in
Table 1.

Table. 1 Computer Results

element computed D ¢ actual Da AD=D c_D a
1 61 -0.00973 -0.010 0.00027
2 G2 0.00447 0.005 -0.00053
3 63 -0.02129 -0.020 -0.00205
4 G4 -0.01070 -0.010 -0.00069
5 €5 0.00784 0.010 -0.00216
6 (€6 -0.02205 -0.020 -0.00205
7 Ga -0.05150 -0.050 -0.00150
8§ 1Ia 0.22660 0.226 0.00060
9 Gb 0.01986 0.020 -0.00014
10 Ib -0.01973 -0.020 -0.00150
11 Gec -0.01069 -0.010 -0.00069
12 Ic -0.01070 -0.010 -0.00070
13 Gd 0.00444 0.005 -0.00056
14 1Id 0.00435 0.005 -0.00065




IV. LINEAR VERIFICATION METHOD

In a special case when the number of measurement
points exceeds the number of faults in the circuit (m>f)a
linear verification technique similar to [2] can be used. Here
we show that in order to identify faults in nonlinear
elements described by a piecewise linear characteristic we
do not have to set up additional test points. Both the slope
and the current cut—off values can be evaluated with no
additional requirements for the verification technique.

Let ¢ denote the region (linear combination of
segments) in which the network N, operates. The nodal

equations of N ¢ obtained for the nominal element values
(16)

If the network N, is perturbed to (N [G-AN l) with the
same excitations we obtain

have the form
YZV£= I+ Il'

Yo+ AYe)(V[+ AV£)=I+IZ+ Al,. (17)

Subtracting (16) from (17) yields

YAV AY V)= ALy, (18)
where '

V=V AV,. (19)
Let

YAV, = Al (20)
(18) becomes

Al = Al,- AY,V, . (21)

Al ¢ represents the changes of the current sources due to the
changes of nonlinear elements only and AY Zv'l represents

the changes of the nodal currents due to the admittance
changes of both linear and nonlinear elements. Assume that

only f elements of AI are nonzero (i.e. AI:AIf) and we
measure the voltage response at m nodes (m 2 f). From
(20) we have

m _ f
AV = meAI . (22)
where .
me = (YK )mf‘ (23)

At this point the fault diagnosis equations (22) can be

solved using the voltage measurements V™ and the verify
and test approach as in [5]. As a result of the fault

diagnosis we obtain AI'. Using A in (20) for Al we can
evaluate AV, and therefore V'[.

The faulty elements in the region £ will be identified if
AY , and Al g are evaluated. To obtain additional equations

without changing the test nodes and the excitation nodes,
additional measurements are taken at the same test nodes
under a different DC excitation level. Values of the applied
excitations have to be chosen to keep the network operating
in the same region (say the region £ in this case) so that
AY, and Al will not change. The additional equations are

Aljgy = Aly=8Y, Vigg) - (24)

[6] C.S. Lin, Z. F. Huang and R. W. Liu,

Combining (21) and (24) we have two sets of equations
which can be used to find AY, and Al,

Solution of (22) gives us changes in the nodal current
while (21) deals with branch currents and admittances.
Other approaches directed towards the branch fault
?iagxiols)is rather than the nodal fault diagnosis are possible
see [6]).

V. CONCLUSIONS

The paper presents a sensitivity based method to test
nonlinear circuits with small variations of element
parameters. The basic notations and results discussed in
the paper refer to the piecewise linear description of
nonlinear elements, where we assume that each nonlinear
element can be approximated by a specified number of
linear segments. The purpose of this representation is to
simplify the discussion on the fault diagnosis.

The method can be generalized to the case where
nonlinear elements are described by any function on the
voltage—current plane. If such a function is uniquely
characterized by a set of parameters, then this nonlinear
element is diagnosed when parameters are identified. In the
particular case of a piecewise linear characteristic we need
to identify two parameters per segment namely the slope
and the current cut—off value.

We have illustrated this approach with an example in
which all linear and nonlinear elements were identified. In a
case when the number of measurement points exceeds the
number of faults a linear verification technique can be used.
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