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Abstract 

This paper describes a new method for testing of analog 
circuits with the aid of neural networks. It takes an advantage 
of t,lir high parallel information processing capabilities of these 
net,works. The testing problem is efficiently formulated in a 
oeural net.work context. A back propagation neural network 
and a. functional link net have been trained to synthesize the 
complicated mapping from the circuit measurements space to  
(,he circuit, elements space. Testing example is presented to 
denionstrate the proposed method. 

I. Introduction 

Fault diagnosis of analog circuits has become an 
iiic,r(wingly important issue in circuit design, fabrication and 
inaint,ena,nce. One can distinguish two main approaches when 
dealing with analog testing and diagnosis. The parameter 
identification approach where all circuit elements are identified 
aiitl compa.red to their nominal values. Elements that are 
out,side t,lieir tolerances are considered faulty. The second 
a.pproach is oftcu referred to as the fault location approach 
whcrc oiily faulty elements are identified under the assumption 
t,hat, there are few of them and the rest are fault free . By a 
fault., we mean any change of an element value from its 
iiominal value outside the tolerance limits that can cause the 
failure of the circuit performance. 

Neural networks and their applications have been in the 
focus of interest in recent years. One of the most popular 
neiiral network models is the back propagation multilayered 
ncwxl network [l]. The reason is its ability to synthesize 
coniplicated input+xtput mappings through learning from 
cx;mplcs. Back propagation neural network have been used in 
a number of applications such as pattern recognition and 

ifica.tion [ 2 ] ,  and power system security assessment [3]. 
The ba,ck propa.gation algorithm suffers from a very slow 
convergence since it is relied on the method of steepest descent. 
Iri an effort to speed up the learning rate Pao introduced the 
fiinctional link net [4] that improves the input representation 
by rising higher order terms. 

In this paper a new method that uses neural networks 
t,o aid fa.iilt diagnosis of analog circuits is proposed. The 
objective is to build a neural network that can identify the 
element, values of the circuit under test if they are within their 
toleranccs. If the circuit is faulty this neural network is used to 
loca.t,e the faults by recognizing the faulty elements and 
indicating the direction of their changes. In other words one 
woiild like to have a trained neural network that can be used 
to determine the status of the circuit under test. If it is fault 
frrc, actual values of circuit elements are identified by the 
t,raitied ncural network. When the circuit is faulty such neural 
network determines the faulty elements by approximating their 
actual va,lues. These approximated values are primarily used to 
indicale that these elements are faulty and that their values 
have increased or decreased out of tolerance bounds. 

Results reported here describe the procedure to 
construct this neural network using back propagation model. 
We also show that the functional link net can be used 
cfficieritly to build such network. A selection technique that 
dctcrniiries the most important nonlinear terms to be included 
in a fuiictional link net is also introduced. 

The paper is organized as follows. In Section I1 we 
present the formulation of the new proposed method in a 

neural network context. An efficient approach for selection of 
higher order terms to be used in a functional link net is 
described in Section 111. Illustrative example which shows 
results of using back propagation neural network and 
functional link net is given in Section IV. 

11. Problem Formulation 

The basic steps used in the development of an artificial 
neural network for analog testing are explained in this section. 
We start with the features selected to represent the diagnosis 
(testing) problem. The construction of the training set that is 
presented to the neural network during learning is then 
described and the learning algorithm is briefly outlined. 

Feature Selection 

The selection of the features that are going to be used in 
the input-output training data is an important step towards 
applying this neural network approach. The importance of such 
selection stems from the fact that these features should contain 
enough information to adequately represent the diagnosis 
problem. It seems natural in this case, since we are concerned 
with diagnosis rather than analysis, to  select circuit 
measurements as inputs and the corresponding circuit element 
values as outputs. 

In this research the short circuit transfer admittance 
functions were selected as inputs and associated circuit element 
values as outputs. This selection provides a set of independent 
circuit functions for DC circuits, which we have used as test 
examples. The proposed approach however is still applicable to  
general circuits with active elements. Other circuit functions, 
like nodal voltages, could have been selected without changing 
the final results. 

Mathematical relations bet ween transfer admittances 
and circuit element values can be represented as follows. 
Assume that a linear circuit under test has b elements and n 
nodes, na of them accessible for measurement and excitation 
and ni inaccessible. Elements that are incident with accessible 

nodes only are called free elements and those incident with at 
least one inaccessible node are called fundamental elements. 
The transfer admittance between any two accessible nodes is of 
the form [5], 

where y.. is the admittance of the free element directly 
connecting the two accessible nodes i and j ,  Q is the sum of 
different terms, each consisting of a differerit product of ni 
fundamental element admittances. In the numerator, every gk 
is a product of (ni+l) element admittances. 

