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Abstract 

This paper presents an efficient parameter identification 
method for large scale networks based on the circuit 
decomposition technique. Parameter identification technique 
has wide applications in circuit modeling, fault diagnosis, 
testing and calibration. Its implementation, based on the 
sensitivity approach, is very useful in practice. However, it 
cannot handle large scale circuits because the sensitivity 
matrix is dense, which requires an enormous amount of 
memory space to  store and takes much time to compute when 
the circuit size is large. To overcome these deficiencies was the 
main motivation behind this paper. A new developed method 
based on the circuit decomposition is presented. First, we 
present an organization of this method, its basic features and 
its algorithm. Then computer results for comparison of this 
method with a conventional, sensitivity based technique are 
given. Advantages of the new method are summarized in the 
conclusion. 

1. Introduction 

Parameter identification is very important for circuit 
modeling, fault diagnosis, testing and calibration. For 
example, when a new circuit is built, the responses of the 
circuit to one or several specific input signals must be 
measured to determine whether it works or not. If the 
responses are out of the range of design specifications, the 
circuit can be adjusted by calibrating its parameter values. In 
order to perform trimming, alignment or calibration, the actual 
parameter deviations must be estimated. The purpose of 
parameter identification is to find the actual parameter 
deviations using voltage measurements. 

In general, parameter identification is more difficult than 
system analysis. Equations for determining parameter values 
from measurement data such as input a.nd output voltages are 
nonlinear, even for a linear circuit. One nunierical approach to 
parameter identification is to linearize these equations. A 
solution of the linearized equations can be obtained by the 
Newton-Raphson iteration process. This approach is called 
the first order amroximation method. 

The sensitivity matrix method, one of the first order 
approxiination methods, is currently the most popular 
parameter identification technique. The sensitivity matrix, 
which contains derivatives of the responses with respect to all 
parameters, is evaluated based on the nominal parameter 
values po. The parameter deviations Ap are found through 
deviations of the responses AV and the sensitivity matrix S, i.e. 

S A p = A v  (1) 

Once the parameter deviations Ap have been determined, the 
real parameter values p can be estimated by adding the 
deviations Ap to the nominal values po, i.e. 

P = P o + A P  

The sensitivity matrix method can handle a broad category of 
networks and testing situations. Specialized formulas have 
been developed for this method when applied to linear and 
nonlinear networks or networks with reactive elements and 
switches. Different test equations are derived depending upon 
the type of measured responses such as time doinain response, 
frequency response or harmonics of a periodic response [ 1,2]. 

Sensitivities are calculated in two steps: the network analysis 
and the sensitivity analysis. In the first step, equations of the 
"original network" are solved and the circuit responses are 
obtained. In the second step, equations of the "sensitivity 
network'' are solved and the sensitivities of the circuit response 
are evaluated. The system matrix (Jacobian matrix) in the 
sensitivity analysis is the same as the system matrix at the 
convergence of iterations in the network analysis. Hence, the 
most important task is to evaluate the circuit response in the 
network analysis. Once the circuit response is evaluated, its 
sensitivities can be obtained by solving a system of linear 
equations. 

However, the method shows some serious drawbacks when 
applied to large scale circuits. The first drawback is its low 
speed. In order to derive the sensitivity matrix, a circuit must 
be analyzed using simulators based on Newton's method, a 
sparse matrix technique, and iiuinerical integration. Since the 
computation time in these simulators is very long for hrge 
circuits, the size of circuits that ca.n be tested practically using 
the sensitivity matrix approach is limited to a few hundred 
elements. 

Another drawback is the low accuracy of the sensitivity matrix 
method. In addition to errors caused by the first order 
approximation, the method is very sensitive to inaccuracies in 
the circuit model and in the numerical integration techniques, 
parasitics introduced by the test equipment and errors of time 
synchronization. Serious problems axe associated with 
determination of the rank of the sensitivity matrix, testability 
factors, and ambiguity groups [3,4]. 

