
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Concurrent Associative Memories With
Synaptic Delays

Janusz A. Starzyk , Life Senior Member, IEEE, Marek Jaszuk, Łukasz Maciura ,

and Adrian Horzyk , Senior Member, IEEE

Abstract— This article presents concurrent associative mem-
ories with synaptic delays useful for processing sequences of
real vectors. Associative memories with synaptic delays were
introduced by the authors for symbolic sequential inputs and
demonstrated several advantages over other sequential memories.
They were easy to organize and train. It was demonstrated
that they were more robust than long short-term memories in
recognition of damaged sequences. The associative memories can
be applied in combination with deep neural networks to solve
such symbol grounding problems, such as speech recognition,
and support sequential memories triggered by sensory inputs.
Several practical considerations for developed memories were
discussed and illustrated. A continuous speech database was
used to compare the developed method with LSTM memories.
Tests demonstrated that the developed approach is more robust
in recognition of speech sequences, particularly when the test
sequences are damaged.

Index Terms— Concurrent associative memories, knowledge
graphs, synaptic delays, synaptic efficacy.

I. INTRODUCTION

MEMORIES are essential elements of cognitive systems,
providing storing learned knowledge and episodes of

its past interactions with the environment [1]. Artificial neural
network memories for storage and recall of input sequences
were intensively studied over many years [2]–[7]. In a similar
effort, a fast neural network adaptation with associative pulsing
neurons [8] was proposed as a self-organizing associative
memory capable of storing time-domain sequences. The time
delay is a critical factor in recognizing time-domain sequences.
In spiking neural networks [9], the neurons can spontaneously
self-organize into groups and generate patterns of polysynchro-
nous activity [10]. Synchronization in polysynchronous groups

Manuscript received August 8, 2019; revised May 13, 2020 and
September 30, 2020; accepted November 23, 2020. This work was sup-
ported by the Polish National Science Centre, Twardowskiego 16, 30-312
Krakow, Poland, under Grant DEC-2016/21/B/ST7/02220 and Grant AGH
16.16.120.773. (Corresponding author: Adrian Horzyk.)

Janusz A. Starzyk is with the Faculty of Applied Computer Sci-
ence, University of Information Technology and Management in Rzeszów,
35-225 Rzeszów, Poland, and also with the School of Electrical Engineering
and Computer Science, Ohio University, Athens, OH 45701 USA.

Marek Jaszuk and Łukasz Maciura are with the Faculty of Applied Com-
puter Science, University of Information Technology and Management in
Rzeszów, 35-225 Rzeszów, Poland.

Adrian Horzyk is with the Department of Biocybernetics and Biomed-
ical Engineering, AGH University of Science and Technology in Kraków,
30-059 Kraków, Poland (e-mail: horzyk@agh.edu.pl).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2020.3041048.

Digital Object Identifier 10.1109/TNNLS.2020.3041048

is possible since all neurons have different axonal conduction
delays, which, in natural neural networks, is a function of the
distance between the neurons and axonal transmission speed.
If spikes arrive at polysynchronous neurons simultaneously,
the neurons fire, and if the time of arrival is different for
various inputs to a polysynchronous neuron, the neuron does
not fire. Thus, effectively, a polysynchronous group of neurons
can recognize the time-domain sequence when the input
neurons are activated at different moments. Because these
neurons transmit their spikes to the polysynchronous group
with various delays, if the difference between these delays cor-
responds to the differences between input activations, then the
polysynchronous neurons fire [10]. This idea was developed
in [11] to create an associative network of pulsing neurons that
can store and recognize the sequences of activation of neurons
that represent the input symbols. The synaptic delay associa-
tive knowledge graph (SDAKG) network described in [11]
implemented this idea of synchronous firing for recognition
of sequences that contain symbols of elements, such as letters
or words.

SDAKG is a new type of associative memory in which
synaptic connections of the self-organizing neural network
include information about time delays between input sequence
elements. Thus, synaptic connections represent both the synap-
tic weights and expected delays between the network inputs.
The SDAKG structure facilitates the recognition of time
sequences and provides context-based associations between
sequence elements. Time delays are learned and are updated
each time an input sequence is presented. There are no separate
learning and testing modes, as the network starts to predict the
next input element if there is no expected input signal. The
network generates output signals that are useful for associative
recall and prediction. These output signals depend on the
presented input context and the knowledge stored in the graph.

SDAKG addressed several practical issues that made the
application of polysynchronous groups of spiking neurons
difficult to implement in practical situations. First, building
and training in such networks are very long—it took 6 h
of computer time for a 1000-neuron network to initialize its
synaptic connections, and it took 24 h of simulation time
to establish stable polysynchronous groups. The detection of
polysynchronous groups in the network of spiking neurons is
difficult, and it is challenging to control associations between
neuronal representations. In the SDAKG network, we used
a fast neural network adaptation with associative pulsing

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-2678-5515
https://orcid.org/0000-0001-8657-3472
https://orcid.org/0000-0001-9001-4198

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

neurons [8] to organize the memory of synaptic gates capable
of storing input sequences.

SDAKG’s focus was on the development of the network
structure in the processing of the symbolic inputs. However,
many practical applications (such as recognition of speech sig-
nals or sequences of images) require recognition of sequences
represented by vectors of real numbers. Also, many of the
input neurons can be simultaneously partially activated, unlike
neurons that represent symbols that are either ON or OFF.
In this work, we modify the SDAKG algorithm to recognize
such sequences using partially activated input neurons and
synaptic gates. As a result, a new algorithm for time-series
recognition tasks by the propagation of signals in the separate
paths of synaptic gates that represent classes of sequences was
created and described in this article. This tool was connected
with a convolutional neural network on the input to assess the
class membership of frames.

Section II describes the concept of the concurrent SDAKG
organization. In Section III, practical considerations about
SDAKG networks and experiments on random data were
described. In Section IV, several series of experiments on a
speech data set using a combination of SDAKG with deep
and convolutional neural networks were presented. These
architectures were compared with the combination of LSTM
with deep and convolutional neural networks and gave better
results than the LSTM-based structures for damaged data.
Section V presents tests on the sign language data set com-
paring SDAKG to LSTM. Section VI contains time analysis
and tests of processing speed, comparing LSTM and SDAKG
implementations.

