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Abstract

I built an analog very large-scale integration (VLSI) chip that learns in real-time. I have

designed and tested this network in a 2�m complementary metal-oxide-silicon (CMOS)

process. The chip was fabricated through the Metal-Oxide-Silicon Implementation Service

(MOSIS). This fabricated chip contains 12 neurons, each fully connected to the other 11

neurons, but with no self-feedback connection.

The goal of this research is to build a supervised-learning neural-network VLSI chip.

This neural chip could reside at a remote site unattended by a microcontroller, be battery

operated, and be able to adapt autonomously to a changing environment. The neural chip

has connection weights (or synapses) which are analog nonvolatile memories programmed

in the presence of ultra-violet light. The chip consumes ultra-low power (less than one

nW per synapse). Several other features of the chip distinguish it from previous work: the

feedforward nonlinear mapping proceeds concurrently with the training process in real time;

the weight modi�cations are performed in parallel and are calculated collectively as part of

the network.

I have successfully trained this chip to perform various mappings. The test mappings

performed by the chip have two inputs and one output with four hidden units recruited by

the network. The chip is presented with inputs and target outputs and proceeds to learn

the mapping from input space to output space. Additional memory on the chip allows any

or all of the input units to be enabled; similarly, the neurons can be con�gured as output

units or hidden units. The weights, teaching signals, neuron outputs, error units, inputs,
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and target outputs can all be displayed on a multisync monitor to aid in debugging while

the chip is being trained or run in feedforward mode. I show data of the chip learning.
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Chapter 1

Analog VLSI Supervised Learning

System

The medium is the message.

Marshall McLuhan

Understanding Media, 1964

Learning in arti�cial neural networks has received increased attention over the past several

years [27, 28, 30, 37, 53, 54]. The promise of neural networks to solve nonlinear mappings by

inference from a set of examples is largely responsible for this interest. Much work has been

done in software, but relatively less attention has been given to the actual implementation of

these learning networks in hardware [29, 45, 19]. Many researchers consider implementation

a straightforward translation of the algorithms onto the medium. In fact, disregard for the

fundamental constraints imposed by the medium is the reason that most neural architectures

never leave the digital world where they are conceived or tested. I believe that algorithms
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touted for their parallel and analog nature need to be implemented and tested in a medium

suitable for the task being solved. By the same token, the medium itself needs to drive the

formulation of new algorithms. As championed by Marshall McLuhan [41], \The medium

is the message."

1.1 Neural-Network Hardware Solutions: A Brief History

The implementation medium that I have used for my research is silicon; the implementation

uses complementary metal-oxide-silicon (CMOS) transistors run in the subthreshold

region. The low-power consumption in the subthreshold mode makes these devices ideal

for use in large-scale neural-network systems. In the past 10 years, many large-scale neural

systems have been built in silicon. These systems include peripheral sensing devices such

as cochleas [35, 38, 69] and retinae [14, 6, 47, 43, 39, 24], which mimic certain aspects of

low-level biological sensory-processing systems. A few of these chips are adaptive in the

sense that o�sets are adapted away or nonchanging sensory inputs are selectively �ltered or

inhibited [4, 15]. These low-level sensory chips can be characterized by their homogeneous

connection strengths; for example, each pixel of a silicon retina has the same connection

strength to a resistive processing layer as do all other pixels.

More general types of neural chips allow the connection strengths to be heterogeneous.

In addition, the inputs are typically less structured than are those received by the low-

level sensory chips. This class of general-purpose neural chips allows for extremely general

nonlinear mappings. Early types of these general-purpose neural-network chips had �xed

connection strengths [60, 61, 64]. Subsequently, a whole class of chips was introduced that

allowed the connection strengths to be modi�ed by an external controller, typically a per-

sonal computer [26, 56]. These chips came in many varieties: Some had nonvolatile analog

storage [26], others had volatile analog storage that required capacitor-refresh circuitry

[18, 48], and still others had digital weights stored in dynamic random access memory

(DRAM) cells [2].

Few neural chips have the learning paradigm imbedded in the network. An imbedded

algorithm implies that the learning algorithm is an intrinsic part of the network; the two|

network and learning algorithm|are integral and are inseparable. The idea of an imbedded
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algorithm is di�erent from a microcontroller running the learning algorithm on the same

chip. Imbedded carries the additional connotation that weight updates are calculated in a

similar manner as the feedforward mapping, and that these updates are parallel in nature.

The power of a neural network comes from the network's ability to process information

with relatively slow and inaccurate elements, but to perform the operation in a massively

parallel fashion [27]. In algorithms with imbedded learning paradigms, this same notion of

massively parallel computation is broadened to encompass the learning paradigm as well

[53].

Recently, a small class of networks has been built that actually imbeds the learning

paradigm in the network. Alspector and colleagues [2] build neurochips that use a Boltz-

mann type algorithm. In their implementation, the weights are stored digitally. The al-

gorithm alternates between feedforward and training phases. Other implementations of

imbedded learning chips store the weights on capacitors. In one implementation, the weights

are refreshed periodically [10]; in other applications, the weights are trained continuously

[68, 12].

Imbedded learning chips are necessary for the success of very large-scale neural sys-

tems. Consider a modestly large system of 106 synapses, each a nonvolatile analog memory.

We assume that each weight can be altered with a minimum pulse time of 50�sec. This

pulse time is the time required for Intel's electrically trainable analog neural network

(ETANN) [26], which uses a digital electrically programmable read-only memory

(EPROM) ash technology optimized for fast writing. Faster pulse times are certainly pos-

sible, but they carry a risk of permanently damaging the oxide to the oating node. With

such pulsing times, a sequential-weight-change architecture would require 50 sec for a single

weight increment or decrement of every synapse of the entire synaptic array. In a scheme

that has completely parallel updates of the weights, the time to increment or decrement all

the weights would be only 50�sec. Of course, there is a tradeo� here between silicon area

and time, but if we want a large neural system to learn in real time, we require a silicon

area expenditure.
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1.2 Goal of Current Research

The goal of my research is to build a supervised-learning neural-network very large-scale

integration (VLSI) chip. Such a neural chip could reside at a remote site unattended by

a microcontroller, be battery operated, and be able to adapt autonomously to a changing

environment. With these goals in mind, the following features are a reasonable set of

characteristics that the chip should embody:

� The feedforward nonlinear mapping should proceed concurrently with the training

process; there exist many applications where down time in the feedforward processing

to allow for training could be deleterious to the system being controlled.

� The training process should proceed in real time; the real-time constraint is imposed

to avoid the complexities associated with batch or o�ine training, such as additional

memory to store weight updates for later training; also, it may be necessary to adapt

quickly to novel stimuli.

� The weight updates should be done in parallel; as the size of these networks grows,

parallel updates become increasingly necessary to keep training times down.

� The computation of weight updates should be calculated as part of a network; this

collective computation ensures that the same bene�ts associated with collective, emer-

gent properties achieved by neural networks can be applied to the calculation of weight

updates.

� The weights should be nonvolatile; if a remote system experiences a power failure,

information will not be lost if nonvolatile memories are used.

� The elemental components of the neural chip should consume very little power; if the

system is battery powered or if the system becomes very large, it is necessary to have

very low-power consumption by the elemental parts of the network.

1.3 Developments Presented Here

The chip presented here addresses the goals outlined in Section 1.2. The chip has the

learning paradigm imbedded in the network. In contrast to the work reviewed in Section 1.1,
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the connection strengths are nonvolatile; that is, the weights are preserved even through

long periods of power shutdown. In addition, feedforward processing and training occur

continuously and coincidentally. There are no explicit training and feedforward periods.

1.3.1 Learning Algorithm

The learning algorithm that I implemented was proposed by Pineda [53]; mathematically,

it has two layers: one layer is used for calculating the nonlinear mapping (feedforward

layer); the other is used for calculating the gradient of the weights to minimize the errors

of the �rst layer (error layer or feedback layer). The processing of the feedforward layer

is not strictly \feedforward," since this layer is fully connected. Nevertheless, I use the term

\feedforward" to describe the processing of this fully connected layer as an analogue to tra-

ditional strictly feedforward networks, because the static nonlinear mappings of traditional

feedforward networks are the only type of mappings being exploited by the fully connected

layer of the Pineda algorithm.

The dynamical system proposed by Pineda [53] to perform forward propagation and

backward propagation consists of three dynamical equations. The equation governing the

forward dynamics is

�x _xi = �xi +
X
j 6=i

wijf(xj) + Ii; (1:1)

where the f(xj) are saturating, monotonically increasing functions representing the input{

output relation of the summing nodes; the wij are the weights of the connections between

these nodes that are to be learned; the Ii represents external input supplied to the network;

the xs are the inputs to the sigmoid; and �x is the time constant of relaxation for this layer.

