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ABSTRACT

This paper presents a new strategy in testing of large,
analog circuits. A tested circuit is partitioned at nodes were
the voltage measurements are taken. Test equations are
formulated on the basis of Kirchhoff's current law
equations at the partition points. This results in the
Jacobian matrix with a sparse block structure. The test
points selection and the element evaluation can be
performed in parallel, reducing computation time and
enhancing the test performance.

L. INTRODUCTION

Fault diagnosis and calibration of analog circuits are
related. When the changes in elements are small, a
relationship between measurement deviations can be
expressed through the sensitivity matrix. With a sufficient
number of the test points all elements can be evaluated.
This allows one to diagnose the faulty circuit or calibrate a
working one tuning its elements to the desired settings.

A popular approach used in testing and calibration is
to excite a tested circuit with sinewave excitations and
measure deviations of its steady-state voltage responses
from their nominal values. By changing frequency,
excitation and measurement points, a sufficient number of
independent measurements can be produced. As a result an
independent system of test equations based on the
sensitivity matrix can be formulated. Discussion about the
effect of the network topology, type of its elements and test
points on the rank of the sensitivity matrix can be found in
ix;e]ve[rﬁl p::lp[eé‘)r]s addressing problems of network testability

, [2] an . :

Analyzing the sensitivity matrix with the help of the
QR algorithm, one can select a sub—optimum set of test
points, to evaluate circuit elements with minimum
computational effort and high numerical accuracy as
reported in [4]. Using the same technique, an effect of
measurement errors and element tolerances can be studied
with sufficient statistical confidence.

The main drawback of the sensitivity based method is
its relatively high computational cost. Each transfer
function is sensitive to variations of every network
parameter, which causes the sensitivity matrix to be a
dense matrix. This makes numerical calculations to be
expensive in the case of large networks. In addition, higher
requirements for the computer memory, limits the size of a
network that can be effectively handled.

The main purpose of this paper is to present a method
without these deficiencies. A network is partitioned into
subnetworks and the voltage measurements at the partition
points are used as discussed in [5]. The system test
equations are formed based on Kirchhoff's current law
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(KCL) equations at the test points. As a result the
obtained Jacobian matrix is a sparse matrix. The test
points selection can be implemented by performing the QR
factorization within each subnetwork in parallel. Both the
parameter deviations and the testability of each element
can be obtained locally. Off-line and on-line computations
are largely reduced.

II. NETWORK DECOMPOSITION

In this section the basic equations of the proposed
method will be outlined. System test equations for the
network partitioned at the measurement points are
formulated and the Jacobian matrix is derived.

Network Decomposition

Let n+1 be the number of nodes of a network N, m be
the number of measurements nodes ( or external nodes ), i
be the number of internal nodes, and e be the number of
external current excitations. ]

The nodal voltage equation for the network is

AR O

Label the external nodes first and then the internal nodes,
in which case the nodal admittance matrix is

Y Y
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The corresponding external (shorted) admittance
matrix can be written as follows:
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Y

~mm

3)

m=

The network N can be divided into k subnetworks
connected by the nodes of decomposition as shown in Fig.
1. There should be no mutual coupling between any two
subnetworks and the nodes of decomposition should be
chosen from the set where voltage measurements are
performed.

g

Fig. 1 Subnetworks of N
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If the subnetwork S o has m " measurement nodes and
i, internal nodes, the corresponding external (shorted)
admittance matrix can be written as follows:
Ly, | fore=12k, (4)

-m i -i i -i
dalda e

Y = -Y Y,
-m,” -mm,

Equations (4) can be computed in parallel and the
external admittance matrix Y  can be obtained by adding

different Y, in the block diagonal form as shown
a
r 1

Ym
1

Y= Ty G

Ym
"k

System Test Functions and Test Equations

According to Kirchhoff's current law (KCL), the nodal
equations at the external nodes are

Yo VYm=In > (6)
where Y is the (mxm) external admittance matrix, V m 18

the (mxe) external voltage matrix which can be obtained
from measurements, and I  is the (mxe) external current

n;a‘.jtrix, which contains excitations applied at the external
nodes.