II. SDAKG WITH PARTIALLY ACTIVATED INPUTS

In the SDAKG network, synaptic connections represent
both the synaptic weights and expected delays between the
network inputs. Both the synaptic weights and their delay
characteristics are learned during the training process. The
network generates output signals that are useful for associative
recall and prediction. These output signals depend on the
presented input context and the knowledge stored in the graph.
Effectively, the whole input sequences can be recalled when
sufficient context information is provided. This is useful for
the self-organization of episodic memories that are used for
the storage of the observed episodes. The stored episodes can
be later recalled if a sufficient context is provided. It was
demonstrated that the network correctly recognizes the input
sequences with variable delays and that it is more efficient than
the recently developed sequential memory network based on
associative neurons [8]. Sequence recognition under distortions
of the sequence elements demonstrated the greater robustness
of SDAKG memories compared with long short-term mem-
ories (LSTMs) [12]. This feature is extremely important in
practical applications where recognition of the input symbols,
missing symbols, or other types of distortions is frequently
observed.

Presented in this work modified version of the synap-
tic delay associative knowledge graph called a concurrent
SDAKG here is to replace the input neurons that represent

Fig. 1. Basic links between the synaptic gates and an input neuron.

symbols with neurons that represent objects based on features
extracted from the sensory data. Several such features may
be required to represent a single object for recognition of an
object or its part. In addition, the features may be recognized
to different degrees of similarity between the stored and
observed ones. The final difference between the previous and
this implementation of the SDAKG network is that several (or
all) features may be simultaneously partially activated in the
modified approach; thus, the modified SDAKG network must
process parallel inputs.

A. Self-Organization of the Synaptic Gates Memory

The SDAKG memory is a self-organizing network, estab-
lishing synaptic gates and associations between object neurons
as needed. The basic structure of SDAKG memory uses
input (object) neurons Oi and synaptic delay gates SGi con-
nected through the learned weights w(i−1)i . The input neurons
are responsible for object recognition, while synaptic delay
gates are responsible for context-based signal propagation.
If an activated input neuron corresponds to the first element of
a memorized sequence, then it directly stimulates a synaptic
delay gate; otherwise, its activation is combined with the
weighted output of the presynaptic gate that represents the
context of the received input sequence (see Fig. 1).

In learning temporal sequences, an input signal activates,
first, a presynaptic gate and, then, the associated postsynap-
tic gate. In Fig. 1, SD1 represents a presynaptic gate, and
SG2 represents a postsynaptic gate to input neuron O2.

A presynaptic gate may point to several postsynaptic gates.
Thus, in the training mode, if a postsynaptic gate that is
pointed to by a presynaptic gate receives the strongest input
activation at

ni , it combines the input signal from its presynaptic
gate output multiplied by the interconnection weight plus the
activation of its input neuron

I t
i = at

g(i−1) ∗ w(i−1)i + at
ni (1)

where I t
i is the input activation of a postsynaptic gate, at

g(i−1)

is an output activation level of the presynaptic gate, w(i−1)i

is an interconnection weight between the presynaptic and
postsynaptic gates, and at

ni is a level of activation of the
postsynaptic gate input neuron. Activation of the postsynaptic
gate input neuron at

ni depends on the match between its
weights (that represent a given object) and the input signal
vector at a given time instant.

In the training mode, if the most activated input neu-
ron is not connected to a postsynaptic gate, then a new

STARZYK et al.: CONCURRENT ASSOCIATIVE MEMORIES WITH SYNAPTIC DELAYS 3

synaptic delay gate is established and is connected with the
presynaptic gate. The interconnection weight (as introduced
in Section IV-A [11]) between presynaptic and postsynaptic
gates is computed using the formula described in Section II-B.
Notice that, in the training mode, only the activation of
the most activated input neuron is considered, and it is
used to modify the input state of its synaptic delay gate
using (1). In the testing mode, activation of all input neurons
is considered, and all of them modify the input activation
of their corresponding synaptic delay gates. This makes all
the synaptic gates in the network working concurrently. For
simplicity of the description and the discussion, we assume
here that the SDAKG network structure was developed during
the training mode that is separate from the testing mode, while
this restriction is not necessary and is not used in the real use
of SDAKG networks.

B. Gate Deactivation Rates

In applications such as speech recognition, sequences of
data contain vectors of cepstrum coefficients represented by
real numbers. After normalization, these numbers can rep-
resent partial activations of the input neurons in SDAKG
memory adjusted to recognize such sequences. Since, in con-
tinuous speech recognition, we do not know the exact moment
when the sequence begins, the SDAKG memory must respond
to such sequences dynamically whenever they occur. This
requires dynamic adjustment of the activation levels of various
synaptic delay gates. Partially activated gates will gradually
lose their activation level, getting ready for a new activation
in response to new data. Therefore, proper adjustment of
deactivation rates of the synaptic gates is required.

One way of doing this is to relate the deactivation rates to
the significance of the activated input neuron. Synaptic gates
with more significant inputs should have lower deactivation
rates. This will result in holding significant information in
such gates for longer periods of time. In intelligent agents
(e.g., motivated learning agents described in [13] and [14]),
the significance of the observed inputs can be related to agent
motivations and its reward system. Events that are associated
with desirable situations (and a potential award) or those
that carry a potential threat (or a punishment) to the agent
will have higher significance than other events that the agent
either observed in the past or those that he/she is unfamiliar
with. However, in applications, in which no significance of
the input activations can be established based on the agent
motivations, a simple approach can be used based on the
event frequency. More frequent events can be declared as
less significant and, therefore, can be quickly forgotten, while
those that occur seldom should be sustained activation of
synaptic gates for a longer period of time. While this way
of establishing significance is easier, it does not represent a
true significance of events that are specific to the agent, its
value system, and the history of interactions within a complex
environment. Therefore, it should not be used when other more
meaningful ways are available.

In the SDAKG approach, the deactivation rate of the synap-
tic gates is related to the frequency of activations of their

input neurons. In the symbolic version of SDAKG memory,
this will correspond to finding probabilities of input neuron
activations. If an input neuron is activated with low probability,
its synaptic gate will have a low deactivation rate. Using
the deactivation rate, the activation of the synaptic gate is
reduced using (2), depending on the time difference between
consecutive activations of the input neurons

at
g = at0

g − α ∗ pg ∗ (t − t0) (2)

where α is a constant scale coefficient, pg is a probability of
firing of the synaptic gate of the input neuron, t0 is the time
of the last activation of the synaptic gate, and t is the current
time.