Finally, the sensitivity matrix method has large memory 
requirements, not only during the analysis but also at the 
solution of the test equations. Each transfer function is 
sensitive to variations of every network parameter. This 
causes the sensitivity matrix to be dense and makes numerical 
calculations expensive in the case of large networks. 

To overcome these weak points of the sensitivity method we 
have developed a new method for parameter identification in 
large analog and mixed-mode circuits based on the 
decomposition approach. 

2. Decomnosition Amroach 

The idea of introducing a decomposition approach for 
parameter identification stemmed from similar approach for 
fault verification [5]. However, the form of equations obtained, 
and the processing steps required a.re different for the two 
approaches. In addition, the overall gain obtained by using the 
decomposition approa.ch i n  the pa.rameter identifica.tion i s  
much greater than t1ia.t i n  the fault verification technique. 
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Decomposition is a numerically effective way to solve large 
problems represented by a system of equations [6,7]. But its 
direct application to parameter identification problem is 
difficult. This difficulty is caused mainly by high density of 
test matrix formulated by the conventional method [4]. In this 
paper we first explain how to use decomposition to reduce 
complexity of the obtained test eqmtions and show the 
corresponding test mxtrix is a sparse matrix. Then we present 
results of the computer simulated testing performed on 
networks of different sizes. W e  coinpa,re the results obtained 
from the decomposition method with those form the sensitivity 
matrix method. 

In our approach, we assume that the ineasureinents are taken 
at the selected nodes. Usually, selected nodes are limited to 
the external terminals or, in case of a large system, to the 
nodes between different subsystems or modules. 

Removal of measurement nodes and a.dja.cent liranches 
decomposes the network into a number of wealtly connected or 
isolated subnetworlts. Analysis of these sulinetworks can be 
performed independently from ea,ch other as the boundary 
conditions are known. This corresponds to analysis of 
subnetworks with known voltage sources connect,ed at their 
terminals. In this case, current flow between suI)iiet.worlts is 
not needed to solve subnetwork equations. 

Internal voltages and other unknown variables x can be 
obtained in each subnetwork by solving iterat.ively 
Newton-Raphson equations. 

1 1  
MI;' Axlt'= - f;(' 

where the subscript I< sta.nds for the ktli iteration, superscript i 
stands for the internal nodes, aiid Q stands for the at,h 

subnetwork. fit" is the vector of the system functions 
corresponding to tlie internal nodes of t,he nth subnetwork, 

xk' is the vector of system variables corresponding to the 

internal nodes of the ath subnetwork and MI;' is the .Jacobian 
matrix of system equations, ca.lculatec1 at the nominal 

1 

1 

1 

parameter values po and the system variable values x;:, at 
the previous iterative step . 

Sensitivities of the internal voltages w.r.t. network parameters 
can be obtained by solving an equation siinihr to (0): 

(4)  

1 
where s a is tlie vector of sensitivities of syst,em vi\l'inlj!es xl'p 

w.r.t. the para,meters p , inside of t ~ i c  at11 su\mci,wor\; a n d  13 'I' 

is tlie vector of derimtives of system lunctions r 1v.r.t. 
parameters p, [SI. 

Since the voltages a t  the ineasureineiit points a.re known 
exactly, their derivatives w,r.t. pa.ra.meters are zero, i.e. 

I 

1 

( 5 )  
d P  

From equations (3) and (4) we can see that the internal 
variables x1 and their sensitivities s1 are computed at the 
subnetwork level which reduces coinputing time a n d  increases 
the accuracy of the analysis results. 

Solution obtained from (3) yields internal variables in ideal 
case of all parameters having their nominal values. If in real 
circuit parameters deviate from nominal values by Ap. the 
internal variables will change. This will cause changes in the 
external currents in each subnetwork. If we put these 
subnetworks back to obtain the original network, the sum of 
currents at the partition points may be different from zero. 
Therefore system equations at the partition points will not be 
satisfied. 

