ARTIFICIAL NEURAL NETWORK FOR TESTING
ANALOG CIRCUITS

Janusz A. Starzyk and Mohamed A. El-Gamal

Department of Electrical and Computer Engineering
Ohio University
Athens, Ohio 45701-2979

Abstract

This paper describes a new method for testing of analog
circuits with the aid of neural networks. It takes an advantage
of the high parallel information processing capabilities of these
networks. The testing problem is efficiently formulated in a
neural network context. A back propagation neural network
and a functional link net have been trained to synthesize the
complicated mapping from the circuit measurements space to
the circuit elements space. Testing example is presented to
demonstrate the proposed method.

1. Introduction

Fault diagnosis of analog circuits has become an
increasingly important issue in circuit design, fabrication and
maintenance. One can distinguish two main approaches when
dealing with analog testing and diagnosis. The parameter
identification approach where all circuit elements are identified
and compared to their nominal values. Elements that are
outside their tolerances are considered faulty. The second
approach is often referred to as the fault location approach
where only faulty elements are identified under the assumption
that there are few of them and the rest are fault free . By a
fault, we mean any change of an element value from its
nominal value outside the tolerance limits that can cause the
failure of the circuit performance.

Neural networks and their applications have been in the
focus of interest in recent years. One of the most popular
neural network models is the back propagation multilayered
neural network {1]. The reason is its ability to synthesize
complicated input—output mappings through learning from
examples. Back propagation neural network have been used in
a number of applications such as pattern recognition and
classification [2}, and power system security assessment [3].
The back propagation algorithm suffers from a very slow
convergence since it is relied on the method of steepest descent.
In an effort to speed up the learning rate Pao introduced the
functional link net [4] that improves the input representation
by using higher order terms.

In this paper a new method that uses neural networks
to aid fault diagnosis of analog circuits is proposed. The
objective is to build a neural network that can identify the
element, values of the circuit under test if they are within their
tolerances. If the circuit is faulty this neural network is used to
locate the faults by recognizing the faulty elements and
indicating the direction of their changes. In other words one
would like to have a trained neural network that can be used
to determine the status of the circuit under test. If it is fault
free, actual values of circuit elements are identified by the
trained neural network. When the circuit is faulty such neural
network determines the faulty elements by approximating their
actual values. These approximated values are primarily used to
indicate that these elements are faulty and that their values
have increased or decreased out of tolerance bounds.

Results reported here describe the procedure to
construct this neural network using back propagation model.
We also show that the functional link net can be used
efficiently to build such network. A selection technique that
determines the most important nonlinear terms to be included
in a functional link net is also introduced.

The paper is organized as follows. In Section II we
present the formulation of the new proposed method in a

neural network context. An efficient approach for selection of
higher order terms to be used in a functional link net is
described in Section III. Illustrative example which shows
results of using back propagation neural network and
functional link net is given in Section IV.

II. Problem Formulation

The basic steps used in the development of an artificial
neural network for analog testing are explained in this section.
We start with the features selected to represent the diagnosis
(testing) problem. The construction of the training set that is
presented to the neural network during learning is then
described and the learning algorithm is briefly outlined.

Feature Selection

The selection of the features that are going to be used in
the input—output training data is an important step towards
applying this neural network approach. The importance of such
selection stems from the fact that these features should contain
enough information to adequately represent the diagnosis
problem. It seems natural in this case, since we are concerned
with diagnosis rather than analysis, to select circuit
measurements as inputs and the corresponding circuit element
values as outputs.

In this resecarch the short circuit transfer admittance
functions were selected as inputs and associated circuit element
values as outputs. This selection provides a set of independent
circuit functions for DC circuits, which we have used as test
examples. The proposed approach however is still applicable to
general circuits with active elements. Other circuit functions,
like nodal voltages, could have been selected without changing
the final results.

Mathematical relations between transfer admittances
and circuit element values can be represented as follows.
Assume that a linear circuit under test has b elements and n
nodes, n a of them accessible for measurement and excitation

and n inaccessible. Elements that are incident with accessible

nodes only are called free elements and those incident with at
least one inaccessible node are called fundamental elements.
The transfer admittance between any two accessible nodes is of

the form [5],
Y
k L
Y. =y..
YT g 1 1
where ¥ij is the admittance of the free element directly

connecting the two accessible nodes i and j, Q is the sum of
different terms, each consisting of a different product of n,

fundamental element admittances. In the numerator, every 8
is a product of (ni+1) element admittances.

Training Set Design

The construction of the training set used in the learning
phase of a neural network, resembles the formulation of fault
diagnosis equations in other conventional testing techniques.
Methodology adopted in this construction is explained next.