For simultaneous partial activations of many input neurons,
instead of estimating neuron’s firing probabilities, we accu-
mulate sums of partial activations of input neurons and divide
them by the total sum of activations of all input neurons

rgk =
∑m

i=1 anki∑n
k=1

∑m
i=1 anki

(3)

where m is the number of activations of input neurons, n is the
number of input neurons, anki is the kth neuron activation level
at the i th instance of the input vector activation, and rgk is a
deactivation rate of the synaptic gate associated with the kth
input neuron. Activation of a synaptic gate is then computed
using (2) with pg replaced by rgk .

Since the deactivation rates are relatively low in short
periods of time, the synaptic gates maintain their long-term
activation levels. In a short time, they frequently change their
activation levels according to changes in the activation of their
corresponding input neuron. Since, during concurrent process-
ing of input data, many input neurons change their activation
levels, the short-term operation of the synaptic gates is a key
feature for sequence recognition. Thus, the long-term activa-
tion of synaptic gates provides a broader context for sequence
recognition. In this article, we will focus on short-term changes
in the synaptic gate activations.

In the concurrent implementation, the computation of the
gate input activation level is obtained from (4) for all inputs
simultaneously

I t
gi = max

(
at−1

g(i−1) ∗ w(i−1)i + at
ni , I t−1

gi

)
(4)

where w(i−1)i is an interconnection weight between the presy-
naptic and postsynaptic gates, at

ni is an activation level of the
input neuron, at−1

g(i−1) is an activation level of the output of the
presynaptic gate at time t − 1, and I t

gi is an activation level of
the input of the gate at time t −1. Simultaneous activations of
various gate inputs mean that no signal propagation is used.
Instead, the gates are activated based on the previous gate input
activation level, the current activation of the gate input neuron,
and the previous output activation level of the presynaptic gate.

III. PRACTICAL CONSIDERATIONS IN

CONCURRENT SDAKG

Several practical issues must be considered while dealing
with real-world data and organizing concurrent SDAKG mem-
ory. These issues include the effect of noise, variable length

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

of input sequences, and weight adjustment for the input gates.
This section discusses some of these issues. We illustrate these
issues on synthetic data to have a better understanding of their
role in the recognition of real sequences.

A. Uniform Noise Consideration

In real-life applications, the recognition of the input signals
is not perfect. Neurons that represent specific objects are
often partially activated, even when the sensory input does not
include the object represented by this neuron. We consider this
partial activation as a noise of object recognition. This noise
may harm the recognition of sequences stored in SDAKG
memories.

Therefore, it is useful to establish a noise level for the inputs
of the synaptic gates. In the most straightforward approach,
we compute the noise nav as the average activation of all inputs
in the network by all signals that are in the training set and
do not belong to the sequence that we want to recognize.

Once we know the noise level, we generate the input noise
sequences and apply them to all input nodes. These input
nodes stimulate the synaptic gates, which accumulates the
total noise signal from all presynaptic gates and their inputs.
In many applications, including speech or object recognition,
all the input neurons are fully connected to the sensory inputs.
In such cases, similarity to the input patterns is measured on all
input nodes. Therefore, only the length of the input sequences
stored in the SDAKG memory and the connection weights of
their input neurons differentiate the synaptic gates response to
the noise. In general, longer sequences accumulate more noise
in synaptic gates and distort sequence recognition. To offset
this effect, we need to consider that the expected noise will
influence the synaptic gate activations.

For uniform noise distribution, the gate input activation level
is obtained from (5) for all inputs simultaneously

I t
gi = max

(
at−1

g(i−1) ∗ w(i−1)i + at
ni , I t−1

gi

) − nav (5)

where nav is an average noise level.
Example 1: To verify that such modification of the SDAKG

operation is capable of concurrent operation and correct recog-
nition of the input sequences, we tested the recognition rates
for 100 runs of simulation with synthetic 47 phonemes, where
we assumed a uniform noise from 0 to 0.4. Individual signal
frame recognition [the level of activation of the postsynaptic
gate of the input neuron in (1)] was the uniformly sampled
noise from 0.2 to 1. The simulated phoneme signals were of
variable length between 3 and 26 frames. The results were the
average recognition level of 93.81%, with a standard deviation
of 2.62%.

In real phonemes, both noise and signal activation were
different than in the assumed uniform noise model in Exam-
ple 1, but the simplification used in Example 1 is useful to
demonstrate the properties of the concurrent SDAKG.

B. Scaling Factor

We argued that, since, in the database, we have sequences
of various lengths, the longer sequences can accumulate more
signals, and the effect of the noise signal is stronger than in the

Fig. 2. Histogram of the tested sequence length.

Fig. 3. Scale factor as a function of the input number.

shorter sequences. To offset this effect, we tried to gradually
reduce the maximum increment in the accumulated signal
strength due to the noise for longer sequences. We related the
rate of the decrease to a normalized integral from the sequence
length histogram. In the test data, the average sequence length
was 8.85, its standard deviation was 4.47, and its histogram
was shown in Fig. 2.

Using the normalized integral from the histogram of the
length, we obtained the following scaling factor for each
consecutive input in the synaptic gates network:

S f (l) = 1 −
∫ l

0 f (l)dl∫ lmax

0 f (l)dl
(6)

where l corresponds to the location of the synaptic gate from
the beginning of the stored input sequence (input number), lmax

is the maximum length of the sequence in SDAKG memory,
and f (l) is the frequency of the input sequences of the length l.
The obtained scale factor vector for a given distribution of
phonemes lengths was as follows:

S f = [0.97, 0.92, 0.86, 0.79, 0.52, 0.36, 0.21, 0.17, 0.17,

0.17, 0.17, 0.14, 0.10, 0.07, 0.07, 0.07, 0.07, 0.05,

0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0].
Fig. 3 shows the values of the scale factor as a function

of the input number. As we can see, the longer sequence can
experience lower scale factor values.

STARZYK et al.: CONCURRENT ASSOCIATIVE MEMORIES WITH SYNAPTIC DELAYS 5

TABLE I

RECOGNITION RATES FOR VARIOUS LEVELS OF NORMALLY DISTRIBUTED
NOISE WITH VARIOUS MEANS AND STANDARD DEVIATIONS

When the scale factor is used, the gate input activation level
is obtained from (7) for all inputs simultaneously

I t
gi = max

(
at−1

g(i−1) ∗ w(i−1)i + S f (i) ∗ at
ni , I t−1

gi

)
−S f (i) ∗ nav . (7)

The next few examples show the effect of using the scale
factor on sequence recognition.