This equation de�nes the time-evolution of the state xi at unit i; the value of xi is fed

through the sigmoid, f(xi) to generate the node's output signal. The equation governing

the backward dynamics is

�y _yi = �yi + f 0(xi)(
X
j 6=i

wjiyj + Ji); (1:2)

where

Ji = Targeti � f(xi): (1:3)
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These Ji are referred to as the external error inputs. The schematic structure of the

connectivity described by Equations 1.1 and 1.2 is shown in Figure 1.1, which has three

planes. The arrows show how the inputs ow in this network. The top plane contains three

fully connected X units (excepting self-connections). These units collect inputs connected

to them by the thin lines and generate outputs that propagate to units connected to them

via the thick lines. The inputs are composed of the sum of outputs from the other X units,

with each output modulated by a weight before it contributes to the sum, and an input

supplied externally. TheX unit computes a squashing function, or compressive nonlinearity,

of this input.

The bottom plane consists of Y units. As in the X plane, thin lines are input lines and

thick ones are output lines. The same summation occurs on the Y unit input lines as for

the X units, but the Y unit does not perform a squashing function on its input. Rather,

it modulates its input by the derivative of the associated X unit. The external inputs

received by the Y units are error signals, which are the di�erences between targets and

X unit outputs.

The weights are shown in the middle plane. These weights are shared by the X and

Y processing layers. Notice, however, that the weights are transposed as used by the X and

Y layers (you can see the transpose by noting that the subscripts are switched between the

weights of the X-layer dynamics and the Y -layer dynamics in Equations 1.1 and 1.2). The

weight updates are now calculated from quantities that are local to the weights themselves.

The equation governing the weight dynamics is

�w _wij = yi � f(xj): (1:4)

As stated mathematically in Equation 1.4 and shown schematically in Figure 1.2, the weight

update is simply calculated as the output of the X layer multiplied by the output of the

Y layer. Using these dynamics, the weights follow a trajectory down the gradient of the

error surface (J2
i in Equation 1.3) in weight space. The weights are guaranteed to follow this

trajectory only if �x � �y � �w. For multiple patterns presented to the network sequentially,

the dynamics approximate gradient descent, if �x � �y � �p � �w, where each input is

presented for the duration �p; the error function minimized is now
P

patterns J
2
i . I describe
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an implementation of a modi�ed version of this network in this dissertation.

1.3.2 Backward Error-Propagation Algorithm

The main reason the Pineda algorithm was used instead of the more widely used backward

error-propagation algorithm (back prop) [54] is the exibility in network architecture

allowed by Pineda's algorithm. In Pineda's algorithm, input units, output units, and hid-

den units are speci�ed at run time rather than design time. With back prop, the network

architecture is �xed at design time. Another advantage of the Pineda algorithm is the con-

tinuous dynamics used by the entire system. These continuous dynamics allow for a natural

implementation in an unclocked analog VLSI system. On the other hand, as formulated by

Rumelhart and colleagues [54], back prop would require clocking if implemented. Also, in

back prop, processing proceeds in two distinct phases|a feedforward phase followed by a

training phase|whereas, in Pineda's algorithm, both phases occur concurrently. For these

reasons, I chose the Pineda algorithm to achieve the goals set out in Section 1.2.

1.3.3 Network Implementation in Analog VLSI

The algorithm implemented in silicon contains two layers, as in the Pineda network. One

layer calculates a nonlinear mapping from input to output space. This mapping is pro-

grammable and can be learned by the network from examples of input{output pairs. This

layer is referred to as the feedforward-processing layer. A second layer coexists with

the �rst and shares the weights with the �rst layer. The second layer is designed to compute

the updates for each weight in a collective and parallel fashion. It receives as input an error

signal that is the di�erence between the �rst layer's outputs and the externally supplied

targets. This layer is referred to as the feedback, or error-processing, layer. The two

layers process coincidentally and together form the entire network; the nonlinear mapping

and learning paradigm are imbedded in the same network.

The neural chip designed uses transistors operating in the subthreshold region. Thus, the

chip consumes very little power; for example, a network of 1000 neurons and 106 synapses1

would consume 5mW of power with a power supply rail of 5V and a current of 1 nA per

1This architecture is completely connected. This network is much larger than the system that I designed.
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synapse.2

The network is designed to be self-scaling. The nonlinear processing elements (referred

to as sigmoids) and the connection strengths (referred to as synapses) are designed such

that the sigmoid automatically scales the input by the number of synapses. If total input

level changes, but the normalized di�erential input remains constant, the output will not

change. The total input may change because more synapses are added, the output levels of

the other sigmoids change, di�erent scales of external inputs are applied, or the chip heats

up (causing larger current levels on the chip). Such input changes are rejected; only changes

in the di�erential signal a�ect the output and only in proportion to the fraction of the total

signal. This invariance achieved by the sigmoid is a result of the form of circuits used known

as normalized di�erential current-mode circuits. This type of circuit form allows for

an elegant, compact, and powerful CMOS subthreshold VLSI circuit solution.

I designed and tested the learning network in a 2-�m CMOS process. The chip was

fabricated through the Metal-Oxide-Silicon Implementation Service (MOSIS) [58].

This test chip contains 12 neurons, each fully connected to the other 11 neurons, but with

no self-feedback connection. Thus, there are 132 synapses. Each synapse contains a weight,

which is embodied by the di�erential voltage between two oating nodes; a structure used

for weight modi�cation; a four-quadrant multiplier for the feedforward network; another

four-quadrant multiplier for the error network; circuitry to calculate the training signal;

and two di�erential pairs used for scanning out the weights and the training signal. The

synapse is approximately 200�m square. The 12 fully connected neurons each contain a

sigmoidal unit (X unit) and an error-processing unit (Y unit). The sigmoidal unit is used for

the nonlinear mapping; the error unit is used to calculate the weight updates. The sigmoidal

unit and error unit, with two di�erential pairs for scanning out the state information of each

unit, occupy approximately a 200�m square.

Inputs and targets are scanned in on a single line onto sample and hold circuits. Each

input and each target has an associated 1 bit of memory called the enable bit. If an

input is enabled, the associated sigmoid receives an external input. If a target is enabled,

the associated error unit receives an error signal calculated from the target and the output

2This amount of current per synapse is more than adequate and could be made smaller if needed.
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of the associated sigmoid. These targets also specify the output units of the feedforward

network. Any unit that receives neither an external input nor a target is a hidden unit.

In this fashion, units can be con�gured at any time as input, hidden, or output units.

The weights, teaching signals, neuron outputs, error units, inputs, and targets can all be

displayed on a multisync monitor to aid in debugging while the chip is being trained or run

in feedforward mode. I successfully trained the neural chip to learn a mapping from two

inputs to one output for one, two and four distinct patterns in a training set.

1.4 Organization of this Work

In this dissertation, I discuss the design, implementation, and characterization of this learn-

ing chip. The text is organized as follows:

� Chapter 2: I discuss the method of nonvolatile analog weight storage. The weights

are charge stored on oating gates. Ultra-violet (UV) light is used to activate a

conductance between the isolated oating gate and the programming control node.

I present experimental results characterizing the UV-photoinjection devices. These

experimental results show that the conductance of the UV-photoinjection device varies

nearly linearly with intensity of UV exposure, and nearly linearly, as well, with exposed

edge length. I present results of UV attenuation with distance under metal shielding.

� Chapter 3: I discuss the basic design philosophy of the circuits used. The circuits are

designed in the normalized di�erential current mode. The basic computational entity

is di�erential currents, which are normalized by the total current. I introduce the

notation used to describe both voltages and currents through a �eld-e�ect transis-

tor (FET) run in the subthreshold mode. I analyze one of the basic building blocks,

the di�erential pair, from the normalized di�erential current-mode view-point. The

Delbr�uck current correlator [13], another very useful building block, is next analyzed.

I introduce several other interesting current-mode circuits, including a four-quadrant

sine-approximation circuit and an inverted di�erential-pair circuit. The methods used

to test inputs and outputs of these current-mode circuits are discussed also.

� Chapter 4: I introduce the synapse circuit. I present the weight representation, the

dynamics of the weights, the synaptic four-quadrant multiplier characteristics, and
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the learning nature of the synapse. The synapse circuit is an example use of the

UV-activated structures and device physics described in Chapter 2. I designed this

synapse to be an element in the larger learning system that requires continuously

adjustable, nonvolatile synaptic weights, continuous weight decays with a slow time

course, and an uninterrupted feedforward multiplication operation, while the weight

is being trained or allowed to decay. In this chapter, I analyze each of these functions

and show data from a fully functional synapse circuit.

