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Abstract

This paper presents an efficient parameter identification
method for large scale networks based on the circuit
decomposition technique. Parameter identification technique
has wide applications in circuit modeling, fault diagnosis,
testing and calibration. Its implementation, based on the
sensitivity approach, is very useful in practice. However, it
cannot handle large scale circuits because the sensitivity
matrix is dense, which requires an enormous amount of
memory space to store and takes much time to compute when
the circuit size is large. To overcome these deficiencies was the
main motivation behind this paper. A new developed method
based on the circuit decomposition is presented. First, we
present an organization of this method, its basic features and
its algorithm. Then computer results for comparison of this
method with a conventional, sensitivity based technique are
given. Advantages of the new method are summarized in the
conclusion.

1. Introduction

Parameter identification is very important for circuit
modeling, fault diagnosis, testing and calibration. For
example, when a new circuit is built, the responses of the
circuit to one or several specific input signals must be
measured to determine whether it works or not. If the
responses are out of the range of design specifications, the
circuit can be adjusted by calibrating its parameter values. In
order to perform trimming, alignment or calibration, the actual
parameter deviations must be estimated. The purpose of
parameter identification is to find the actual parameter
deviations using voltage measurements.

In general, parameter identification is more difficult than
system analysis. Equations for determining parameter values
from measurement data such as input and output voltages are
nonlinear, even for a linear circuit. One numerical approach to
parameter identification is to linearize these equations. A
solution of the linearized equations can be obtained by the
Newton-Raphson iteration process. This approach is called
the first order approximation method.

The sensitivity matrix method, one of the first order
approximation methods, is currently the most popular
parameter identification technique. The sensitivity matrix,
which contains derivatives of the responses with respect to all
parameters, is evaluated based on the nominal parameter
values Py The parameter deviations Ap are found through

deviations of the responses Av and the sensitivity matrix S, i.e.
SAp = Av (1)
Once the parameter deviations Ap have been determined, the

rea] parameter values p can be estimated by adding the
deviations Ap to the nominal values Py ie

p=7py+ Ap ()

The sensitivity matrix method can handle a broad category of
networks and testing situations. Specialized formulas have
been developed for this method when applied to linear and
nonlinear networks or networks with reactive elements and
switches. Different test equations are derived depending upon
the type of measured responses such as time domain response,
frequency response or harmonics of a periodic response [1,2].

Sensitivities are calculated in two steps: the network analysis
and the sensitivity analysis. In the first step, equations of the
“original network" are solved and the circuit responses are
obtained. In the second step, equations of the "sensitivity
network" are solved and the sensitivities of the circuit response
are evaluated. The system matrix (Jacobian matrix) in the
sensitivity analysis is the same as the system matrix at the
convergence of iterations in the network analysis. Hence, the
most important task is to evaluate the circuit response in the
network analysis. Once the circuit response is evaluated, its
sensitivities can be obtained by solving a system of linear
equations.

However, the method shows some serious drawbacks when
applied to large scale circuits. The first drawback is its low
speed. In order to derive the sensitivity matrix, a circuit must
be analyzed using simulators based on Newton's method, a
sparse matrix technique, and numerical integration. Since the
computation time in these simulators is very long for large
circuits, the size of circuits that can be tested practically usin,
the sensitivity matrix approach is limited to a few hundreﬁ
elements.

Another drawback is the low accuracy of the sensitivity matrix
method. In addition to errors caused by the first order
approximation, the method is very sensitive to inaccuracies in
the circuit model and in the numerical integration techniques,
parasitics introduced by the test equipment and errors of time
synchronization. Serious problems are associated with
determination of the rank of the sensitivity matrix, testability
factors, and ambiguity groups (3,4].

Finally, the sensitivity matrix method has large memory
requirements, not only during the analysis but also at the
solution of the test equations. Each transfer function is
sensitive to variations of every network parameter. This
causes the sensitivity matrix to be dense and makes numerical
calculations expensive in the case of large networks.

To overcome these weak points of the sensitivity method we
have developed a new method for parameter identification in
large analog and mixed-mode circuits based on the
decomposition approach.

2. Decomposition Approach

The idea of introducing a decomposition approach for
parameter identification stemmed from similar approach for
fault verification [5]. However, the form of equations obtained,
and the processing steps required are different for the two
approaches. In addition, the overall gain obtained by using the
decomposition approach in the parameter identification is
much greater than that in the fault verification technique.
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Decomposition is a numerically effective way to solve large
problems represented by a system of equations [6,7]. But its
direct application to parameter identification problem is
difficult. This difficulty is caused mainly by high density of
test matrix formulated by the conventional method [4]. In this
paper we first explain how to use decomposition to reduce
complexity of the obtained test equations and show the
corresponding test matrix is a sparse matrix. Then we present
results of the computer simulated testing performed on
networks of different sizes. We compare the results obtained
from the decomposition method with those form the sensitivity
matrix method.