CH2868-8/90/0000-1851$1.00 © 1990 IEEE

We simulate the circuit with different combinations of
element, values at the boundaries of their tolerances, the case
with all element values at their nominal is also simulated. In
each simulation the transfer admittances are computed. These
admittances are used as inputs with the corresponding circuit
element values as outputs to form a training set. A schematic
representation when the output consists o% two elements is
shown in Fig. 1. The coordinates of the black dots are the
element values that might be used in the simulations. In
general, if the circuit has b elements we will have a hypercube.
Corners of this hypercube represent different combinations of
elements used in the simulations with values at their tolerance
bounds. The center of this hypercube represents the nominal
case.

Fig. 1 Schematic representaion of the circuit element values
used in the simulatiom.

The idea behind this choice of circuit element values is
to present extreme scenarios (elements at their tolerance
bounds) to a neural network in the learning process.
Consequently, this choice provides a distinction between fault
free and faulty situations. For a fault free circuit the element
values are inside the range which a trained neural network had
encountered during learning. However, for a faulty circuit the
element values are outside the range used during learning
phase. Therefore, in the testing stage identifying the fault free
cases could be viewed as interpolations and evaluating faulty
cases as extrapolations.

In fact, our experience as well as others [3] is that the
ability of a neural network to perform interpolation is more
robust and accurate than to perform extrapolation. This makes
our choice of the training set consistent with the objective set
up for the diagnosis. The trained neural network will perform
interpolation to estimate fault free circuit element values. In
faulty cases the trained neural network will perform a limited
extrapolation that determines the faulty elements and
indicates whether their values have increased or decreased
outside the tolerance bounds with a rough approximation of
their actual values.

The choice of input dimension (i.e., number of input
nodes, which is the number of measurements in this
application) is also important. It should be large enough to
allow the neural network to synthesize the input—output
mapping. If the input dimension is small with information that
is inadequate to define the problem, the neural network can
not achieve the necessary categorization. At the same time
input dimensions should contain the most independent
information that is essential for successful characterization
without too much redundancy that might unnecessary increase
the size of the problem. This point is going to he discussed in
the next section.

Another key factor that can significantly improve the
learning rate is to appropriately map the training data to the
interval (0,1) before being fed to a neural network in a way
that is helpful in element categorization. The idea behind this
normalization procedure is to map the training data at each

1852

input and output node to the interval [A,B] where 0< A < B
< 1. At testing stage, values greater or less than those
encountered in the training data are mapped to the intervals
(B,1) and (0,A) respectively. This mapping, particularly for
output nodes, ensures that circuit elements which are fault free
will have values in the interval [A,B] and faulty ones will
occupy the remaining of the (0,1) interval. The choice of B is
arbitrary and is decided upon before training, A is dependent
on the value of B and is equal to 1 — B. The mathematical
details of the normalization are not given here due to space
limitations.

Back Propagation Algorithm

A typical multilayered neural network used in this
research is shown in Fig. 2. It consists of an input layer, one
hidden layer and an output layer. Each layer consists of a
number of nodes. Every node in a layer is connected to all
nodes in the succeeding layer in a strictly feedforward manner.
These connections are called connection weights or simply
weights.

Output Pattern

Py

Py

Output Layer

has!
W

Hidden Layer j+1

Input Layer

Input Pattern

Fig. 2 Back propagation network used in the testing example.

The input data is fed to the nodes of the input layer
which acts as a buffer. The outputs of these nodes are then fed
to the hidden layer. The input to each node in the hidden layer
is the summation of these outputs, each multiplied by its
associated comnection weight. These inputs, after passing
through a sigmoid nonlinearity are multiplied by their
associated weights and used as inputs to the nodes in the
output layer.

Continuing in the forward path, these inputs to the
output layer are in turn passed through sigmoid nonlinearity to
produce the network outputs. Starting from a random set of
initial weights, a neural network produces its own output
pattern which is compared with the desired output pattern.
Consequently, a least squares error function is constructed.
This error function is minimized by adjusting the weights
between different nodes to produce the desired output using
the method of steepest descent. The training data is
represented many times to the network until the convergence
of connection weights is achieved. The details of this algorithm
and the scheme to update the weights between different layers
during iterations are presented in [1].

I11. Functional link net and selection of higher order terms

The functional link net was introduced in [4] in order to
increase the slow convergence often encountered in back
propagation networks. It is essentially a feedforward network
that uses the back propagation algorithm. The basic principle
of this net is to expand the input data representation by
increasing the dimensionality of the input space. This can be
done by the usage of additional input data that incorporates
higher order effects. The expanded input data is then used in
the training instead of the actual input.

In the so called tensor model, the additional input data
added as extra input nodes are obtained by multiplying each
component of the input pattern by the entire pattern vector. In
other words if the input pattern is denoted by the set

{xi: 1<i<n} (2)

then the input pattern in the tensor model that includes second
order terms is described as

(3)
and we can continue this way to include other terms of higher
orders in the input pattern.