In order to find parameter deviations, we differentiate system 
equations corresponding to measurement nodes w. r. t. 
paameters. Obtained inatris of derivat.ives will be denoted by 
T and called the test ma,tris. 

tl f'" 

(1 P 
T=-  ( 6 )  

where Pi is the vector of system functions at  tlie measiiremeut 
nodes. Matrix T can be evaluated by differentiating system 
functions fm in each subnet,rvorli and adding the obtained 
submatrices. (see [SI for more detailed tliscnssion). Finally 
deviations in network parameters Ap can be obtained by 
solving the test equation 

Numerical accuracy of tlie solution for Ap depends on the 
eigenvalues of the test nn t r i s  T. In order to reduce the 
condition number cletermined b r  the ratio of largest and 
smallest eigenvalue& 01 the test iiiatrix. we select tesl notles. 
time instances, excitation l e d s  aiitl other coiitrollalile fact,ors 
of test before perforniiiig the mil measurements. Selection of 
test points, wliicli iiiipro\v nuiiicrical acciiriicy ol  test 
eqimtions was discussed ea.rlier by Sttnlx~ltken a n d  Soiirlers i n  
[31. 

In  order to determine test points in advance. \ y e  first simulate 
the nominal network and foriiiulat,e test matrices of its 
subnetworks. Then test point selection is perfornietl using 
niodified QR factorization on tlie test matris. \\-e check 
whether the rank of the test matrix is sufficient for parameter 
evaluation. This procedure may not always result i n  
identification of all parameter values due to esistence of 
ambiguity groups as reported i n  [4]. 

After test point selection, the real circuit is measured at the 
selected points and its parameters identified as described in 
this section. The flow diagram of a test procedure for 
parameter identification using the presented methods is shown 
in Fig. 1. 

3. ComDuter Simulation Results 

The procedure described above has been performed on circuits 
with different number of elements. The basic test circuit is 
built with a transistor amplifier cascaded hy a low pass filter. 
It has 23 elements and 6 test nodes 1, 2. 3 :  4. .5. 9. In tlie 
decomposition approach, the circuit is decomposed into 4 
subcircuits as shown in Fig. 2. Bigger test circuits are 
obtained by combining 2, 4>, S and 16 basic test circuits 
together with total number ot 46. 92. 184 iind 365 elenients. 
respectively. 

For each tested circuit ~ voltage nieasLirenient,s are taken at tlie 
test nodes. Time domain responses wit l i in  the t ime interval 0 - 
200 s a.re sampled. (The circuits are iiorinalizetl). Then the 
parameter values are eva,luated using t,he sensitivity method 
and tlie decomposition method respectively. The results 
obtained by these two methods are compared. For both 
methods, the computations were implemented i n  two stages: 
simulation stage and test stage. 
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Take Measurements at Selected Test Points 

t=t+h 

I Subnetwork Level 

+ I Evaluate Test Matrix of Subnetwork 1 
t 1 Formulate Test Matrix for Entire Network 1 
1 - Last Time Step? 

Solve Test Equations Using the Sparse 

Fig. 1 Flow diagram of test procedure. 

Using the sensitivity method, the sensitivity matrix which 
contains sensitivities of waveforms at measurement nodes 
w.r.t. to all elements in the circuit, have to be evaluated at the 
simulation stage first. Then the system equations (1) must be 
solved at the test stage to obtain the parameter deviations Ap. 

Using the decomposition approach, the circuit can be 
decomposed into a number of subcircuits. The subcircuits can 
be further decomposed into a number of sub-subcircuits. At 
the simulation stage, voltages at  the internal nodes of each 
subcircuit and their sensitivities to pxameters inside the 
subcircuit are computed first. Then the test equations for the 
whole circuit are formulated. At the test stage, parameter 
deviations are obtained by solving these test equations. Since 
the coefficient matrix T of the test equation is sparse, the 
sparse matrix technique is used to speed up the computations 

In order to be able to compare both methods on the same basis 
we wrote a simple circuit simulator. Its overall perfornnnce is 
lower than that of the state of art analysis software, but the 
rehtive results indicating saviiigs i n  computer time and 
nieiiiory space obtained Iiy the new methtl  are prcserved. 