In our approach, we assume that the measurements are taken
at the selected nodes. Usually, selected nodes are limited to
the external terminals or, in case of a large system, to the
nodes between different subsystems or modules.

Removal of measurement nodes and adjacent branches
decomposes the network into a number of wealkly connected or
isolated subnetworks. Analysis of these subnetworks can be
performed independently from each other as the boundary
conditions are known.  This corresponds to analysis of
subnetworks with known voltage sources connected at their
terminals. In this case, current flow between subnetworks is
not needed to solve subnetwork equations.

Internal voltages and other unknown variables x can be

obtained in each subnetwork by solving iteratively
Newton—Raphson equations.
DN DN e
M, % Ax, F= -1 (3)
k k k

where the subscript k stands for the kth iteration, superscript i

stands for the internal nodes, and « stands for the ath
i

fka is the vector of the system functions

cqrresponding to the internal nodes of the ath subnetwork,
1
xka is the vector of system variables corresponding to the

subnetwork.

i
internal nodes of the ath subnetwork and Mka is the Jacobian

matrix of system equations, calculated at the nominal
i
parameter values Py and the system variable values xkf1 at

the previous iterative step .

Sensitivities of the internal voltages w.r.t. network parameters
can be obtained by solving an equation similar to (3):

ioi i
v, o ¢
M%%=-B" (4)
e i,

where s ~ is the vector of sensitivities of system variables x

1
w.r.t. the parameters P, inside of the ath subnetwork and B @

i
is the vector of derivatives of system functions [ w.r.t.
parameters p , [8].

Since the voltages at the measurement points are known
exactly, their derivatives w.r.t. parameters are zero, i.e.

m

9 XH]
S —

=0 .

= (5)
dp

From equations (3) and (4) we can see that the internal

variables x' and their sensitivities s' are computed at the
subnetwork level which reduces computing time and increases
the accuracy of the analysis results.
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Solution obtained from (3) yields internal variables in ideal
case of all parameters having their nominal values. If in real
circuit parameters deviate from nominal values by Ap, the
internal variables will change. This will cause changes in the
external currents in each subnetwork. If we put these
subnetworks back to obtain the original network, the sum of
currents at the partition points may be different from zero.
Therefore system equations at the partition points will not be
satisfied.

In order to find parameter deviations, we differentiate system
equations corresponding to measurement nodes w.r.t.
parameters. Obtained matrix of derivatives will be denoted by
T and called the test matrix.

d flTl

T= (6)

dp

m . .
where ™' is the vector of system functions at the measurement
nodes. Matrix T can be evaluated by differentiating system

functions f™ in each subnetwork and adding the obtained
submatrices. (see [8] for more detailed discussion). TFinally
deviations in network parameters Ap can he obtained by
solving the test equation

TAp=-f™ (7)
Numerical accuracy of the solution for Ap depends on the
eigenvalues of the test matrix T. In order to reduce the
condition number (determined by the ratio of largest and
smallest eigenvaluesg of the test matrix, we select test nodes,
time instances, excitation levels and other countrollable factors
of test before performing the real measurements. Selection of
test points, which improves numerical accuracy of test
[quua,t.ions was discussed earlier by Stenbakken and Souders in
3.

In order to determine test points in advance, we {irst simulate
the nominal network and formulate test matrices of its
subnetworks. Then test point selection is performed using
modified QR factorization on the test matrix. We check
whether the rank of the test matrix is sufficient for parameter
evaluation. This procedure may not always result in
identification of all parameter values due to existence of
ambiguity groups as reported in [4].

After test point selection, the real circuit is measured at the
selected points and its parameters identified as described in
this section. The flow diagram of a test procedure for
par}?meter identification using the presented methods is shown
in Fig. 1.

3. Computer Simulation Results

The procedure described above has been performed on circuits
with different number of elements. The basic test circuit is
built with a transistor amplifier cascaded by a low pass filter.
It has 23 elements and 6 test nodes 1, 2, 3, 4, 5, 9. In the
decomposition approach, the circuit is decomposed into 4
subcircuits as shown in Fig. 2. Bigger test circuits are
obtained by combining 2, 4, § and 16 basic test circuits
together with total number of 46. 92. 184 and 368 clements,
respectively.