'J 

Training Set Design 

The construction of the training set used in the learning 
phase of a neural network, resembles the formulation of fault 
diagnosis equations in other conventional testing techniques. 
Methodology adopted in this construction is explained next. 
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We simulate the circuit with different combinations of 
element values at the boundaries of their tolerances, the c a e  
with all element values at their nominal is also simulated. In 
each simulation the transfer admittances are computed. These 
admittances are used as inputs with the corresponding circuit 
element values as outputs to form a trainin set A schematic 
representation when the output consists of two elements is 
shown in Fig. 1. The coordinates of the black dots are the 
element values that might be used in the simulations. In 
general, if the circuit has b elements we will have a hypercube. 
Corners of this hypercube represent different combinations of 
elements used in the simulations with values at their tolerance 
bounds. The center of this hypercube represents the noininal 

Fig. 1 Schematic representaion of the circuit element values 
used in the simulatiom. 

The idea behind this choice of circuit element values is 
to present extreme scenarios (elements at their tolerance 
bounds) to  a neural network in the learning process. 
Consequently, this choice provides a distinction between fault 
free and faulty situations. For a fault free circuit the element 
values are inside the range which a trained neural network had 
encountered during learning. However, for a faulty circuit the 
element values are outside the range used during learning 
phase. Therefore, in the testing stage identifying the fault free 
cases could be viewed as interpolations and evaluating faulty 
cases as extrapolations. 

In fact, our experience as well as others [3] is that the 
ability of a neural network to  perform interpolation is more 
robust and accurate than to perform extrapolation. This makes 
our choice of the training set consistent with the objective set 
up for the diagnosis. The trained neural network will perform 
interpolation to estimate fault free circuit element values. In 
faulty cases the trained neural network will perform a limited 
extrapolation that determines the faulty elements and 
indicates whether their values have increased or decreased 
outside the tolerance bounds with a rough approximation of 
their actual values. 

The choice of input dimension (i.e., number of input 
nodes, which is the number of measurements in this 
application) is also important. It should be large enough to 
allow the neural network to synthesize the input-output 
mapping. If the input dimension is small with information that 
is inadequate to  define the problem, the neural network can 
not achieve the necessary categorization. At the same time 
input dimensions should contain the most independent 
information that is essential for successful characterization 
without too much redundancy that might unnecessary increase 

>ize of the problem. This point is going to be discussed in 
the next section. 

Hnotlier key factor that can significantly improve the 
learning rate is to appropriately map the training data to  the 
interval (0,l) before being fed to a neural network in a way 
that is helpful in element categorization. The idea behind this 
normalization procedure is to map the training data a t  each 

input and output node to  the interval [A,B] where O< A < B 
< 1. At testing stage, values greater or less than those 
encountered in the training data are mapped to the intervals 
(BJ)  and (0,A) respectively. This mapping, particularly for 
output nodes, ensures that circuit elements which are fault free 
will have values in the interval [A,B] and faulty ones will 
occupy the remaining of the (0, l )  interval. The choice of B is 
arbitrary and is decided upon before training, A is dependent 
on the value of B and is equal to 1 - B. The mathematical 
details of the normalization are not given here due to  space 
limitations. 

Back Propagation Algorithm 

A typical multilayered neural network used in this 
research is shown in Fig. 2. It consists of an input layer, one 
hidden layer and an output layer. Each layer consists of a 
number of nodes. Every node in a layer is connected to all 
nodes in the succeeding layer in a strictly feedforward manner. 
These connections are called connection weights or simply 
weights. 

Output Pattern 

Output  Layer 

Hidden Layer 

Input Layer 

j +2 

j+ 1 

j 

v i1  y12 " 

Input Pattern 

Fig. 2 Back propagation network used in the testing example. 

The input data is fed to the nodes of the input layer 
which acts as a buffer. The outputs of these nodes are then fed 
to the hidden layer. The input to each node in the hidden layer 
is the summation of these outputs, each multiplied by its 
associated connection weight. These inputs, afber passing 
through a sigmoid nonlinearity are multiplied by their 
associated weights and used as inputs to the nodes in the 
out put layer. 