� Chapter 5: I discuss the processing units in the feedforward layer and the error layer.

I show how the sigmoid is self-scaling relative to the input, how the sigmoidal gain

is varied, and how the sigmoidal output can be scaled. In addition, I show how the

processing unit of the error layer computes an approximation to the derivative of the

sigmoid. Finally, the dynamics of these circuits are considered.

� Chapter 6: I discuss the entire network. I introduce the new learning algorithm that

the network implementation performs, and show a variant of the gradient-descent

algorithm devised by Pineda [53]. Also, I discuss the stability of the network and

convergence of the new learning algorithm. I discuss various examples of successful

and unsuccessful learning tasks.

� Chapter 7: I conclude by showing how I have met the goals of this research, by

pointing to several drawbacks of the present design, and by outlining future directions

of research.

� Appendix A: I discuss in detail novel current-mode circuits which I invented, but

were not part of the learning chip. First, I present a subthreshold four-quadrant

sine-approximation circuit. This circuit uses the Delbr�uck current correlator, and

performs a sine computation to within 2 percent near minimax error. The second

circuit I discuss is an inverted di�erential pair. This circuit is similar in function to

a di�erential pair, but uses a di�erent approach to perform the function. This circuit

could also be used as a gain-control device.

� Appendix B: I discuss the stability of the X layer. The stability criteria for this

layer are complicated by the fact that I use diodes, rather than resistors, coupled with
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capacitors for this dynamical system. I show that the sigmoidal gain and the sum

of the weights to which a neuron connects are the relevant quantities that I need to

control to ensure global asymptotic stability of the X layer.
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Error Inputs (Ji)

External Inputs (I
i)

g X Units

g Y Units

g Weights

Figure 1.1 Network embodiment of Pineda's recurrent learning algorithm.

The network consists of two processing layers with equal number of units:

three feedforward-processing units or X units shown as large balls in the top

plane and three error-processing units or Y units shown as large balls in the

bottom plane. The thick lines represent outputs from each of the units. The

weights in the middle plane modulate the connections between one unit's out-

put and another unit's input. The feedforward layer receives external inputs;

the output of the X units is the output of the network. The error-processing

layer receives error inputs|errors calculated as the di�erence between top

layer's outputs and externally provided target outputs. This error layer cal-

culates gradients of the weights to minimize the error of the forward layer.
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Error Inputs (Ji)

External Inputs (I
i)

g X Units

g Y Units

g Weights

Figure 1.2 Computation of weight dynamics in the Pineda network. The

weights (middle plane) are adjusted in proportion to the product of the outputs

of the X and Y units at each weight.



14



15

Chapter 2

UV-Light Basics

There is a wicked inclination in most people to

suppose an old man decayed in his intellects. If a

young or middle-aged man, when leaving a company,

does not recollect where he laid his hat, it is nothing;

but if the same inattention is discovered in an old

man, people will shrug up their shoulders, and say,

\His memory is going."

Samuel Johnson

Boswell Life, V. 4, 1783

CMOS technology allows the simple construction of long-term memory structures in the

form of oating-circuit nodes that can store electrical charge for periods measured in years.1

1This chapter contains much of the same text and �gures that appear in an article written in collaboration

with D. A. Kerns [5].
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This capability is attractive for building adaptive, or learning, machines. In the past, CMOS

long-term-storage techniques have been primarily digital in nature, and commercial prod-

ucts such as EPROM and electrically eraseable programmable read-only memory

(EEPROM) digital memories have long been available. Recently, the same techniques have

been re�ned and extended to analog data storage (more than 1 bit of information per node)

in several applications [9, 11, 22, 26, 34, 43, 55, 65, 66],

The two main methods for programming oating nodes are Fowler{Nordheim tunneling

and hot-electron injection. Fowler{Nordheim tunneling requires high electric �elds, which

are achieved in practice typically by either very thin oxides or high voltages. Hot-electron

injection also requires high �elds which are achieved in practice typically by using heavily

doped junctions or high voltages. Several investigators, [22, 34, 43, 65, 66], have recently

demonstrated the use of a UV-light activated (UV-activated) mechanism to allow analog

programming of oating circuit nodes. Kerns [33] presents interesting applications of such

devices, including a UV-light dosimeter. The advantage of the UV-activated mechanism is

that it allows programming of oating nodes in a circuit without either high programming

voltages or a special CMOS fabrication process. In addition, the intrinsic physics of the

UV-activated mechanism provides time scales that are conveniently matched to the require-

ments of a learning system implemented in silicon. At room temperature, standard analog

silicon circuits can have time constants ranging from nanoseconds to seconds, whereas the

UV-activated mechanism spans time scales from seconds to megaseconds. Thus, more than

10 orders of magnitude in time scale are available in the same medium.

I present new experimental results characterizing the UV-photoinjection devices. The

new experimental results show that the conductance of the UV-photoinjection device varies

nearly linearly with intensity of UV-light exposure and nearly linearly with exposed edge

length, as well. Results of UV-light attenuation with distance under metal shielding are

presented.

2.1 The UV-Activated Mechanism

This section introduces the physical basis for the UV-activated mechanism, discusses the

�rst-order circuit description and shows the layout of the structure. A physical expla-
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Figure 2.1 UV-activated conductance energyband model. A simple band

diagram of the Si-SiO2-Si UV-sensitive structure: incident UV photons excite

a population of electrons from the valence band of Si to energies above the

conduction band of SiO2. Some of the excited electrons enter the oxide layer

and are swept across by the voltage gradient.

nation for the operation of the UV-activated structure comes from semiconductor band

theory. The �rst-order circuit description of the UV-activated devices consists of a ca-

pacitor in series with a switched conductance. The layout of the device consists of two

overlapping layers of polysilicon shielded everywhere by a layer of metal except where the

UV-activated conductance is desired.

2.1.1 Physical Model

The simplest physical explanation for the operation of the UV-activated mechanism comes

from semiconductor-energyband theory. The UV-activated structures are Si-SiO2-Si layered

structures in which the SiO2 presents a 4.2- eV energy barrier to electrons from the valence

band in Si to the conduction band in SiO2. When the structure is exposed to shortwave

UV light, the UV photons impart su�cient energy to the electrons in the Si valence band
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UV Light
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Figure 2.2 Cutaway view of the UV-activated structure. The

UV-activated conductance is shown as a resistor between the poly1 and poly2

plates. Either the poly1 or poly2 layer can be used as the oating gate.

to enter the SiO2 conduction band. These excited electrons support an electrical current

through the oxide (see Kerns [34] for a more detailed explanation of this model). Figure 2.1

diagrams this simple physical model; a cutaway view of a typical structure is shown in

Figure 2.2. When a �eld is applied across the SiO2, the barrier to electrons presented by

the SiO2 is lowered, which allows more electrons to overcome the barrier. This barrier

lowering is discussed in detail in [49].

2.1.2 Circuit Model

The simple physical model, coupled with the experimental measurements shown in Fig-

ure 2.4, leads us to a simple �rst-order circuit model for the UV-activated structures, as

shown in the inset of Figure 2.4 The capacitance of the structure is due to the parallel

plates of Si separated by the SiO2 dielectric, and the switched conductance models the

UV-activated electron current through the oxide.
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UV Window Metal Shield

Poly 2 Poly 1 Di�usion

Figure 2.3 Layout of the UV-activated structure. A layer of metal is used

to insulate sensitive circuitry from the e�ects of UV light. A hole in the metal

layer is used to target the UV light to particular structures.

A closer examination of the measured I{V curve shows that the simple �rst-order circuit

model is not perfect. There is a signi�cant and repeatable lower conductance near the origin,

within the �rst 100mV (corresponding to electric �elds of less than 2:5�104 V per centimeter

across the oxide layer). The inset plot in Figure 2.4 shows the measured I{V characteristics

of a UV-activated structure at low voltages; this picture suggests that the conductance in

our circuit model should be somewhat nonlinear. The attening of the I{V curve near the

origin may be due to some sort of trapping mechanism in the SiO2 layer [17, 50]. For many

designs, however, this nonlinearity is not detrimental.

2.1.3 Layout Geometry

The layout of a UV-activated device is simple; as implied by the circuit model, the device

is simply a capacitor that is exposed to UV radiation. Usually, one needs to consider

surrounding circuit structures, as well as the UV-activated structure. It is often necessary
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Figure 2.4 Measured current{voltage characteristics of the Si-SiO2-

Si structure. These characteristics indicate that a simple capacitance{

conductance model is a good �rst-order �t. The solid line in the larger �gure

represents averaged data. The nonlinear behavior for small oxide �elds is

shown in the blowup near the origin. Dots represent measured data, and the

solid curve is a nonlinear �t.

to shield surrounding circuitry from incident light to prevent undesired photocurrents at

p{n junctions. A standard layout technique is that of covering the entire chip with the

second metal layer, with windows cut in the metal shield to expose UV-activated devices

and possibly other photosensitive devices.