For each tested circuit, voltage measurements are taken at the
test nodes. Time domain responses within the time interval 0 —
200 s are sampled. (The circuits are normalized). Then the
parameter values are evaluated using the sensitivity method
and the decomposition method respectively. The results
obtained by these two methods are compared. TFor both
methods, the computations were implemented in two stages:
simulation stage and test stage.
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Using the decomposition approach, the circuit can be
decomposed into a number of subcircuits. The subcircuits can
be further decomposed into a number of sub—subcircuits. At
the simulation stage, voltages at the internal nodes of each
subcircuit and their sensitivities to parameters inside the
subcircuit are computed first. Then the test equations for the
whole circuit are formulated. At the test stage, parameter
deviations are obtained by solving these test equations. Since
the coefficient matrix T of the test equation is sparse, the
fp]arse matrix technique is used to speed up the computations
9].

In order to be able to compare hoth methods on the same basis
we wrote a simple circuit simulator. Its overall performance is
lower than that of the state of art analysis software, but the
relative results indicating savings in computer time and
memory space obtained by the new method are preserved.

The computations were implemented on SUN 3/280 at the
Ohio University. The comparison of parameter deviations
obtained by both methods is given in Table 1. In Table 1 D
stands for the true relative deviations form nominal values in
percent, DS and D q represent similar deviations evaluated by

the sensitivity and the decomposition methods respectively.

Table 1. Parameter deviations (in percent)

D Ds Dd
[ Evaluate Test Matrix of Subnetwork |
] 1 Rt 0.50 0 47 0.43
-5. -5.24 -5.0
Formulate Test Matrix for Entire Network | g [Cé ggg 3.89 2,66
4 R3 2.00 1.98 1.94
5 R4 6.67 0.04 13%
i 6 (4 -4.00 -4.10 -3.
7 R -2.00 -1.65 -2.15
Y 8 (3 -6.67 -6.49 -6.69
e 9 03 5.00  -5.04  -4.97
- - 10 R5 -2.00 -2.88 -2.04
Solve Test Equations Using the Sparse 11 2 2500 5,64 _4.08
Matrix Technique and Parallel Algorithm 12 R6 3.00 383 92.90
13 S1 -5.00 -4.76 -4.99
. . 14 €6 -2.00 -2.94 -1.99
Fig. 1 Flow diagram of test procedure. 15 07 -8.00 _8.17 _7.99
16 L1 2.00 2.28 1.95
17 (8 -4.00 -4.63 -3.99
18 (€9 -4.00 -4.73 -3.99
19 LC 2.00 2.13 1.95
Using the sensitivity method, the sensitivity matrix which 20 (10 -1.33 -1.51 -1.32
contains sensitivities of waveforms at measurement nodes 21 011 -2.00 -2.30 -1.99
w.r.t. to all elements in the circuit, have to be evaluated at the 22 L3 2.66 2.89 2.59
simulation stage first. Then the system equations (1) must be 23 (12 -1.00 -1.16 -0.99
solved at the test stage to obtain the parameter deviations Ap.
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Fig. 2 Basic test circuit decomposed into 4 subcircuits.
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In both techniques only parameter R4 was evaluated with poor
accuracy, but this element has low testability factor as
observed earlier [3].

The comparison of CPU time used during the circuit
simulation and the test stages are shown in Figs. 3 and 4
respectively. Computational time increases almost linearly
with the number of elements for the decomposition method,
but polynomially for the sensitivity matrix method. In
addition, as we compare cpu time used at the simulation stage
and the test stage for the sensitivity matrix method, it is clear
that the simulation time has become a major cost factor of the
element identification process for circuits with number of
elements large than 92. Whereas in decomposition method, the
simulation time has been Lkept well below the test time.
Besides that, the accuracy obtained by the decomposition
method is higher than that obtained by the sensitivity matrix
method.

4. Conclusions

We have developed an efficient method for parameter
identification in large scale networks. This method uses
decomposition of the system equations by taking voltage
measurements at the partition nodes. As a result, circuit
analysis can be simplified and the results obtained by this
method are more accurate than those by the conventional
method. Measured voltages are used first to estimate internal
voltages and then to formulate test equations.

Test equations can be prepared on the subnetworks level and
the resulting test matrix is sparse. By solving test equations,
we can evaluate all network parameters. We have compared
test results of the sensitivity and the decomposition methods.
The later is more efficient in terms of memory storage
requirements and computing time than the former one. It also
gives more accurate estimate for parameter values.

The decomposition method can be applied to test mixed—mode
circuits. In this case, digital subcircuits will be tested using
algorithms for digital testing while analog subcircuits will use
test equations discussed in this paper.

Some designs may incorporate the original circuit with an
additional circuitry to facilitate testing. This design practice,
commonly used in digital circuit design, may also benefit
complex analog circuits, such as artificial neural networks.
Using multiplexers we may gain access to internal nodes of the
circuit, increasing system observability.
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Fig. 3 CPU time used at the circuit simulation stage
(1) sensitivity matrix method (2) decomposition method
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