This improved representation significantly increases the
number of components in the input pattern and might lead to
an unacceptable increase in the complexity of the problem.
Consequently, there is an absolute need to find a way to select
from additional components only those that contribute the
most to the improvement of the input representation.

In order to achieve this selection we propose the
following approach. To facilitate our analysis, let us represent
the expanded input data for different patterns in a training
matrix P with t rows and s columns. The rows of P represent
training patterns and its columns represent input nodes
(components) that describe each pattern which includes
original inputs and their second order nonlinear combinations.
We suggest to use the QR factorization algorithm with
pivoting [6], to choose and order the most important training
patterns and also to decide upon the most independent
measurements to be selected and ordered from the set of
original measurements and their second order combinations.

{x.l,xixj: 1<i<n,i<j}

We start by selecting the most independent patterns
from the training set. This is accomplished by performing the

QR factorization on the matrix PT. We denote the matrix that
1
has these selected patterns only by P T

In order to select the most independent measurements

'
we run a QR process on P and measurements corresponding to
the selected columns only are chosen to represent each input
pattern. Accordingly, we denote the new training matrix after
QR selection by P . The effect of incorporating higher order

combinations of measurements (e.g., third order combinations)
can he determined in a similar way. The QR algorithm can
then be used again to determine which of these new
combinations may improve the input patterns representation.
The simulation results showed that this selection algorithm is
effective in reducing both the number of training patterns and
the nonlinear measurement combinations to only those which
are contributing the most to the learning task.

IV. Test Example

Consider the resistive circuit shown in Fig. 3 which was
previously studied in [5]. Nodes 1, 2, 3 and 4 are accessible
while nodes 5 and 6 are inaccessible. The nominal values of
clements G.1 =1,1=1,2,3 and Gi =2,i=4,5 6 with
tolerances € = +10%, i = 1,2, . . ., 6. The six transfer

admittances are given by

_ 61696

B G, G4(G 9 +G3+G5)
12 Q ’

Y 13=

1853

Gy 5 Gy
1 o A MA_ 03
[éGz é Gg
2o A VY N
Gz 6 Gs

Fig. 3 Resistive circuit example.

v - G1GyGy _ GyGaGy
w="q > 23 =
G3G5(G1+G2+G4) G2G4G5

» Yy =Gg+—g—
where Q = (G1+G4) (G2+G3+G5) + GZ(G3+G5).

You =

We first train a back propagation neural network so
that it can be used in the diagnosis of the circuit of Fig. 3 as
explained in Section II. In other words this network is trained
to identify the element values of the circuit of Fig. 3 if they are
within their tolerances. Moreover, in the case of single or
double fault, the trained network should locate the faulty
elements and indicate the direction of the changes of their
values.

The training set is generated by simulating the resistive
circuit of Fig. 3 with nominal element values and then with
different combinations of two resistors at a time at the bounds
of their tolerances, while the rest are at their nominal values.
For each simulation, the six transfer admittances shown above
were calculated. Consequently, the training set consists of 61
six—dimensional patterns, the inputs are the transfer
admittances and the desired outputs are the corresponding
element values. The normalization mentioned in Section 1I
was employed with A = 0.3 and B = 0.7.

The neural network used in the training phase is as
shown in Fig. 2 with six units in the input layer, sixty units in
the single hidden layer and six units in the output layer.
Convergence of the connection weights was achieved after 500
sweeps of the training data. Initial weights were randemly
selected in the interval [-0.1, 0.1]. In the testing phase, the
trained neural network 1s tested for cases that had not been
used in the training phase. The results are shown in Table 1.
The percentage error in element estimation is calculated as the
absolute value of the difference between the actual element
value and the value estimated by a neural net divided by the
actual element value. The entries in the column labeled the
norm of error vector are the norms of the vector of percentage
errors for the associated testing pattern. Cases 14 correspond
to data presented in the training process. Cases 5—12 represent
new data that the network had not seen before. Elements
outside their tolerances in cases 5—12 are underlined. We can
see from the table that the trained neural network was able to
predict that the circuit is not faulty by responding with the
element values within their tolerances as in case 6 where the
table shows very small percentage error. In other cases, it was
also able to predict the actual faulty elements even with the
tolerances added to the nominal values of the fault—free
elements. For the case (11) of large change in a faulty
element, the trained network does not give the accurate value

of the faulty element as indicated by the value of the
percentage error but still locates the fault and recognizes the
direction of the change with an approximation of the true
value.