An important issue in the layout of UV-activated devices in a circuit is how far the UV

light can propagate under the metal shield layer to induce parasitic conductances. This

issue is discussed in Section 2.2.
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2.2 UV-Activated Conductance

To design UV-activated structures e�ectively, we must understand how the UV-activated conductance

varies with electrical, optical, and geometric parameters.

2.2.1 Electrical Behavior

As mentioned in Section 2.1, the conductance of the UV-activated device is nonlinear, par-

ticularly at low voltages. Although the physical mechanism for this nonlinearity is not clear,

the experimental data are well �t near the origin by a simple functional form:

I = Ileak+GV � V0 (G� g) tanh

�
V

V0

�
:

This �t curve is plotted in the inset of Figure 2.4 for the values G = 1:0� 10�16S, g = 3:0�
10�17S, Ileak = 9� 10�18A. The leakage-current term accounts for unwanted conductances

elsewhere in the circuit, perhaps due to light leakage.

2.2.2 Optical Variations

We might expect a variation in the observed UV-activated conductance with changes

in UV-light illumination. This variation is in fact experimentally observable, as shown in

Figure 2.5. The conductance varies nearly linearly with the energy density of the UV light

on the device. The reason for the departure from linearity is not clear.

2.2.3 Geometric Considerations

In designing a circuit that incorporates UV-activated structures, the layout of the circuit

is an important consideration for several reasons. The exposed perimeter of the upper

capacitor plate in the UV-activated structure dominates the conductive behavior of the

device. Indirect UV-light exposure can cause undesired UV-activated oxide currents and

can interfere with the operation of certain circuits.

2.2.3.1 Edge Length

The UV-activated conductance is dominated by the length of exposed edge and is essentially

una�ected by the area of the structure. The oxide thickness between silicon layers is typically
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Figure 2.5 Measured device conductance as a function of intensity. The

variation is slightly less than linear, following a power law of 0.93. All data

are for 254 nm UV light (4.8 eV); typical intensity ranges for EPROM erasers

are noted.

less than 50nm{far less than UV wavelengths{so UV light does not propagate between the

silicon layers. The polysilicon capacitor plates are thick (several hundred nanometers) and

so e�ectively attenuate the UV light, casting shadows on lower circuit structures. Because

of this shadowing e�ect and the inability of the polysilicon layers to act as a wave guide, the

only parts of the UV-activated structure where both silicon layers are exposed to incident

UV light are the edges of the upper polysilicon layer. I have veri�ed the edge dependence

experimentally. Figure 2.6 shows results for structures that have constant area, but have

varying perimeter. The conductance increases linearly with perimeter, nearly intersecting

the origin on extrapolation to zero edge length. Based on these results, the area contribution
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Figure 2.6 Measured device conductance as a function of edge

length: constant-area devices with di�erent edge lengths are compared.

UV-activated conductance is dominated by the total length of exposed poly

edge in the structure.

(per square micron) is less than 5 percent of the edge contribution (per linear micron).

For maximum conductance, a UV-activated structure should be built with as much

edge as possible: for a given area of silicon, long, narrow structures (rather than square

ones) maximize the UV-activated conductance. By controlling the perimeter and area, the

designer has independent control over both capacitive and conductive coupling strengths

for UV-activated structures.
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2.2.3.2 UV-Light Shielding

One of the most elementary problems that can arise in these and other optical-input circuits

is the optically induced leakage currents across p{n junctions in the circuit. The p{n

junctions can have leakage currents that vary from picoamperes in the dark to microamperes

in bright light, either UV or visible. Such drastic variations in junction leakage may not

be tolerable in many circuits. The designer should take precautions to shield the sensitive

circuits from undesired exposure. An e�ective technique uses the uppermost metal layer in a

multiple-metal fabrication process (for example, the metal2 layer in a MOSIS double-metal

process) to cover completely an area of sensitive circuitry. Windows in this metal-shield

layer allow UV light to enter only where desired.

Undesired oxide{leakage currents can also occur under UV-light exposure. Large oating

nodes have a correspondingly large area of exposure to UV radiation unless some sort of

shielding is provided. Again, metal shielding works well.

2.2.3.3 Indirect UV-Light Exposure

Even under a metal shielding layer, parts of a circuit can be exposed to UV light by reec-

tions from the metal shield and the substrate. The energy density of the UV light drops

o� with distance under the shield, as it is attenuated by spreading and absorption, but the

light-leakage region is of a substantial extent. I characterized this UV-light leakage using

an array of UV-activated test structures that were covered by a metal shield with windows

at various distances from the structures. Figure 2.7 plots the measured conductance as a

function of distance x from the edge of the window. If we assume a rectangular window

admitting UV light to the circuit, with a UV-activated device at some distance x away from

the edge of the window, we can model the leakage of UV light to the device by the following

simple model. First, only some fraction of the incident UV light is scattered in the proper

direction to propagate under the shield away from the window; hence, an \insertion loss"

factor is added at the edge of the window. Next, the UV-energy density lessens with distance

from the window due to spreading (same energy ux over a larger area) and absorption.

For a rectangular geometry, the preceding simple model of the UV-energy distribution in
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the test structures leads to the theoretical solid curve seen in Figure 2.7, given by

g = g0

Z
edges

E(s)ds;

where E(s) is the UV-energy density at position s, and g0 is a scale factor. The integral for g

is taken on only the edges of the UV-activated device; the area of the device has little e�ect,

as noted previously. Near the window, the measured conductance is approximately the same

as in open regions, whereas far from the window, conductance drops o� asymptotically as

e�x=�. The � found for my devices was 70�m. This parameter is likely to be dependent on

the fabrication process.

2.2.4 Time Constants

Often, it is desirable to build systems that adapt over various time scales. For example, in

a learning system, it is desirable to have the weights change relatively quickly for an input

from a training signal, and to decay at a much slower rate.

From the previous discussion, two di�erent methods for controlling such time constants

are readily available. The �rst method is to keep the UV-activated structures directly under

the UV-light window and to vary the perimeter of the top layer of polysilicon that is exposed

to UV light while keeping the area of the structure constant. In this way, structures with

di�erent time constants can be constructed. The second method for constructing adaptation

structures with di�erent time constants is to place the structures varying distances from

the UV-light window. By varying the distance from the window, we can create structures

of the exact same con�guration that have time constants that are considerably di�erent.



Figure 2.7 UV-activated test structure and measured conductance as a

function of distance from the window edge. (a) Diagram of UV-activated test

structures used to measure attenuation of UV light under a metal shield.

The windows were placed at various distances from the otherwise identical

UV-activated devices. (b) Measured UV-activated device conductance as a

function of distance from window edge. The discontinuity at the window edge

(distance = 0) is due to an insertion loss factor included in the model for the

structure.



27

Chapter 3

Current-Mode Circuit Basics

O! this learning, what a thing it is.

Shakespeare

The Taming of the Shrew

This chapter discusses the design methodology and several fundamental circuits that I

use to design the learning network. The technique that I use to design and analyze the

learning circuits is called normalized di�erential current mode. Unidirectional currents are

the basic computational entities; di�erences between two currents are the computational

quantities which may be positive or negative. Di�erential currents normalized by the to-

tal current yield a dimensionless quantity that represents mathematical variables in the

equations implemented by the circuits. These circuits are called normalized di�eren-

tial current-mode circuits. For a comprehensive description of current-mode circuits

and the translinear principle, see Andreou [3], Gilbert [20], Seevinck [57], or Vittoz [67].

This chapter introduces these basic computational constructs; however, it assumes a basic

understanding of the translinear principle, current-mode circuits, and MOS device behavior.
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The concept of normalization in this circuit form is powerful. The output of the circuit

is invariant to the level of the input. The input level can change over many orders of

magnitude and the output remains invariant; the circuit computes the same function with

respect to the normalized di�erential input for all absolute input levels. This normalization

feature allows us to build circuits that yield scalable networks or architectures (that is,

we can add more input units without modifying the output circuitry or the output bias

levels for the same static output functionality). The circuits are relatively insensitive to

temperature variations, which can cause the input current levels to change. In this chapter,

I show how this invariance is achieved; in subsequent chapters, I show how I use this same

invariance to design a larger current-mode system.