Let X be a vector of p elements in the network. It is
known that the external admittance matrix Ym is a
function of element values

Y=Y (X0 )

Define sums of currents at external nodes as the
system test functions

F(X) = vec [ Y, () V=1 ] - ®)

According to Kirchhoff's current law the sum of
currents at any node is equal to zero
FX') =0 . ®)

*
where X indicates the set of elements in the faulty circuit

in which the measurement vector V m Was obtained. To
*
indicate voltage dependence on X explicitly we may refer

*
toV  as V(X))

Assume that the deviations of element values from the
nominal values )50 are small. The Taylor expansion can be

used to produce
*
FX)Z F(XO) + VXF(X) AX . (10)
W) =1 = x=xy
Denote J to be the Jacobian (or sensitivity) matrix
I=Vy F(X) . (11)
The system of test equations is as follows
JAX = ~F(Xp). (12)
The Jacobian matrix consists of the derivatives of all
functions w.r.t. each element. Let p be the number of
elements in the circuit. With known measurement voltages

V ,, and excitation currents 1, variations in F(X) w.r.t. x,

depend on variations of Ym(x) w.I.t. X, only, so

9F(X) Y (X)
[g]g= 3x[ = {vec| ﬁx[ Ym]}ga
for £=1,2,...,p . (13)

III. EVALUATION OF THE JACOBIAN MATRIX

The Jacobian matrix (13) can hardly be evaluated
directly, since the symbolic expression for Ym({() is usually

unknown. To evaluate the Jacobian, we refer to (3) and use
the following derivation.

-1
Form Y;l _ Ymm Ymi _ gmm ?rm (14)
Yim Yii Zim Zi;
we have
y =71 (15)
~m ~mm

For a square matrix A the following relationship is satisfied

ot oA
S (16)
ax T 0x T

After derivation, we obtain

aY JZ ay

-m * ~mm % -n
— a— 1
— VX )__Ym_aTYmYmQ( )= I.I'ax_Yn(x ),(7)

where
H= (U | Yo Yii 19)
and .
Y (X) VX))
v =| S It
: Yi Yim Ym®)] [ Vi®X)



The voltage vector includes the external voltages obtained
from measurements and internal voltages calculated by
(19). Substituting (17) into (13), we obtaine

Ny
.]e= vec[H 5)(—— Yn().(|)]l R for ¢=1,2,...,p. (20)
It can be shown form (18) that H has the block

structure as follows:

Y, Wrr 1my
U 7 W2 m,

m, ..My i1 i2 .. ia .. ik

~ . .
-w my
I Yk =
where
-1
W =-Y_ . Y., (21)
~Q »mala ..lala

(21) can be computed in parallel within each
subnetwork so the computations can be reduced.

Suppose that the element x, is in the subnetwork
S aand is incident to nodes i and j. Let {__ be the sum of

currents at node q (q=1,2,....,m) when an excitation is
applied at node r. Since H has the block nonzero pattern,

we can see that the derivative of f P Wt X, is not equal to
zero only if the node q is a node of the subnetwork Na‘

=L

_ { (hqi_hqj)(vir_vjr) when nodeq €S,
i

0 otherwise (22)

Jacobian matrix J is a block matrix of the size mxp (m

is the number of external nodes which can be used to
measure voltages and p is the number of elements in the
network). When the external nodes and all the elements are
numbered in the order of subnetworks in which they are
included then the Jacobian matrix has the structure as
shown below:

5
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IV. QR FACTORIZATION OF SENSITIVITY MATRIX.

The optimum set of test points should be selected to
minimize the variances of the response prediction and the
variances of the parameter evaluation. An efficient
approach to test point selection is based on the QR
factorization (QRF) of the system sensitivity matrix [4].

The QRF is primarily used as a robust linear systems
solving algorithm [6]. The results reported in [4] show that
the QRF process with pivoting provides a powerful
technique for the test points selection, the estimation of
prediction variances, and the element testability. To
maximize the determinant of the selected submatrix of the
Jacobian we evaluate the product of diagonal elements of
the R matrix.

In the QRF with pivoting we choose the row of the
largest norm and orthogonalize all remaining rows to the
selected one. Then the row of the largest norm of those
remaining is selected and the orthogonalization step is
repeated. The process continues until the norms of all the
remaining rows are less then a preset threshold. The vectors
selected during the QRF process correspond to the test
points at which the actual measurements will be made.