The same example is repeated with a flat (no hidden
layer) functional link net. The training matrix consists of 61
rows representing training patterns and 27 columns represents
measurements and their second order combinations. We have
used the selection algorithm based on QR factorization as
explained in Section III to select the most independent
patterns and measurements. The selected matrix that was used

in training was reduced to 22 rows (patterns) and 22 columns
(measurements and their second order combinations). The
topology of the functional link net implemented in the training
is shown in Fig. 4. Results presented in Table 1 proved that
although a much smaller number of patterns were used in this
case, the norm of the error vector is comparable to those
calculated for the case of a trained back propagation network.

V. Conclusions

We have presented a neural network based method for
analog testing. The input feature selection and the
methodology used to construct a training set that can be
effectively used in the learning phase of a neural network are
explained. In particular, a back propagation model and a
functional link net are trained to perform the diagnosis task.
The motivation behind using these two models in analog
testing is to wutilize their ability to realize nonlinear
input—output mappings from learning examples. This ability is
needed in analog testing due to the nonlinear relationship
between measurements and elements even for a linear circuit.
Moreover, the generalization capabilities of a properly trained
neural network is of important significance, since it can be used
in the recall (testing) phase to diagnose much larger number of
cases than those presented in a training set. Therefore, the
presented approach can be viewed as a generalization of the
popular fault dictionary approach [7], with fast access to the
stored data and ability to approximate cases not stored in the
dictionary.

Output Pattern

P, Py

k______vr_____J

Original Pattem

H__,}

Selected Combination
of Second Order Terms

Input Pattern

REFERENCES Fig. 4 Functional link net used in the testing example.
1] D.E. Rumelhart, G.E. Hinton and R.J. Williams, . L N
"Learning internal tepresentations by error propagation (4] Y.H. Pao, Adaptive Pattern Recognition and Neural
in parallel distributed processing", Explorations in the Networks, Addlson—VYesley,IQSQ. .
Microstructures of Cognition, Vol. I: Foundations, MIT [5] N.Navid and A.N. Willson, Jr., ~ "A theory and
Press, 1986,pp. 318—362. algorithm for analog circuit fault diagnosis”, IEEE
2] R.P. Gorman and T.J. Sejnowski, "Analysis of hidden Trans. Circuits Syst., vol. CAS 26, 1979, pp.
units in a layered network trained to classify sonar 440-457. . . L
targets", Neural Networks, vol. 1, pp. 75—89, 1988. 6] 8. J. Leon, Linear Algebra With Applications,
[3] D.J. Sobajic and Y.H. Pao, "Artificial neural net based Macmillan Publishing Co., New Y()”rk, 1980. ;
dynamic ~security assessment for electric power (7] W. Hochwald and J.D. Bastian, " A dc approach for
systems", IEEE Trans. on Power Systems, vol. 4, analog fault dictionary determination", IEEE Trans.
1989, pp. 220-228. Circuits Syst., vol. CAS 26, 1979, pp. 523~529.
TABLE 1
Comparison of Actual and Estimated Element Values of the Circuit of Fig. 3.
Actual element values Percentage error in element Norm of Percentage error in element Norm of
estimation by back propagation error vector estimation by a functional link £ITOr Vectur
Case G, G, Gy G, Gy Gg G G, G G Gy G G, G, G G Gy G
110 10 11 20 20 18 0.00 021 053 000 041 0.17 0.73 0.00 0.00 000 0.00 000 0.00 0.00
2 10 10 09 22 20 20 039 095 035 003 049 0.20 1.21 0.28 045 0.03 099 069 0.8 133
3 L0 09 10 20 22 20 016 007 024 050 001 007 0.59 002 005 015 037 093 004 1.01
4 11 10 10 18 20 20 0.67 133 033 182 022 020 2.39 031 0.21 030 1.01 039 007 127
5 12 10 10 20 LI 20 207 1.95 232 105 3.8 073 5.47 020 063 0.02 093 122 015 1.70
6 095 103 1.05 21 205 195 097 091 060 041 034 006 1.55 0.1 0.07 022 020 037 0.00 0.49
7105 095 103 23 195 LT 306 203 157 316 149 029 532 016 003 007 028 104 005 1.09
8§ 12 08 103 195 205 20 221 267 155 082 000 0.6l 3.93 199 037 068 092 119 0.7 2.66
9 102 098 1.0 206 23 16 031 018 154 063 254 0.1 3.08 071 087 052 035 431 0.23 4.36
0 13 18 10 20 20 24 041 280 057 286 096 381 5.65 05¢ 043 075 0.8 013 0.09 1.29
11 10 10 L0 20 40 20 172 200 427 214 257 2.04 26.3 0.60 579 043 379 187 146 19.9
12 L2 103 095 21 L6 20 361 028 056 141 130 0.56 418 000 055 013 006 318 0.05 3.22

1854