Example 2: We tested the effect of the scaling factor on the
recognition rates for 100 runs of simulation with 47 phonemes,
organized as in Example 1. After using the obtained scale
factor to weigh the input signals, the average recognition
rate was improved from 93.81% to 99.76%, with a standard
deviation of 0.72%.

Example 3: In this example, we tested how the recognition
level is affected by changes in the noise and signal levels.

When the noise was increased to a uniform noise between
0 and 0.6, the average recognition level after 400 runs of the
simulation was dropped to 94.42%, with a standard deviation
of 2.63%. Finally, when the noise was increased to a uniform
noise between 0 and 0.8, the average recognition level after
400 runs of the simulation was dropped to 50.45%, with a
standard deviation of 5.96%.

An additional test was performed with the noise level
returned to a uniform noise between 0 and 0.4, and the useful
signal was noisier and uniformly sampled between 0 and 1.
After 400 runs of simulation, the correct recognition was
99.27%, with a standard deviation of 1.23%.

C. Normal Noise Distribution

The second set of tests was performed, assuming that both
the signal and the noise have normal distributions. We assumed
that the signal has a normal distribution with zero mean and
the standard deviation equal to 1. Noise signals had means and
the standard deviations, as shown in Table I. Table I has the
average recognition rate results of 400 simulation runs each.

The recognition rates are sharply reduced when the two
distributions overlapped. The reason for such a dramatic drop,
when the difference between the mean values is reduced to 1,
is that there are many more synaptic delay gates that receive
the noisy input than the number of gates that receive the
signal input. With numerous noise signals, some of them
receive signal strength higher than the correct input and cause
misclassification.

Fig. 4. Scale factor as a function of the input number.

Fig. 5. Histogram of the sequence length and the scale factor vector.

D. Effect of Sequence Length Distribution

The next group of tests was performed to check how
variations of the sequence length affect the recognition results.

In the first test, short sequences (of the lengths lower than
the median length of all sequences) were replaced by the
longer ones giving the scale factor vector, as shown in Fig. 4.
The average recognition rate for mean = 3 and std = 2 was
60.48%, which is lower than for the corresponding case
in Table I (68.4%).

Equally unsuccessful was the increase in the number of very
short sequences with the scale factor vector, as shown in Fig. 5.
The average recognition rate for mean μ = 3 and the standard
deviation σ = 2 was 58.81%, which is lower than for the
corresponding case in Table I.

Since Figs. 4 and 5 are obtained like Fig. 3 using (6), they
reflect the statistical distribution of the length of the analyzed
sequences in the data set, and their shape may be used to obtain
the optimum value of the scale coefficient. From its definition,
we see that the scale factor depends on the distribution of the
sequence length and corresponds to the probability of finding
sequences longer than a given length. In general, the optimum
scale coefficient depends on the distribution characteristic for
a given database and should be recomputed depending on data.

E. Power of Scale Factor Vector

Since differentiation of the scale factors improved the recog-
nition rate, we have raised the scale factor vector to various

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE II

RECOGNITION RATES IN % FOR VARIOUS LEVELS OF POWER SCALING
FACTOR VECTORS FOR THE NORMALLY DISTRIBUTED NOISE

WITH SELECTED MEANS AND STANDARD DEVIATIONS

powers α between 1 and 8. Thus, the gate input activation
level is obtained from (8) for all inputs simultaneously

I t
gi = max

(
at−1

g(i−1) ∗ w(i−1)i + Sα
f (i) ∗ at

ni , I t−1
gi

)
− Sα

f (i) ∗ nav (8)

where α is determined experimentally.
The results shown in Table II indicate that the optimum

value of the scaling factor power α depends on the type of
distribution of the training data. This value is smaller for more
narrow noise distributions (comparing to signal distribution)
and is larger for a broad noise distribution with larger values
of the standard deviation.

When the mean value is very close to the mean value of
the signal, good recognition may be obtained with a smaller
value of α. However, no matter what was the distribution,
selecting power greater than 1 improved the results, in some
cases, vastly, e.g., for μ = 4 and σ = 3, the recognition
was improved by 15.26%, and for μ = 3 and σ = 2,
the recognition was improved by 11.68%. On the other hand,
using too large values α may lower recognition rates for noise
distributions close to the signal distribution with the small
standard deviation σ ; for instance, for μ = 0.5 and σ = 0.125,
the recognition was dropped by 15.77%.

The important question is if the optimum power scaling
factor improves recognition for all values of μ and the given σ .
This question is important when a distribution of a given
standard deviation is getting closer to the distribution of the
signal. Table III shows the test results for the power scaling
factor set to 2.

The results were better in most cases than when no scaling
factor was used (compare with Table I).

The cases when the noise standard deviations are higher
than the standard deviation of signals are more important for
phoneme distribution since the number of noisy signals is
many times larger than the number of useful signals for a
given phoneme. With power α = 2, the scale factor vector
results in a much smaller influence of the longer sequences.

F. Covariance-Based Similarity

Since the real data, distributed in multidimensional space,
are often characterized by a multivariate normal distribution

TABLE III

RECOGNITION RATES FOR THE POWER OF SCALING FACTOR VECTORS
SET TO 2 FOR NORMALLY DISTRIBUTED NOISE WITH THE

SELECTED MEANS AND STANDARD DEVIATIONS

Fig. 6. 2-D distribution of the signal and the noise for testing of the
covariance-based similarity of test sequences.

with the mean value vector μ and the covariance matrix �,
we tested the effect of changes in the similarity between points
that result from various covariance matrices. We then tested
how these changes in covariance-based similarity affect the
sequence recognition in SDAKG structures.

To simplify our discussion and illustrate it with the plots
of data, we consider a 2-D case and assume that the noise
signals are generated by the multivariate normal distribution
with zero mean vector μn = [00], and the covariance matrix
is characterized by σn

�n =
[

σn 0
0 σn

]
. (9)

The signal data are generated using the mean vector
μs = [μ0], and the covariance matrix is characterized by σs

�s =
[

1 0
0 σs

]
. (10)

Fig. 6 shows an example distribution of the noise signal
with μn = [0 0] and �n = [

10 0
0 10

]
and the signal distribution

with μs = [5 0] and �s = [
1 0
0 3

]
that follow these simplified

conditions.
In covariance-based similarity, we calculate the similarity

of the input test vector x to the noise and the signal and set
the activation level of the input neuron at time t using

at
ni = e− 1

2 (x−μ)T �−1(x−μ). (11)

STARZYK et al.: CONCURRENT ASSOCIATIVE MEMORIES WITH SYNAPTIC DELAYS 7

TABLE IV

RECOGNITION RATES WITH α =2 FOR THE NORMALLY DISTRIBUTED
NOISE WITH SELECTED MEANS AND STANDARD DEVIATIONS

Table IV shows recognition rates in % for various values
of μs and σs . As we can see in 2-D space, the recognition is
more robust than in the 1-D case, whose results were presented
in Tables I–III. Even with a total overlap of the noise and the
signal distributions (for μs = 0 and σs = 1), the sequence
recognition using concurrent SDAKG is over 73% correct.