Continuing in the forward path, these inputs to the 
output layer are in turn passed t.hrough sigmoid nonlinearity to 
produce the network outputs. Starting from a random set of 
initial weights, a neural network produces its own output 
pattern which is compared with the desired output pattern. 
Consequently, a least squares error function is constructed. 
This error function is minimized by adjusting the weights 
between different nodes to produce the desired output using 
the method of steepest descent. The training data is 
represented many times to the network until the convergence 
of connection weights is achieved. The details of this algorithm 
and the scheme to update the weights between different layers 
during iterations are presented in [l]. 
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111. Functional link net and selection of higher order terms 

The functional link net was introduced in [4] in order to 
increase the slow convergence often encountered in back 
propagation networks. It is essentially a feedforward network 
that uses the back propagation algorithm. The basic principle 
of this net is to expand the input data representation by 
increasing the dimensionality of the input space. This can be 
tione by the usage of additional input data that incorporates 
higher order cffect,s. The expanded input data is then used in 
the 1,ra.ining instead of the actual input. 

In the so called tensor model, the additional input data 
adtlctl a.s extra input nodes are obtained by multiplying each 
component of the iuput pattern by the entire pattern vector. In 
othrr words if the input pattern is denoted by the set 

{xi: 15 i 5 n } 
t,licn the input pattern i n  the tensor model that includes second 
ortlcr terms is described as 

{xi,xixi: 15 i 5 n, i 5 j )  (3) 
and wc ca,n continue this $ay to include other terms of higher 

improved representation significantly increases the 
niiinl)cr of' components in the input pattern and might lead to  
an nimccptable increase i n  the complexity of the problem. 
Conscyucntly, there is an absolute need to find a way to  select 
froin additional components only those that contribute the 
mosb tjo 1,Iie improvement of the input representation. 

In  order to achieve this selection we propose the 
f'ollowing a.pproach. To facilitate our analysis, let us represent 
the cxpanded input data for different patterns in a training 
ma,t,rix I' with t rows and s columns. The rows of P represent 
training patterns and its columns represent input nodes 
(coiiiponcnts) that describe each pattern which includes 
original inputs and their second order nonlinear combinations. 
We suggest to use the QR factorization akorithm with 
pivoting [6], to choose and order the most important training 
patterns and also to decide upon the most independent 
measuren~ents to be selected and ordered from the set of 
original mea.surements and their second order combinations. 

We start by selecting the most independent patterns 
lrom the tra.ining set. This is accomplished by performing the 
Q I t  factorization on the matrix PT. We denote the matrix that 
has these selected patterns only by P 

I n  order to select the most independent measurements 
w c  r u n  a QR process on P'and measurements corresponding to 
tlic selected colunuis only are chosen to represent each input 
pattcrn. Accordingly, we denote the new training matrix after 
QIt sclcctiou by Pr. The effect of incorporating higher order 
conil)inat,ions of measurements (e.g., third order combinations) 
can he det,erniined in a similar way. The QR algorithm can 
thcii be used again to determine which of these new 
conrI)inat,ions may improve the input patterns representation. 
'I'hc simula,t,ion results showed that this selection algorithm is 
cffccl,ivc i n  reducing both the number of training patterns and 
the nonlinea,r measurement combinations to only those which 
a.rc c,orrtributing the most to the learning task. 

IV. Test Example 

7 i n  the input pattern. 

'T  . 

Consider the resistive circuit shown in Fig. 3 which was 
prcviously studied in 151. Nodes 1, 2, 3 and 4 are accessible 
whilc nodes 5 and 6 are inaccessible. The nominal values of 
elerricnts G. = 1, i = 1, 2, 3 and G. = 2, i = 4, 5, 6 with 
tolerances ci = -1.10%~ i = 1,2, . . . , 6. The six transfer 
admittances are given by 

A 

A 5  G4 
I O  I 0 3  

i G2 
2 O A  I &&? I 0 4  

G3 G5 

Fig. 3 Resistive circuit example. 

G1G2G5 G2G3G4 
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We first train a back propagation neural network so 
that it can be used in the diagnosis of the circuit of Fig. 3 as 
explained in Section 11. In other words this network is trained 
to identify the element values of the circuit of Fig. 3 if they are 
within their tolerances. Moreover, in the case of single or 
double fault, the trained network should locate the faulty 
elements and indicate the direction of the changes of their 
values. 

The training set is generated by simulating the resistive 
circuit of Fig. 3 with nominal element values and then with 
different combinations of two resistors at a time at the bounds 
of their tolerances, while the rest are at their nominal values. 
For each simulation, the six transfer admittances shown above 
were calculated. Consequently, the training set consists of 61 
six4imensional patterns, the inputs are the transfer 
admittances and the desired outputs are the corresponding 
element values. The normalization mentioned in Section I1 
was employed with A = 0.3 and B = 0.7. 