In the KCL based method, all the partition voltages
must be known (at least in one subnetwork) to formulate
even a single test equation. Therefore, we modify the QRF
process. In each step instead of selecting a vector with the
largest norm we select the group of vectors. The QR
factorization is run on the selected rows of the Jacobian to
evaluate the product of the diagonal elements of the R
matrix. Partial products are evaluated only for these
elements of R which correspond to the selected rows. A
group with the largest partial product is our pivot. The
remaining rows in the Jacobian are orthogonalized w.r.t.
the pivot rows.

It may happen that not all rows in the selected group
are independent. This will be indicated by small values on
the diagonal positions in R that correspond to the
dependent vectors. Using a user defined threshold we
eliminate such vectors from the selected group. Since
different groups may have different number ofg the selected
vectors we construct a vector of partial products as follows:

R =

I R,
pp R

SR u=1,2,...g, (23)

where Rik represents k—th diagonal element of R matrix in

the ith group, and g is the number of elements in this

group which are larger than the threshold value.
Comparing two groups (say ith and mth ) we first select

g = min(g;, )

and choose the one with largerr_ e R_ .

The computer simulation shows that this selection
reduces the number of excitations (and frequencies ) with a
small decrease in the accuracy of the solution (see Table 1).

V. RESULTS OF THE COMPUTER SIMULATIONS

As an example, consider the circuit of Fig. 2. Voltage
measurements are taken at the nodes 1, 2, 4, 5 and 6. The
circuit is decomposed at the measurement nodes into three
subnetworks as shown in Fig. 3. The candidate set of test
frequencies consists of 31 frequencies equally distributed in
the log scale, giving 155 possible test measurements.
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Fig. 2 An active circuit example (after [4]).
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Fig. 3 Network decomposition of the example circuit.

The system of test equations is formed based on the
KCL equations at the measurement nodes. The
corresponding Jacobian matrix has the block structure as
shown in Fig. 4.
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Fig. 4. The nonzero pattern of J.

The nominal element values are listed in Fig. 2.
Assume that the relative element deviations are within 7%
(refer to [4]). Denote AD to be the accuracy of the solution
which represents the difference between the calculated and
true element deviation. The element testability factors &

are calcultaed as the ratio a/o’i, where ¢ and o, are the

standard deviations of the measurement errors and the
calculated change in the element value. 0, are estimated

from the element covariance matrix obtained during the
QRF process.

Accuracy of the solution and testability factors
obtained in the single and the group test selection are
compared in Table 1. The single test selection uses
orthogonalized vectors with the largest norm while the
group test selection uses the partial products (23).

VI. CONCLUSIONS

A new method to test and calibrate linear circuits is
proposed. As demonstrated the Jacobian matrix of the
proposed test functions (8) is a sparse matrix with a very
regular block structure. The computational speed can be
increased and the memory space can be decreased when the
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Table 1. Accuracy of solution and Testability factors
in the single and group test selections.

Accuracy of solution AD  Testability factor

single group single group
G4 0.00026 0.00068 0.1692  0.05134
c1 0.0 0.0 0.4381 0.1524
R1 -0.00002 -0.00002 0.7245  0.1602
R3 —0.00049 -0.00094 0.1664 0.0503
S1 —0.00339 -0.00267 0.04766 0.0354
C3 0.00037 0.00074 0.1178  0.05005
(2 -0.01011 -0.00539 0.007838 0.00721
R7 -0.00660 -0.00847 0.02678 0.02251
(5 —0.00523 -0.00427 0.03193 0.02737
R5 0.00626 0.00805 0.01915 0.01579
R4 0.10454 0.10399 0.01504 0.01759
R2 0.00074 0.00406 0.02743 0.00767
R6 0.00946 0.00463 0.00723  0.00698

sparse matrix technique is used. The system calibration and
fault diagnosis can be performed with the measurements
taken at the preselected test points.

The QR algorithm can be modified to select groups of
test points, which correspond to all the voltage
measurements. The factorization process can be organized
to preserve the sparsity of the system Jacobian matrix. In
this way a suboptimal selection of the test points can be
performed. Its purpose is to minimize an effect of the
measurement and roundoff errors on the accuracy of the
parameters evaluation. In the case of the functional testing
the test point selection minimizes the prediction standard
deviations (see [4]).

Computer simulation confirmed feasibility of the
proposed method in terms of the rank of the Jacobian
matrix and obtained accuracy.
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