If the distribution of signal samples is more concentrated,
as in the case when σ is smaller, the recognition correctness
improves. Separation of mean values also helps but less
than the concentration of samples in the signal distribution.
This property will facilitate the recognition of speech signals,
as noise signals will not be so much concentrated as a useful
signal.

IV. TESTS ON SPEECH DATA SET

In practical tests, the developed associative memories were
tested on a speech data set [15]. We cut all samples of
phonemes to the maximum number of 10 frames to sim-
plify numerical calculations. Thus, each sample of phoneme
consists of various numbers of frames (from 3 to 10) after
the length of each sequence was limited to 10. Each frame
consists of 39 factors: 13 Mel Frequency Cepstral Coefficients
(MFCCs) [16], 13 first derivatives of MFCC, and 13 second
derivatives of MFCC. MFCCs are widely used in automatic
speech and speaker recognition. They were introduced by
Davis and Mermelstein [16] in the 1980s and have been the
state of the art ever since.

A. Adjusting the Sequence Length

Phonemes in the selected database are of variable lengths
changing from 3 to 801 frames. This makes the task of
phoneme recognition more difficult than when the sequence
length is more uniform. To obtain all sequences with an equal
number of frames, we stretch and compress the sequences,
respectively.

1) Sequence Stretching: Let us assume that we have N
elements of the original sequence. We need to obtain a new
sequence with a bigger number of elements (M > N).
To stretch the sequence, the values of a longer sequence
are computed based on the values of the original (shorter)
sequence.

First, virtual indices of the new sequence elements (in the
index space of the original sequence) are computed. If the
indices of the original sequence are from 0 to N − 1 (and

from 0 to M − 1 in the new sequence), then the virtual index
v j is computed from

v j = j ∗ N − 1

M − 1
(12)

where v j is a virtual index mapped from the new sequence
to the index space of the original sequence (where j changes
from 0 to M − 1); j is an index of the longer sequence; N is
the number of elements of the original sequence; and M is the
number of elements of the new sequence.

When a virtual index is a real number, this number is used
to calculate an interpolated value from two elements of the
original sequence. Elements in the new sequence are calculated
from the following formula:

b j = ai ∗ (i + 1 − v j) + ai+1 ∗ (v j − i) (13)

where i < v j < i + 1.
In the case when the virtual index v j is an integer (e.g., for

the first and last elements in the sequence), then the new
element in the longer sequence is equal to

b j = av j (14)

where ai and ai+1 are the values of two nearest elements
(from the original sequence) to a virtual index v j where i
is lower than v j and i + 1 is bigger than v j ; b j is the value
of an element in the new longer sequence; i is an index of
the original sequence; and j is an index of the new longer
sequence.

Example 4: Assume that the original sequence contains
three elements (0.5, 3, 1), and we want to get a sequence
consisting of four elements. The virtual indices computed
using (12) are 0, 0.67, 1.33, and 2, and new coefficients
computed from (13) and (14) are 0.5, 2.17, 2.33, and 1.

Although the example that we gave computed elements of a
scalar sequence, the similar sequence stretching can be applied
to a sequence of vector values of the same dimension.

2) Sequence Compression: If we have the original sequence
with the number of elements N > M and we want to compress
this sequence to the sequence of M elements, we use the
following process. First, we must obtain the virtual indices
of the new elements of the sequence. For this purpose,
we use (12).

Elements in the new sequence are calculated from the
following formula:

b j =
∑
i∈S j

ai ∗ wi j (15)

where Sj is a set of indices of the old sequence which fulfills
the following condition:

|v j − i | < t (16)

and wi j is a weight that can be calculated from the following
formula:

wi j = w∗
i j∑

k∈S j
w∗

k j

(17)

where

w∗
i j = 1 − |v j − i |

t
(18)

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE V

STRUCTURE OF THE SEQUENCE OF NEURAL NETWORKS
USED IN THE EXPERIMENT

t is a step size calculated from

t = N − 1

M − 1
(19)

v j is a virtual index mapped from the shorter sequence to
the index space of the original sequence, ai is a value of the
original sequence, b j is a value of the new shorted sequence,
i is an index of the original sequence, j is an index of the new
shorted sequence, N is a number of elements of the original
sequence, and M is the number of elements of the new shorted
sequence.

B. Experiments on All Classes of the Resampled Sequences
of Phonemes

The following experiments were conducted on a set of all
47 phonemes treated as separate classes. Each class contained
a different number of sequences with a different number
of frames taken from the database [15]. After resampling,
(stretching or compression) sequences are represented by
matrices 7 × 39, where 7 represents the number of frames
after resampling and 39 represents MFCC factors with first and
second derivatives. The data set was divided into the training
set, which contains 202 515 sequences, and the test set, which
contains 103 093 sequences.

First, a deep neural network was trained on the training
set to recognize individual frames in each of 47 phonemes
based on 39 MFCC factors obtained from separate frames.
This deep neural network was constructed using the Keras
library [16] (with TensorFlow backend) and contains eight
layers, including seven layers with 500 neurons and the last
output layer with 7 ∗ 47 = 329 neurons (see Table V).

The first layer of the deep neural network is connected to the
39-D input. In the last (output) layer, the sigmoid activation
function was used, while, in the other layers, the rectifier
activation function (“relu”) was used. The network was trained
using the binary cross-entropy loss function, Adam optimizer,
and accuracy metric. Finally, the network structure with trained
weights was saved for future use. This configuration was found
experimentally. To assess the quality of the trained network,
we used the standard procedure of dividing the data into

TABLE VI

RECOGNITION RATES IN % OF SDAKG AND LSTM NETWORKS
FOR A DIFFERENT NUMBER OF DAMAGES

training and validation sets in proportions of 2/3 and 1/3,
respectively. We determined that the specified network gave
the maximal level of validation accuracy.