The basic building blocks of the learning chip use normalized di�erential currents for

both inputs and outputs. The circuits can be run in weak-inversion, moderate-inversion, or

strong-inversion regimes of the transistor, but the function computed might change. For a

description of these regimes, see any of a number of books on semiconductor device physics,

such as Sze [63]. Vittoz [67] deals extensively with the moderate-inversion regime. Most of

the analysis contained herein deals with the subthreshold regime and this regime is used as

the default.

First, I introduce the notation that I use to describe voltages and currents through

a FET run in the subthreshold mode. Then, I analyze one of the basic building blocks,

the di�erential-pair circuit, as a normalized di�erential current-mode circuit. The current-

correlator circuit is analyzed next. I discuss how the translinear principle is modi�ed for

FETs run in the subthreshold regime as compared with the bipolar junction transistor

(BJT), for which the principle was originally conceived. I briey introduce several other

interesting current-mode circuits, including a current-correlator follower, a four-quadrant

sine-approximation circuit and an inverted-di�erential-pair circuit and analyze them in de-

tail in Appendix A. Finally, I show several techniques that I use to test the current-mode

circuits.
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�(X)

XVg

Vd

Vs

Q

Figure 3.1 FET with relevant current and voltages. A voltage �(X) applied

from gate to source of the FET to yields a current X through the exponential

relation in Equation 3.1. Unless otherwise speci�ed, transistors are used in

saturation (that is, Vd � Vs is large enough to guarantee this condition).

3.1 Conventions Used for Normalized Di�erential Current-

Mode Circuits

When a FET is biased in the subthreshold mode, a stylized equation describing the I{V

relationship helps make analysis of current-mode circuits quite easy.

3.1.1 Subthreshold Regime

The dimensionless drain{source current through transistor Q of Figure 3.1 in saturation

can be described as

X � Ix
I0

= e�(X); (3:1)

where X is the dimensionless drain{source current (that is, the current through Q in units

of I0, the zero-bias current, of the device), and where �(X) is the dimensionless gate to

source voltage; that is,

�(X) = Vg � Vs (3:2)

in units of Vt, the thermal voltage. �(X) speci�es the gate and source voltage needed to get

a dimensionless currentX owing through transistor Q given the transistor is in saturation.

I use this stylized equation to take advantage of the translinear principle in order to get

a basic feel for the operation of a circuit. To get a more precise description of a circuit's

operation, we often must include the ine�ectiveness of the gate voltage in determining the
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barrier potential at the substrate surface, where now the voltage obtained for a current X

is given by

�(X) = �Vg � Vs; (3:3)

whereX is the dimensionless drain{source current, and Vg and Vs are the dimensionless gate

voltage and source voltage, respectively, in units of Vt. The factor � is a fraction (usually

in the range of 0.5 to 0.8) used to parameterize the e�ectiveness of the gate in changing the

barrier potential at the channel surface [42]. I show the e�ect that � has on the translinear

principle when I analyze the diode stack in Section 3.4.

Note that I have assumed that the device described by Equations 3.2 and 3.3 is in

saturation. When the device is not saturated, the contribution of the reverse current needs

to be considered as discussed by Boahen [7]; the current-correlator circuit is an example

circuit where the reverse current is signi�cant as shown in Section 3.3.

3.1.2 Normalized Di�erential Currents

In the circuits that I use in this dissertation, the computational entities are di�erences of

currents. Typically, both inputs to and outputs from these circuits are dual rail and carry

two unidirectional currents. The di�erence between these currents is normalized by the

total current; for example, the normalization of X+ �X� is

x � X+ �X�

X+ +X� : (3:4)

Normalized quantities are represented by lower-case letters and are dimensionless. Notice

that the normalized quantity, x, can range only from �1 to +1. I show how normalized

di�erential currents are used by analyzing the operation of a di�erential pair.

3.2 Di�erential-Pair Circuit

The current-mode di�erential-pair circuit shown in Figure 3.2 takes two input currents,

X+ and X�, and produces two output currents, Z+ and Z�. The arrowheads on each

line specify the direction of current ow. I place the constraint that the total input Xt =

X+ + X� is constant. In addition, Qbias is operated in saturation; that is, Vref is large
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Zt

Vref Vref

X+ Z+ Z� X�

V+ V�

Qbias

Vo

Figure 3.2 The di�erential-pair circuit. The di�erential pair is a basic

current-mode building block, which computes z = x. Inputs are X+ and X�.

Outputs are Z+ and Z�. Current directions are shown as arrowheads on each

line.

enough to guarantee that Qbias is saturated, and therefore, Zt = Z++Z� is a constant set

by the bias to Qbias.

It is straightforward to solve for the normalized di�erential output current as a function

of the normalized di�erential input current. We know that

X+ = eV
+�Vref ;

X� = eV
��Vref ;

Z+ = eV
+�V0 ; and

Z� = eV
��V0 :

Solving these equations for X and Z, we get

X+Z� = X�Z+: (3:5)

We can also easily obtain this result using the well known translinear principle (see

Gilbert [20, 21] or Seevinck [57]).
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We would like to solve for the normalized di�erential current output versus the normal-

ized di�erential current input. The normalized quantities we need are de�ned as

x � X+ �X�

Xt
and z � Z+ � Z�

Zt
; (3:6)

or, equivalently,

X+ =
Xt

2
(1 + x) and X� =

Xt

2
(1� x); (3:7)

and similarly for Z+ and Z�. Note that x and z can range from �1 to +1.

Substituting X+, X�, Z+, and Z� from Equation 3.7 into Equation 3.5, we obtain

z = x: (3:8)

The di�erential pair is the identity function when operated in the normalized di�erential

current mode, whereby the bias current, (that is, Zt), scales the total output current. Also

notice that the output is una�ected by the scale of the input current. This circuit converts

from the scale set by the input, Xt, to the scale set by the output, Zt. This invariance of the

output to the input scale is a powerful feature of the normalized di�erential current-mode

circuits, and is exploited in the design and operation of the learning network.

In the di�erential-pair circuit, the � of Equation 3.3 does not a�ect the operation of the

circuit.

Yc

Y+

Y�

Q1
If1

Ir1

If2

Q2
Y�

Y+

Figure 3.3 The current-correlator circuit. The inputs are Y + and Y � and

the output is Yc. The correlator output produces a bump of the input.
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Figure 3.4 Ideal behavior of the current correlator. The normalized input

is y, and yc is the normalized output.

3.3 Current-Correlator Circuit

The current correlator of Delbr�uck [13], shown in Figure 3.3, computes a quadratic function

or bump of the input (hence, the name bump circuit) and is useful in calculating the

derivative of a simoid-like function. The inputs to the bump circuit are Y + and Y �, and

the output is Yc. The normalized output current Yc
Yt

is

yc =
1

4
(1� y2); (3:9)

where

y � Y + � Y �

Y + + Y �
and yc � Yc

Y + + Y � :

Notice in Equation 3.9 that the output of the current correlator is not a di�erential signal,

but rather is simply single ended. Therefore the current correlator is not compatible with

the normalized di�erential current-mode scheme. However, this unidirectional current may

be used to set the scale for the the output of a normalized di�erential current-mode circuit.

The value of yc can range from 0 to 1=4.

To solve the circuit equations using the translinear principle for the current correlator,

I use a technique conceived by Boahen [7], in which both forward and reverse currents for a
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transistor are de�ned. Figure 3.3 shows the current correlator and all the associated forward

and reverse currents that I use in the analysis. Notice that transistor Q1 has two currents

associated with it, If1 and Ir1, whereas transistor Q2 has only the forward current, If2,

shown; Q1 is not necessarily in saturation; Q2 is in saturation, and its reverse current is

therefore zero. Using Kircho�'s voltage law (KVL) and the translinear principle,

If1 = Y +

Y �Ir1 = If2Y
+: (3.10)

The reason that the currents multiply in Equation 3.10 is that the associated node voltages

add as speci�ed by KVL; to convert to current, we exponentiate the voltages, giving us

currents that are multiplied.

Using Kircho�'s current law (KCL) and the de�nition of forward and reverse cur-

rents,

If1 � Ir1 = Yc;

If2 = Yc:

If1 and Ir1 are the forward and reverse currents of Q1, respectively. They are exponential

functions of the di�erence between the gate voltage and a source{drain voltage as determined

by the current. In the case of If1, we treat ground as the source. To obtain the reverse

current, Ir1, we treat the drain of Q1 as the source (see Boahen [7]).

Solving for Yc, we get

Yc =
Y +Y �

Y + + Y � : (3:11)

Substituting into Equation 3.11 for Y +and Y �de�ned as

Y + � Yt
2
(1 + y) and Y � � Yt

2
(1� y) (3:12)

yields Equation 3.9.