The neural network used in the training phase is as 
shown in Fig. 2 with six units in the input layer, sixty units in 
the single hidden layer and six units in the output layer. 
Convergence of the connection weights was achieved after 500 
sweeps of the training data. Initial weights were randomly 
selected in the interval [4.1, 0.11. In the testing phase, the 
trained neural network is tested for cases that had not been 
used in the training phase. The results are shown in Table 1. 
The percentage error in element estimation is calculated as the 
absolute value of the difference between the actual element 
value and the value estimated by a neural net divided by the 
actual element value. The entries in the column labeled the 
norm of error vector are the norms of the vector of percentage 
errors for the associated testing pattern. Cases 1 4  correspond 
to data presented in the training process. Cases 5-12 represent 
new data that the network had not seen before. Elements 
outside their tolerances in cases 5-12 are underlined. We can 
see from the table that the trained neural network was able to  
predict that the circuit is not faulty by responding with the 
element values within their tolerances as in case 6 where the 
table shows very small percentage error. In other cases, it was 
also able to predict the actual faulty elements even with the 
tolerances added to the nominal values of the fault-free 
elements. For the case 11) of large change in a faulty 

of the faulty element as indicated by the value of the 
percentage error but still locates the fault and recognizes the 
direction of the change with an approximation of the true 
value. 

The same example is repeated with a flat (no hidden 
layer) functional link net. The training matrix consists of 61 
rows representing training patterns and 27 columns represents 
measurements and their second order combinations. We have 
used the selection algorithm based on QR factorization as 
explained in Section I11 to select the most independent 
patterns and measurements. The selected matrix that was used 

element, the trained networ k does not give the accurate value 
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in training was reduced to  22 rows (patterns) and 22 columns 
(measurements and their second order combinations). The 
topology of the functional link net implemented in the training 
is shown in Fig. 4. Results presented in Table 1 proved that 
although a much smaller number of patterns were used in this 
case, the norm of the error vector is comparable to those 
calculated for the case of a trained back propagation network. 

V. Conclusions 

We have presented a neural network based method for 
analog testing. The input feature selection and the 
methodology used to  construct a training set that can be 
effectively used in the learning phase of a neural network are 
explained. In particular, a back propagation model and a 
functional link net are trained to perform the diagnosis task. 
The motivation behind using these two models in analog 
testing is to utilize their ability to realize nonlinear 
input-output mappings from learning examples. This ability is 
needed in analog testing due to the nonlinear relationship 
between measurements and elements even for a linear circuit. 
Moreover, the generalization capabilities of a properly trained 
neural network is of important significance, since it can be used 
in the recall (testing) phase to diagnose much larger number of 
cases than those presented in a training set. Therefore, the 
presented approach can be viewed as a generalization of the 
popular fault dictionary approach [7], with fast access to the 
stored data and ability to approximate cases not stored in the 
dictionary. 
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TABLE 1 

Comparison of Actual and Estimated Element Values of the Circuit of Fig. 3. 

~ ~ ~~ 

Actual element values Percentage error in element Norm of Percentage error in element 

estimation by back propagation error vector estimation bk- a functional link 

Case G I  G2 G3 G4 G5 G6 G1 G2 G3 G4 G5 G 6  G1 G2 G3 G4 G5 

~~ 

1 1.0 1.0 1.1 2.0 2.0 1.8 0.09 0.21 0.53 0.00 0.41 

2 1.0 1.0 0.9 2.2 2.0 2.0 0.39 0.95 0.35 0.03 0.49 

3 1.0 0.9 1.0 2.0 2.2 2.0 0.16 0.07 0.24 0.50 0.01 

4 1.1 1.0 1.0 1.8 2.0 2.0 0.67 1.33 0.33 l S 2  0.22 

5 1.2 1.0 1.0 2.0 1.7 2.0 2.07 1.95 2.32 1.05 3.S2 

6 0.95 1.03 1.05 2.1 2.05 1.95 0.97 0.91 0.60 0.41 0.34 

7 1.05 0.95 1.03 2.3 1.95 lj 3.06 2.03 1.57 3.16 1.49 

S 1.2 0.s 1.03 1.95 2.05 2.0 2.21 2.67 1.55 0.82 0.09 

9 1.02 0.98 1.0 2.06 U 1.6 0.31 0.16 1.54 0.68 2.5.1 

10 1.3 1.0 1.0 2.0 2.0 U 0.41 2.80 0.57 2% 0.96 

11 1.0 1.0 1.0 2.0 4.0 2.0 1.72 2.00 4.27 2.14 25.7 

12 1.2 1.03 0.95 2.1 1.6 2.0 3.61 0.28 0.56 1.41 1 3 0  
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