In the following test, the outputs of the previously trained
deep neural network were used to activate SDAKG or LSTM
networks [12] used for sequence recognition in the whole
47 phonemes data set. As demonstrated in [11], the symbolic
SDAKG was superior to LSTM in recognition of damaged
sequences. Two experiments were designed to check if such
properties apply to the concurrent SDAKG that uses real
number input vectors instead of symbolic inputs.

In this experiment, the eight-layer deep neural network was
used to obtain similarities of the frame to different synaptic
gates that represent different steps of phonemes. The outputs of
the last layer of the deep network that contains 329 gates were
used as inputs to SDAKG networks and LSTM networks for
the comparison of these networks in the sequence recognition
task. The LSTM network architecture consists of 329 cells that
represent elements of sequences recognized by the deep neural
network and one fully connected layer with 47 neurons, each
to recognize one class of phonemes. The number of cells of
the LSTM network was selected to match the number of the
synaptic delay gates in SDAKG.

To achieve comparability between both these networks,
the fully connected layer trained using the pseudoinverse
method was added on the top of the SDAKG network in
the following way. After SDAKG simulations, the values of
SDAKG gates were taken as the input to a fully connected
layer. This fully connected layer has 329 inputs and 47 outputs
that represent classes of phonemes. The layer is trained using
the states of gates after SDAKG simulation on the training
data. Both networks were tested on test data sets used as
input of the deep neural network, while the outputs of the
deep network were inputs of SDAKG and LSTM networks.

After the test on clean test data sets, the data were damaged
in the following way. In the beginning, the noise sets were
created for each class of phonemes. These noise sets contain
foreign frames that do not belong to a current data set
but belong to all other data sets. For each sequence in the
original test data set, a damaging operation is as follows. First,
the positions of frames in the damaged sequence related to the
number of damages are chosen randomly. In the second step,
the randomly chosen foreign frames from the noise data sets
are used to replace the original frames in the sequence.

Table VI shows the results of SDAKG and LSTM networks.
The LSTM network was trained with the same number of
cells as the number of gates in the SDAKG network in
order to achieve comparable results with the SDAKG network.

STARZYK et al.: CONCURRENT ASSOCIATIVE MEMORIES WITH SYNAPTIC DELAYS 9

TABLE VII

RECOGNITION RATES OF SDAKG AND LSTM NETWORKS WITH
1000 LSTM CELLS FOR A DIFFERENT NUMBER OF DAMAGES

TABLE VIII

RECOGNITION RATES OF SDAKG AND LSTM NETWORKS WITH

1000 LSTM CELLS FOR A DIFFERENT NUMBER OF DAMAGES

(WITH THE DEEP NEURAL NETWORK ON THE INPUT AND
THREE DENSE LAYERS WITH DROPOUTS ON THE

OUTPUT OF BOTH NETWORKS)

The results for LSTM were obtained using the output of the
network after examination of all frames.

The results presented in Table VI show that, for the
same number of LSTM cells as SDAKG gates, the SDAKG
networks gave better results in the recognition of damaged
sequences.

The next experiment was conducted using 1000 LSTM cells
instead of 329. As demonstrated in Table VII, the LSTM
networks with these parameters gave better results than the
SDAKG networks for damages between 0 and 2. When the
number of damages was higher than 2, then the SDAKG
networks gave better results.

C. Experiments With the Three-Layer Perceptron on the
Output

New series of experiments were conducted with the addition
of three dense layers with dropouts on the output of both
concurrent SDAKG and LSTM networks instead of one per-
ceptron layer learned using the pseudoinverse method. On the
output of the LSTM network, two dense layers with the
number of neurons equal (1000 and 47) and two dropouts
before each of them was added and trained together with
LSTM. On the output of the SDAKG network, three dense
layers with several neurons equal (550, 1000, and 47), and
two dropouts between them were added and trained. These
final dense layers were optimized separately for the SDAKG
and LSTM networks. Table VIII shows the results of the
described experiments, namely, an increase in accuracy in
both the networks, but, in the case of the SDAKG networks,
the increases were higher, and the results are now comparable
for data without any damages. In the case of damages, using
SDAKG gave better results than LSTM.

D. Experiments Using Convolutional Neural Networks on the
Input

To obtain better results of both networks (SDAKG and
LSTM) and achieve better SDAKG advantage on data with

TABLE IX

OBTAINED MODEL OF THE 1-D CONVOLUTIONAL NEURAL
NETWORK AFTER A SERIES OF EXPERIMENTS

damages, the 1-D convolutional neural network was used
instead of a deep neural network.

First, we designed a 1-D convolutional neural network
for the recognition of individual sequence frames, aiming
at better recognition accuracy than the deep neural network
model obtained earlier. The number of layers and layer types,
the number of neurons, kernel sizes, and other parameters of
the convolutional network were optimized.

The model of the obtained 1-D convolutional neural network
presented in Table IX gave 49.38% recognition accuracy of
individual frames, while the deep neural networks used earlier
had 48.08% recognition of individual frames of sequences.

This model has 39 inputs and 329 outputs, as in the earlier
eight-layer deep neural network. The training process was
conducted using the binary cross-entropy loss function, Adam
optimizer [17], [18], and accuracy metrics. Since the model
gave better results for individual frames, it could be used as
input of SDAKG and LSTM networks to compare them. The
final tests were conducted to compare LSTM and SDAKG
networks using the obtained 1-D convolutional neural network
(see Table IX) on the input and a few dense layers with
dropouts on the output of both networks, as in the previous
experiments.

On the output of the LSTM network, two dense layers
with the numbers of neurons equal to (1000 and 47) and two
dropouts before each layer were added and trained together
with LSTM. On the output of the SDAKG network, three
dense layers with the numbers of neurons equal to (550, 1000,
and 47) and two dropouts between these layers were added and
trained. Table X shows the final results of these experiments.

Both these networks gave better accuracy than in experi-
ments described in Sections IV-B and IV-C for the test data
with and without damages with the advantage of SDAKG
memories in all cases.

V. TESTS ON THE SIGN LANGUAGE DATA SET

To extend the verification of the model performance on
real noisy data, we tested it on the Australian Sign Language
data set [20]. We used the methodology analogous to the one

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE X

RECOGNITION RATES OF SDAKG AND LSTM NETWORKS WITH
1000 LSTM CELLS FOR A DIFFERENT NUMBER OF DAMAGES

(WITH THE CONVOLUTIONAL NEURAL NETWORK ON THE

INPUT AND THREE DENSE LAYERS WITH DROPOUTS

ON THE OUTPUT OF BOTH NETWORKS)

applied to the speech data. In this case, the data consist of
samples of 95 symbols recorded on five signing persons with
the aid of the Nintendo Power Glove device.