Figure 3.4 shows the normalized behavior of an idealized current correlator|actual

current-correlator circuits deviate due to the � e�ect and transistor mismatch.
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3.4 The Translinear Principle

The translinear principle is a powerful technique for analyzing quickly circuits whose ba-

sic elements exhibit an exponential relationship between current and voltage. Originally

conceived by Gilbert [20] using BJTs, the technique is equally valid for subthreshold FETs.

3.4.1 The � E�ect

One important concern when using FETs is the inability of the gate to determine directly

the barrier height at the channel as is the case for BJTs. If each FET is placed in its own

well with its source tied to the well, the translinear principle can be applied to these circuits.

For all other FET circuits run in the subthreshold regime of the FET, the presence of a

nonunity � necessitates a modi�cation in the application of the translinear principle. The

modi�cation is elucidated in an example in Section 3.4.2.

V1

V2

V3

X

Figure 3.5 The diode-stack circuit. The diode-stack circuit receives a cur-

rent input x and the resulting voltages V1 through V3 are analyzed.
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3.4.2 The Diode-Stack Circuit

Figure 3.5 shows a circuit that I analyze using a modi�ed translinear principle. When

analyzing one of the diode stacks, we get the following relationships:

ln(X1=�) = V1;

ln(X1=�+1=�2) = V2;

ln(X1=�+1=�2+1=�3) = V3: (3.13)

We introduce a function �(n; �), where n is the number of transistors in the diode stack:

�(n; �) =
1

�
+

1

�2
+ � � �+ 1

�n
=

1� �n

(1� �)�n
: (3:14)

Now, from Equation 3.13, using the function �(n; �), we see that X�(n;�) describes the

relationship between the voltage and the current at each node|for example, ln(X�(1;�)) =

V1. Thus, the application of the translinear principle is the same as in Section 3.3, but now

we raise the current variable to the function �(n; �), rather than squaring or cubing the

current variable.

�(In)

�(Out)

Y+

Y�

Figure 3.6 The current-correlator follower. The current-correlator follower

has an input voltage, �(In), which is followed by the output �(Out). The bias

current of the follower is the correlation of Y + and Y �.
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3.5 Other Current-Mode Circuits

In this section, I briey introduce three new current-mode circuits. The current-correlator

transconductance ampli�er (used here as a follower), and the four-quadrant sine-approximation

circuit use the current-correlator circuit discussed in Section 3.3. The inverted-di�erential-

pair circuit is an alternative to the di�erential-pair circuit discussed in Section 3.2.

3.5.1 The Current-Correlator Follower

In Section 4.3, I describe using a follower that is biased by a current correlator, as shown

in Figure 3.6. This follower, called the current-correlator follower, follows �(In) when

the di�erence in the control input, Y +�Y �, is small. When this di�erence becomes larger,

the current-correlator follower has less current drive to follow. The amount of drive current

available to this follower is given in Equation 3.9, and is shown in Figure 3.4.

X+ Z+ Z� X�

Figure 3.7 The four-quadrant sine-approximation circuit. This circuit re-

ceives inputs through X+ and X� and provides outputs through Z+ and Z�.

The output, z, di�ers from an ideal sine by approximately 2 percent.

3.5.2 The Four-Quadrant Sine-Approximation Circuit

The four-quadrant sine-approximation circuit is discussed in detail in Appendix A; I simply

introduce it here. Using the current correlator discussed in Section 3.3 as the bias to a
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di�erential pair, we can obtain an approximation to the sine function. Figure 3.7 shows the

sine circuit. The maximum deviation from an ideal sine is about �2 percent. Inputs to the
sine are X+ and X� and the outputs are Z+ and Z�.

Zt�(Zt)

Z�Z+

X+ X�

Z+ Z�

Figure 3.8 The inverted-di�erential-pair circuit. The inputs are X+ and

X� and the outputs are Z+ and Z�. This circuit is nice because the output-

current direction is compatible with the input; the circuit can be cascaded

easily without using current mirrors.

3.5.3 The Inverted-Di�erential-Pair Circuit

The inverted-di�erential-pair circuit is discussed in more detail in Appendix A; I simply

introduce it here. Figure 3.8 shows the inverted-di�erential-pair circuit. The inverted-

di�erential-pair circuit takes its inputs as X+ and X�; its outputs are Z+ and Z�. The

circuit computes

z = �x: (3:15)

Note that in the normalized di�erential current mode we can easily perform or negate

this operation by simply swapping outputs. This circuit is nice because the output-current

direction is compatible with the input so it can be cascaded without using a current mirror|

as is required with the standard di�erential-pair circuit.
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Vin

On Chip

Vref

X+ X�

�(Xt)

R R

R1 R1

w=l

Figure 3.9 Current-input ampli�er circuit. This circuit is used to apply

input currents. Di�erential currents, X+ and X�, vary nearly linearly with

applied voltage, Vin. Vref is used to provide a common-mode voltage about

which Vin swings.

3.6 Current-Mode Test Methods

Various methods are used to apply inputs to and to read outputs from the current-mode

circuits. These test methods are discussed here.

3.6.1 Application of Inputs

When testing the behavior of a normalized current-mode circuit, we must provide an input,

which is a combination of two di�erential current signals. These current signals should sum

to a constant current, Xt, and the di�erential current should swing between�Xt. Figure 3.9

shows the ampli�er that satis�es these constraints and provides voltages to be used on the

chip. See Horowitz [31] for a complete description of such ampli�ers. In addition, this

circuit converts a voltage, Vin, linearly to the di�erential input current, X+ � X�. Vref is

used to provide a common-mode voltage about which Vin can swing. Figure 3.10 shows

data for the relationship between Vin and X+ and X�. The current mirrors that I put

on-chip, as shown in Figure 3.9, have a much larger width to length (w:l) ratio than

do the transistors that receive the current-mirror voltages, so the o�-chip currents can be
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Figure 3.10 Data of the linear relationship between Vin and X+ and X�.

This data is taken from the current-input ampli�er circuit of Figure 3.9.

larger than the currents used on the chip. I use a w:l ratio of approximately 80 for these

mirror devices. These mirrors should be designed to match closely.

3.6.2 Measurement of Outputs

It is necessary to measure current outputs. The most straightforward approach is to measure

directly the two branch di�erential currents, and to compute the normalized current from

these two currents. Often, it is necessary to measure dynamics of extremely small currents.

In these instances, a simple current ampli�er is used to guarantee that the dynamics of the

measured currents are a result of the pertinent dynamics, and not of dynamics introduced

by the sensing circuitry. Figure 3.11 shows the output current ampli�er that I use. At

each stage of the ampli�er, the current is mirrored and is scaled up. This output ampli�er

has a calculated gain of 9600 (with Vgain = Vdd). By moving Vgain down from Vdd, we

increase the gain as e(Vdd�Vgain)=Vt . This result applies only when all the transistors remain

in subthreshold, which is true for modest increases in gain as a result of changing Vgain.

3.6.3 Helpful Hints

Here are several tips for building these input and output test structures.
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w=l = 10=10 w=l = 100=5

w=l = 100=5 w=l = 960=2

Zin Zout

Figure 3.11 The current-output ampli�er circuit. The current-output am-

pli�er is used to measure the dynamics of small currents. The gain of the

ampli�er shown here (with Vgain = Vdd) is 9600. Vgain is tied to the source of the

p-well transistor with a w:l ratio of 100:5 (shown here as connected to Vdd).

3.6.3.1 Transistor Matching

It is important that the transistors in the input and output test structures match. For good

matching, use long and wide transistors. For example, I did not have good matching in

my output ampli�er in Figure 3.11, because the output transistor (w:l=960:2) is only 2�m

long. A longer transistor would have provided much better matching of my output data.

Also, physically locate test ampli�ers close together. These are basic tips for transistor

matching. Other, more sophisticated techniques, can be used if even better matching is

required [51, 52, 68, 33].

3.6.3.2 Current-Gain Measurement

It may be important to know the gain of the test ampli�ers. If it is, provide a means for

measuring gain explicitly. I did not provide such a means, and needed to infer the gain

from the layout of the chip|an inaccurate method of �guring the gain.
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Chapter 4

Adaptive Synaptic Unit

Gie me ae spark o' Nature's �re,

That's a' the learning I desire.

Robert Burns

Epistle to John Lapraik, 1786

This chapter introduces a synapse circuit, shown in Figure 4.2, that operates in the sub-

threshold regime of the MOSFET devices. This circuit is used as a programmable weight

in the arti�cial neural-network system described in Chapter 6. It is an example use of the

UV-activated structures and device physics described in Chapter 2. This synapse is part of

a larger system that requires continuously adjustable nonvolatile synaptic weights, continu-

ous weight decays with a slow-time course, and an uninterrupted multiplication operation,

while the weight is trained or is allowed to decay.