Tlie computa.tions were implcmeni~etl on SUN :3/250 at the 
Ohio University. Tlie comparison of parameter deviations 
obtained by both methods is given in Table 1. In Table 1 D 
sta.nds for the true relative devia.tions form nominal values in 
percent, D and D represent similar deviations evaluated by 
the sensitivity and the decomposition methods respectively. 

191. 

d 

Table 1. Parameter deviations ( in  percent) 

D DS Dd 

1 RI 0.50 0 47 0.48 
2 c1 -5.00 -5.24 -5.00 
3 R2 2.50 2.s9 2.66 
4 R3 2.00 1.98 1.94 
5 R4 6.67 0.04 1.83 
6 C4 -4.00 -4.10 -3.96 
7 R7 -2.00 -1.65 -2.15 
8 c3 -6.67 -6.49 -6.69 
9 c5 -5.00 -5.04 -4.97 
10 R5 -2.00 -2.88 -2.04 
11 c2 -5.00 -5.64 -4.98 

13 S1 -5 .00 -4.76 -4.99 

15 c7 -8.00 -8.17 -7.99 

17 CS - 4.00 -4.63 - 3.99 

1 2  R6 3.00 3.83 2.90 

14 C6 -2.00 -2.94 -1.99 

16 L 1  2.00 2.25 1.95 

18 c9 -4.00 -4.73 -3.99 

21 c11 -2.00 -2.30 -1.99 
22 L3 2.66 2.89 2.59 
23 C12 -1.00 -1.16 -0.99 

19 LC 2.00 2.13 1.95 
20 c10 -1.33 -1.51 -1.32 

c4 c2 c7 c9 c11 
I F  2F 

c1 R3 

c10 L3 
3F 1.5H 

R1 
'in 4 IOR 

R7 
30R 

@ c9 @ @ 

s3 s4 

c12 
4F 

Fig. 2 Basic test circuit decomposed into 4 subcircuits. 
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In both techniques only parameter R4 was evaluated with poor 
accuracy, but this element has low testability factor as 
observed earlier [3]. 

The comparison of CPU time used during the circuit 
simulation and the test stages are shown in Figs. 3 and 4 
respectively. Computational time increa.ses almost linearly 
with the number of elements for the decomposition method, 
but polynomially for the sensitivity matrix method. In 
addition, as we compare CPU time used at the simulation stage 
and the test stage for the sensitivity matrix method, it is clear 
that the simulation time ha,s become a major cost factor of the 
element identification process for circuits with number of 
elements large than 92. iY1ierea.s i n  decomposition method, the 
simulation time has been kept well below the test time. 
Besides that, the accuracy obtained by the decomposition 
method is higher than that obtained by the sensitivity matrix 
method. 

4. Conchdons 

We have developed a n  efficient method for parameter 
identification in large scale networlrs. This method uses 
decomposition of the system equations by taking voltage 
measurements at  the partition nodes. As a result, circuit 
analysis can be simplified and the results obtained hy this 
method are more accurate than those by the conventional 
method. Measured voltages are used first to estimate internal 
voltages and then to formulate test equations. 

Test equations can be prepared on the subnetworlts level and 
the resulting test matrix is sparse. By solving test equations, 
we can evaluate all network para.meters. We have compared 
test results of the sensitivity and the decomposition methods. 
The later is more efficient i n  terms of memory storage 
requirements a,nd computiiig time t h n  the former one. It also 
gives more accurate estima.te for parameter values. 

The decomposition method can be applied to test mixed-mode 
circuits. In this case, digital subcircuits will be tested using 
algorithms for digital testing while analog subcircuits will use 
test equations discussed in this pa.per. 

Some designs may incorporate the original circuit with an 
additional circuitry to facilitate testing. This design practice, 
commonly used in digital circuit design, may also benefit 
complex analog circuits, such as artificial neural networlts. 
Using multiplexers we may gain access to internal nodes of the 
circuit, increasing system observability. 

/ ' I  I 
_ I  / I . .  
h 

v - 31 

I c, 

23 46 92 184 368 
number of elements 

Fig. 3 CPU time used at the circuit simulation stage 
(1) sensitivity matrix method (2) decomposition method 
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