A. Network Architecture and Results of Sequence Damaging

The particular signs are represented as variable-length
sequences of vectors of 11 numerical parameters.
The sequence length ranged between 6 and 4494, but
most of the sequences were in the range of 40–50 frames.
To adapt the data to our experiments, we adjusted the sequence
length using the procedure described in Section IV-A. Taking
into account the specifics of data, we could not make the
sequences too short because this leads to losing precision.
On the other hand, we wanted to avoid too long sequences
because, in the applied system of coding input data, this leads
to a large number of units in the SDAKG and the compared
LSTM networks. We chose 20 frames per sequence as a
compromise between the data precision and the network size.

For processing with the SDAKG network, the original data
were encoded with a deep neural network. In this case, we used
a six-layer network with 11 inputs and 1900 outputs, which
results from the product of the number of symbols and the
number of frames (95 ∗ 20 = 1900). The number of units in
each of the hidden layers was 2000. This network encodes the
class of the symbol and the number of frames for a given input
vector. The network configuration was identified analogously
as in the previous case, i.e., on the basis of a validation
error.

The further experiment is analogous to the experiment for
the network presented in Table V. We trained the SDAKG
network based on the encoding generated with the deep neural
network. The SDAKG was followed by the fully connected
layer to recognize the symbol after processing the whole
sequence of frames. We analyzed the network performance
after damaging the input data. The damaging procedure was
analogous to what we did in the case of the speech data. The
results are compared with the results obtained with the LSTM
network, which is preceded by the deep network, and followed
by one dense layer used for classification. This experiment
shows that the SDAKG network is more resistant to damages
in input data than the LSTM network (see Fig. 7).

In the case of undamaged data, the results are very similar
for both models, but, with the growing number of damages,
the results of LSTM begin to deteriorate quickly, while the
SDAKG results deteriorate much slower.

Fig. 7. Comparison of the SDAKG and LSTM network performances on the
Australian Sign Language data [20] with respect to the number of damages
in the input signal.

Fig. 8. Average times of processing of a single sequence of the SDAKG
and LSTM networks.

VI. PROCESSING SPEED

An essential factor in each computational model is its
processing speed. To estimate the performance of the SDAKG
network in terms of speed of data processing, we compared
results for both the SDAKG and the LSTM networks. Signal
preprocessing involves adjusting sequence length by stretch-
ing (13) or compression (15) operations, and its computational
effort is proportional to the input sequence length. For a given
range of sequence length variability, the worst case effort is
proportional to the length of the longest sequences, and it
grows linearly with the sequence length. After resampling, all
sequences are represented as sequences of vectors. Each such
vector is processed by a deep neural network and outputs of
the network update gate activation levels simultaneously of
SDAKG structure using (7), so the processing time depends
linearly on the number of sequence elements. Since, after
the preprocessing stage, all sequences have the same number
of elements, the processing time of the SDAKG algorithm
is almost linear and proportional to the number of sequence
elements.

To test the computational time complexity of the processing
of a single sequence, we measured the performance of the net-
works for the different numbers of symbols to be recognized.
As already discussed, in the presented experiments, the num-

STARZYK et al.: CONCURRENT ASSOCIATIVE MEMORIES WITH SYNAPTIC DELAYS 11

ber of symbols (assuming a constant number of frames per
symbol) defines the size of the SDAKG network. We used
20 frames in each simulation and the number of symbols
ranging between 10 and 90. Thus, the resulting number of
network units was ranging between 10 ∗ 20 = 200 and
90∗20 = 1800. The compared LSTM network in each step of
the experiment had the same number of units as the SDAKG
network. Fig. 8 shows the average times of processing of a
single sequence in seconds. From the time analysis plot shown
in Fig. 8, we can see that, although SDAKG is slower than
LSTM, its time complexity is almost linear, so it can be applied
to recognize long sequences.

The implementation of the SDAKG network, used in the
experiments, is in pure Python with the NumPy library,
while the LSTM network comes from the Keras library with
TensorFlow backend (CPU version). The difference in imple-
mentations may explain the difference in execution speed,
as presented in Fig. 8.

VII. CONCLUSION

This article presented the organization and functionality of
the new concurrent associative memories with synaptic delays.
This work described an extension of the symbolic form of
SDAKG, where the inputs were represented by sequences of
symbols (e.g., words) instead of vectors of real sensory data.
SDAKG structures are easy to organize and train and are
robust to distortions of input data.

Several practical issues, including the effect of noise, vari-
able length of input sequences, and weight adjustment for the
input gates, were considered in order to deal with real-world
data. This form of associative memories can be applied in
combination with deep neural networks to solve such symbol
grounding problems, such as speech recognition and other
forms of sequential memories triggered by sensory inputs.

Several series of experiments on real-world data were
conducted using this tool. The best results for speech data
were obtained when 1-D convolutional neural networks for
recognition of individual frames (elements of sequences) were
used as input to the SDAKG network. Experiments on both the
speech data set and the sign language data set demonstrated
SDAKG’s advantage over LSTM networks in the case of
damaged data. From the analysis of the data processing speed,
we can conclude that the SDAKG networks could be handy
for real-time recognition tasks of sequential inputs.

REFERENCES

[1] J. R. Binder and R. H. Desai, “The neurobiology of semantic memory,”
Trends Cognit. Sci., vol. 15, no. 11, pp. 527–536, Nov. 2011.

[2] K. J. Lang, A. H. Waibel, and G. E. Hinton, “A time-delay neural
network architecture for isolated word recognition,” Neural Netw., vol. 3,
no. 1, pp. 23–43, 1990.

[3] D. L. Wang and B. Yuwono, “Anticipation-based temporal pattern gen-
eration,” IEEE Trans. Syst., Man, Cybern., vol. 25, no. 4, pp. 615–628,
Apr. 1995.

[4] L. Wang, “Learning and retrieving spatio-temporal sequences with any
static associative neural network,” IEEE Trans. Circuits Syst. II, Analog
Digit. Signal Process., vol. 45, no. 6, pp. 729–739, Jun. 1998.

[5] R. Sun and C. L. Giles, “Sequence learning: From recognition and
prediction to sequential decision making,” IEEE Intell. Syst., vol. 16,
no. 4, pp. 67–70, Jul. 2001.

[6] N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan,
“A fast and accurate online sequential learning algorithm for feedforward
networks,” IEEE Trans. Neural Netw., vol. 17, no. 6, pp. 1411–1423,
Nov. 2006.