The synapse circuit performs several tasks. It stores weights di�erentially (W+ and

W�) on oating nodes. It performs a multiplication of the stored weight with an externally
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Vfn

Ctrain

Cref Cgnd

Gref Ggnd

Gtrain

Vtrain

Vref Gnd

Figure 4.1 Conductance and capacitance model of the synapse. Conduc-

tive and capacitive coupling as seen by the oating nodes, W+ and W�. Vfn is

the voltage at the oating node. Vtrain is the training signal. Vref is an explicit

reference, which is the voltage applied to a well directly below the oating

nodes. The oating nodes are completely contained within the boundaries of

this well; Gref is the conductance to this well. The conductances and switches

shown are UV-activated conductances. The switches are closed when UV is

present and open otherwise.

supplied input (�X). In addition, the synapse provides the training circuitry to automati-

cally alter its weight through UV-activated conductances. I consider each of these functions

in this chapter.

4.1 Weight Storage

The two nodes, W+ and W� in Figure 4.2, represent oating nodes, whose di�erence,

�W � W+ � W�, is used to de�ne a weight. These two nodes are referred to as the

weight nodes. Each weight node is coupled capacitively and conductively to three nodes,

Vtrain, Vref , and Gnd; see Figure 4.1. The values for the capacitances are shown in Table 4.1.

The synapse is designed to have a relatively large UV-activated conductance from Vtrain to

W+and a much smaller UV-activated conductance from Vtrain to W�; in the presence of

UV light, a positive Vtrain (with respect to W+) causes W+ to program toward Vtrain more
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Figure 4.2 The entire adaptive learning synapse. The weights are stored

on oating nodes labelled W+ and W�. The outputs of the feedforward units,

f(X+) � f(X�), and the error units, Y + � Y �, are multiplied by the weight.

The adaptation circuitry provides an increment or decrement training signal,

Train, to the positive weight node, labelled W+, or a hold signal, F, which

freezes the weight.

quickly than W� approaches Vtrain. These di�ering conductances provide a means for

increasing or decreasing �W . The Vtrain to W+ conductance was made large by placing

the overlap between the oating node (poly1 layer) and training node (poly2 layer) directly

under a window in the metal2 layer.1 The Vtrain to W� conductance was made smaller by

hiding the overlap approximately 10�m from a window in the metal2 layer. The synapse is

also designed for equivalent capacitances from Vtrain to bothW
+ and W� to avoid changes

in �W for large swings in the training signal.

1Layer names are those used by MOSIS [59].
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4.1.1 Weight Dynamics

The positive weight, W+, trains as

W+(t) = Vtrain + (W0 � Vtrain) exp(�t=�train);

whereW0 is the initial weight and �train = Ctotal=Gtrain is the time constant of the training

synapse. The weight decay dynamics, which govern both weights, are

W (t) =W0 exp(�t=�ref) + Vref ;

where �ref is determined by the UV-activated conductance, Gref , and Vref is a reference

voltage to which each weight will eventually decay. In this synapse, the weight decay was

explicitly added to cause the weights to decay toward a reference when not being trained.

The oating nodes used as the weights are implemented in the poly1 layer. The oating

nodes sit above a well which is driven to Vref . If the synapse is created with an n-well

process, each of the weights will decay to Vref (assuming all parasitic conductances are

negligible). On the other hand, if the process is p-well, the built-in barrier between the

degenerately doped n-polysilicon and p-well is about 1.1 V and the oating polysilicon

nodes will decay to a voltage o�set of about 1.1 V. The voltage o�set can be di�erent from

1.1 V due to charge trapped in the oxide. Figure 4.3 shows the dynamics of a weight

while being trained. The UV light is on for the entire trace. The trace shows the weight

�rst training down and then up. For this trace,W+ and W� were initially set to 2.0 V and

1.95 V, respectively. During the relatively steady output of the weight, the follower F in

the synapse circuit dominates the training ampli�er and only the explicit decay causes the

�W to decay. The time constant for programming, �train, is approximately 6400 seconds.

The time constants for weight decay, �ref , was greater than 50 000 seconds.

The ratio of training time constant to decay time constant is easily adjusted during the

design phase by the two methods described in Chapter 2. In the design of this synapse, I

use the method of hiding the decay conductances under the metal shield and making the

lengths of these structures shorter than the training structures.
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Figure 4.3 Training characteristics of the synapse. During the follow peri-

ods, the weights decay to a reference voltage with a time constant �ref � 50 000

sec. During the train periods, the positive weight node programs up or down

with a time constant �train � 6400 sec.

4.1.2 Measurement of Capacitive Coupling

The oating structure is coupled both capacitively and conductively to various places. Fig-

ure 4.1 shows the oating node, Vfn, coupled to three nodes, Vtrain, Vref , and Gnd. With

the switches to the conductances in Figure 4.1 open (that is, the UV source is o�), Vfn can

be computed as

Vfn =
CtrainVtrain + CrefVref + CgndGnd+Qfn

Ct
; (4:1)

where Ct is the total capacitance at the oating node and Qfn is the charge stored on

the oating node. Equation 4.1 can be used to measure the capacitance to the various

coupling nodes. For example, to determine Ctrain, hold Vref and Gnd constant and measure

Vfn while varying Vtrain. The slope of the Vfn versus Vtrain curve is Ctrain
Ct

. Table 4.1 shows

the capacitance between the oating weight nodes and Vtrain, Vref , and Gnd found by this

method. The capacitance to Gnd is calculated by measuring all other capacitances and
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Z+ Z�

�(X+) �(X�)

�(W+)

�(W�)

�(W+)

X+ X�

Figure 4.4 Multiplier circuit used in the learning synapse. This circuit is

shown schematically as the large circles in Figure 4.2. The weights are stored

on nodes W+ and W�. Inputs enter through X+ and X�; Z+ and Z� are the

outputs. In the normalized form, the circuit performs z = wx.

Node W+ (C=Ct) W� (C=Ct)

Vtrain 0.109 0.114

Vref 0.156 0.172

Gnd 0.735 0.714

Table 4.1 Capacitive coupling ratios from the oating node (W+ or W�) to

the various nodes of the synapse (Vtrain, Vref , and Gnd). The capacitive coupling

ratios are measured values.
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assuming the remaining capacitance is to Gnd.

4.1.3 Zero Weights

With this synapse, it is very di�cult to achieve zero weights (that is, zero di�erence between

W+ and W� in Figure 4.4). Several methods are possible to zero the weights; by turning

the follower bias on hard in Figure 4.2, the training signal follows W+. By shining UV on

the chip and allowing W+ and W� to reach equilibrium, the weight, W+ �W�, should

approach zero. The problem with this approach is that any small conductance di�erence

betweenW+ andW� to Vref and Gnd causes the weight nodes to reach equilibrium at very

di�erent values. Another method is to tie Vdd and Vref to Gnd and allow each weight node

to relax. They both relax to Gnd minus any di�erence in atband voltage between the

poly oating node and the well2 and minus any charge trapped in the oxide. Then Vdd and

Vref are brought back to their respective operating levels. The problem with this method

is any di�erence in capacitive coupling from these nodes to the weight nodes causes the

weight nodes to be capacitively moved to slightly di�erent values. The inability to zero the

weight e�ectively and conveniently remains the single largest problem with the design of

this synapse and certainly requires attention.

4.2 The Multiplying Di�erential-Pair Synapse

The basic operation of the circuit (see Figure 4.4) is to multiply a di�erential voltage,

�W = W+ �W�, by a di�erential current, X+ �X�, using a Gilbert multiplier [44]. In

the normalized di�erential current mode it computes

z = wx; (4:2)

where z is the normalized output, x the normalized input, and w the normalized weight.

Figure 4.5 plots the measured transfer characteristics of the multiplier for various �W .

The crowding of the most extreme curves indicates saturation of the weight parameter

2This di�erence is small for an n-well process and much larger for a p-well process given that the poly

silicon is n-type degenerately doped silicon.
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Figure 4.5 Data of the multiply characteristic of the synapse.
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Figure 4.6 Data showing the normalized weight versus �W . This curve

clearly shows the saturation of the weight.
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�W , which ranges from -200mV to +200mV in this �gure.3 The shift of the characteris-

tics from the origin is a result of the test-input-mirror o�sets and the test-output-mirror

o�sets. The o�sets due to the multiplier are small (less than 5 percent). O�sets are re-

duced from previous designs by using larger than minimum-size transistors in the multiplier

[52, 68] (for example, the FETs used in this multiplier are 10x10 �). Lower o�sets are also

achieved because a di�erential current is output instead of a single, bipolar current, where

the two currents of the Gilbert multiplier are locally subtracted via a current mirror, which

introduces additional o�sets.