[7] V. A. Nguyen, J. A. Starzyk, W.-B. Goh, and D. Jachyra, “Neural
network structure for spatio-temporal long-term memory,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 23, no. 6, pp. 971–983, Jun. 2012.

[8] A. Horzyk and J. A. Starzyk, “Fast neural network adaptation with
associative pulsing neurons,” in Proc. IEEE Symp. Comput. Intell.,
Honolulu, HI, USA, Nov./Dec. 2017, pp. 1–8.

[9] E. M. Izhikevich, “Which model to use for cortical spiking neurons?”
IEEE Trans. Neural Netw., vol. 15, no. 5, pp. 1063–1070, Sep. 2004.

[10] E. M. Izhikevich, “Polychronization: Computation with spikes,” Neural
Comput., vol. 18, no. 2, pp. 245–282, Feb. 2006.

[11] J. A. Starzyk, L. Maciura, and A. Horzyk, “Associative memories with
synaptic delays,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 1,
pp. 331–344, Jan. 2020, doi: 10.1109/TNNLS.2019.2921143.

[12] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[13] J. A. Starzyk, J. Graham, and L. Puzio, “Needs, pains, and motivations
in autonomous agents,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28,
no. 11, pp. 2528–2540, Nov. 2017.

[14] J. A. Starzyk and J. Graham, “MLECOG: Motivated learning embodied
cognitive architecture,” IEEE Syst. J., vol. 11, no. 3, pp. 1272–1283,
Sep. 2017.

[15] M. Szymański and J. Bachan, “Interlabeller agreement on segmental and
prosodic annotation of the jurisdict polish database,” Speech Commun.,
vol. 14, no. 15, pp. 105–121, 2012.

[16] S. Davis and P. Mermelstein, “Comparison of parametric representations
for monosyllabic word recognition in continuously spoken sentences,”
IEEE Trans. Acoust., Speech Signal Process., vol. ASSP-28, no. 4,
pp. 357–366, Aug. 1980.

[17] Keras. Accessed: May 8, 2020. [Online]. Available: https://keras.io/
[18] D. P. Kingma and J. Ba, “Adam: A method for stochastic

optimization,” 2014, arXiv:1412.6980. [Online]. Available:
http://arxiv.org/abs/1412.6980

[19] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” J. Mach. Learn. Res.,
vol. 12, pp. 2121–2159, Feb. 2011.

[20] M. W. Kadous. Australian Sign Language Signs Data Set. The
UCI Machine Learning Repository. Accessed: Apr. 20, 2020.
[Online]. Available: https://archive.ics.uci.edu/ml/datasets/Australian+
Sign+Language+sign

Janusz A. Starzyk (Life Senior Member, IEEE)
received the M.S. degree in applied mathematics and
the Ph.D. degree in electrical engineering from the
Warsaw University of Technology, Warsaw, Poland,
in 1971 and 1976, respectively, and the Habilitation
degree in electrical engineering from the Silesian
University of Technology, Gliwice, Poland, in 2008.

He has been an Assistant Professor with the Insti-
tute of Electronics Fundamentals, Warsaw Univer-
sity of Technology. He has been a Professor of
electrical engineering and computer science with

Ohio University, Athens, OH, USA. Since 2007, he has been the Head of
the Information Systems Applications, University of Information Technol-
ogy and Management in Rzeszów, Rzeszów, Poland. His current research
interests include embodied machine intelligence, motivated goal-driven learn-
ing, self-organizing associative spatiotemporal memories, active learning
of sensor–motor interactions, machine consciousness, and applications of
machine learning to autonomous robots and avatars.

Marek Jaszuk received the Master of Physics
degree from the Faculty of Mathematics and Physics,
Maria Curie-Skłodowska University, Lublin, Poland,
in 1997, and the Doctor of Physical Sciences
degree from the Faculty of Mathematics, Physics
and Informatics, Maria Curie-Skłodowska Univer-
sity, in 2002.

He has carried out numerous research projects
financed by the Polish National Science Cen-
ter, Krakow, Poland, Polish National Center for
Research and Development, Warsaw, Poland, and

other institutions supporting scientific activities. He has been an Assistant
Professor with the Department of Information Systems Applications, Uni-
versity of Information Technology and Management in Rzeszów, Rzeszów,
Poland, since 2004. His research focuses on modeling semantic memory in
cognitive systems and robot perception systems. He also deals with issues
related to processing and integration of data received from sensors and creating
representations of the environment by mobile robots.

http://dx.doi.org/10.1109/TNNLS.2019.2921143

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Łukasz Maciura received the Ph.D. degree in com-
puter science (computer vision specialty) from the
Silesian University of Technology, Gliwice, Poland,
in 2011. His Ph.D. thesis titled “Mosaicing of
Images From Capsule Endoscopy” was published
in Lap Lambert Academic Publishing, Saarbrücken,
Germany, in 2015.

He was an Assistant Professor with the Uni-
versity of Rzeszów, Rzeszów, Poland. He is also
a researcher experienced in computer vision and
machine learning. He is currently an Assistant Pro-

fessor with the University of Information Technology and Management in
Rzeszów, Rzeszów, where he was a Post-Doctoral Fellow. His research
interests contain computer vision, machine learning (especially deep learn-
ing and time-series recognition), human-computer interfaces (HCI), medical
informatics, and robotics.

Adrian Horzyk (Senior Member, IEEE) received
the M.S. degree in computer science from
Jagiellonian University, Kraków, Poland, in 1997
and the Ph.D. and Habilitation degrees in computer
science from the AGH University of Science and
Technology, Kraków, in 2001 and 2014, respec-
tively.

He has been a Deputy Team Leader of the CERN
Alice experiments and projects at the AGH Univer-
sity of Science and Technology since 2017. He is
currently an Associate Professor with the Faculty

of Electrical Engineering, Automatics, Computer Science, and Biomedical
Engineering, Department of Biocybernetics and Biomedical Engineering,
AGH University of Science and Technology. His current research interests
encompass the development of knowledge-based models and methods of
artificial intelligence and computational intelligence, associative and spiking
models of neurons and their networks, self-developing semantic associative
memories, new machine learning strategies and techniques, data science, data
mining, knowledge engineering methods, and cognitive systems.

Dr. Horzyk has been the Co-Founder and a member of the Polish Association
of Artificial Intelligence since 2009 and a Board Member of the Polish Neural
Network Society (PTSN) since 2011.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