Figure 4.6 shows the relationship between the applied �W and the resulting normalized

weight of the synapse multiplier. Notice the weight begins to saturate at about �100mV .
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Figure 4.7 Data showing the training signal as a function of y. The training

signal is shown as Vtrain�W
+. f(x) is held at a negative constant for these traces.

This family of curves is obtained by changing follow threshold.

3A detailed description of the o�sets in the multiplier characteristics is given by Mead [44].
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Figure 4.8 Data showing training signal as a function of y. The training

signal is shown as Vtrain �W+. Follow threshold is held constant. This family

of curves is obtained by changing f(x).
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Figure 4.9 Contour plot showing the training signal. The contour plot

shows f(x) versus y. Contour shows ideally jf(x) � yj = � for � = 1=4;1=8; 1=16

as shown. Positive weight changes occur in the area labelled plus, negative

weight changes shown with a minus and no weight changes shown with a zero.
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Figure 4.10 Contour plot showing the follow-with-error training signal.

The contour plot shows f(x) versus y. Contour shows ideally f(x) � y = � for

� = 1=4, for the curve labelled Train1 and � = 1=4(1� y2) for Train2. Positive

weight changes occur in the area labelled plus, negative weight changes shown

with a minus and no weight changes with a zero.
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4.3 Training Circuitry

Referring back to Figure 4.2, training is achieved by making the training node larger

(smaller) in voltage than W+ for a positive (negative) weight change. Two subcircuits

control the training node. These subcircuits are denoted by E and F in Figure 4.2. The

output of E is the multiplication of two signals, f(x) and y. In the learning network archi-

tecture (see Chapter 6), f(x) � y represents the negative gradient of an error signal in weight

space. The output of E is opposed, though, by the output of F, which attempts to follow

W+. Thus if the gradient is large enough (in magnitude), it overpowers the follower output

and the weight changes in the direction of gradient-descent. Otherwise, if the gradient signal

is too small (in magnitude), the weights are not changed in direction of gradient-descent,

but rather decay slowly to the reference. Figure 4.7 shows the training signal for various

follow thresholds as a function of y with f(x) held at a negative constant. As the threshold

is turned up, larger gradient signals are needed to `overpower' the follower. Including the

follower guarantees that o�sets in the gradient signal calculation do not cause the weight

to be trained in the wrong direction. Figure 4.8 shows the behavior of the training signal

as a function of y for various f(x) with the follower threshold held constant. The ideal-

ized function which models the training signal is labelled here tsgn for thresholded signum,

which obeys,

tsgn(z; �) �

8>>>><
>>>>:
�1 if z < ��
0 if �� � z � �

1 if z > �.

(4:3)

In the circuit analyzed here, the training signal is

Train1 = tsgn(f(x) � y; follow threshold): (4:4)

Figure 4.9 is an ideal two-dimensional contour plot of this learning signal. Shown are

three di�erent curves for di�erent values of threshold. The values used are � = 1=4, 1=8,

and 1=16. The plus signs show areas of positive weight changes, the negative signs shows

areas of negative weight changes, and the area labelled by zero shows an area of no weight

change.
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4.3.1 Bang-Bang Learning

When the training ampli�er `overpowers' the follower, depending on the sign of f(x) � y,
Vtrain either rails to Vdd or Gnd. Vtrain is only lightly capacitively coupled to both nodes

W+ and W� (see Table 4.1), and therefore a relatively large voltage drop occurs across

Ctrain in the training mode. This allows W+ to train towards Vtrain through Gtrain, whereas

W� has no such conductance and remains �xed in training mode. In this way, the sign

of f(x) � y determines whether the weight is increased or decreased. The amplitude of the

weight change is determined by the length of time f(x) � y is asserted. During the training

process, both nodes W+ and W� are changed capacitively by �Vtrain Ctrain=Ctotal, where

Ctotal = Ctrain + Cref + Cgnd. The ratio Ctrain=Ctotal for my layout is 0:109. Thus, for a

�Vtrain of 2:5V, the common-mode change on the weight input is approximately 272mV.

4.3.2 Follower Mode

The adaptation of this synapse can be shut o� electrically and more permanently by shut-

ting o� the UV source. The ability to shut o� the training electrically is important to many

applications. When this synapse is not being trained, the follower (see Figure 4.2) `over-

powers' the training ampli�er and the weight remains unchanged. Vtrain then follows W+

and ideally no voltage drop occurs across the conductance Gtrain. In actuality, there will be

a small voltage di�erence (< 20mV ) across Gtrain due to o�sets in the follower ampli�er,

generating a current which causesW+ to drift slowly. Two properties limit this drift. First,

there is a decay conductance, Gref , to a reference, Vref . This conductance limits W+ to

Voffset � Gtrain
Gref

+ Vref , where Voffset is the o�set in the follower. Second, such small voltage

drops across UV conductances have a lower conductance than larger drops (see the nonlin-

earity in Figure 2.4), causing the leakage current to be smaller. This lower conductance can

actually decrease the o�set by a factor of two to three.

4.3.2.1 How UV a�ects the follower

With the UV source on, leakage due to UV-generated minority carriers causes the follower

to follow as if it had a bias of 0.34 V (that is, the leakage becomes dominant in the follower

for a bias less than 0.34 V). This leakage underscores the need to consider the e�ects of

minority-carrier generation on sensitive circuits. In the case of the follower circuit, this
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e�ect simply means the follow mechanism is on at a higher minimum value; this leakage

causes no problems for the circuit discussed here. For other circuits, minority carriers may

be troublesome indeed necessitating a metal shield over sensitive areas.

4.3.3 Follow with Error

An alternative algorithm for control of the training signal is also used. Instead of using a

follower to shut o� training when the gradient information is too small, a current-correlator

follower is used; see Section 3.5.1 for a description of the current-correlator follower. The

function E and F now compute is

Train2 = tsgn(f(x) � y; 1=4(1� y2)); (4:5)

shown as a contour plot in Figure 4.10, where this function is compared with Equation 4.4

for a constant threshold of � = 1=4. Now the threshold is a function of the squared error.

For errors near zero, the threshold is maximum and relatively large gradient signals are

necessary to drive training. For large errors, only relatively small gradient signals are

needed. In this way, the threshold for training is not �xed but is a function of the error.

4.3.4 Common-Mode Rejection

When the synapse is performing its multiplication function, a quantity of concern is how

much the multiplication is a�ected by the training node swinging from Gnd to Vdd. From

Table 4.1, we notice there is a slightly di�erent capacitive coupling of the training node

to the plus and minus oating weight nodes (a -0.6 percent di�erence). This di�erence

in coupling accounts for the -30 mV change we see when changing Vtrain from Gnd to Vdd.

What is of interest, though, is how much this a�ects the normalized weight. From Figure 4.6,

we expect a constant change in �W mV to result in the largest normalized weight change

around a weight of zero and this change drops o� for larger weights (in magnitude). For two

weights measured, the normalized weight change around zero weight was 22.1 percent and a

5.94 percent change around a normalized weight of -0.8. The largest swing experienced by

a weight of 22 percent is quite large and should be reduced by either lowering the capacitive

coupling from Vtrain to the oating nodes or by designing the capacitive coupling from Vtrain
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to the oating nodes to match more closely.
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Chapter 5

Sigmoidal and Error Units

A little learning is a dangerous thing;

Alexander Pope

An Essay on Criticism, 1711

Neural networks can compute very complex nonlinear mappings. They owe this ability in

part to the nonlinear transfer function of the processing element or sigmoidal unit. Typi-

cally, these sigmoidal units are compressive, monotonically increasing, saturating functions

of their inputs. I have designed and tested a circuit that has a sigmoidal transfer charac-

teristic. In contrast, the units of the error-processing layer in the Pineda algorithm have a

linear transfer function. Their output is modulated by the derivative of the sigmoid (see

Equation 1.2); this derivative is a \bump function" of the input; that is, the derivative

of a sigmoidal function is maximum near zero input and minimum at the two extremes|

resembling the generic shape of a bump.

The sigmoidal (X units) and the linear-error units (Y units) are self-scaling relative to

their inputs. If more synapses are added, the output currents of the other units are adjusted
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(or adapted), di�erent levels of external input are applied, or the chip heats up, the total

level of input current changes, but the output does not; the di�erential current divided by

the total is the only relevant quantity to the sigmoidal and error units. This self-scaling

feature is a property of normalized di�erential current mode circuits.

This chapter presents the normalized current-mode sigmoidal circuit I use in the neural-

network analog VLSI chip. I analyze the a�ect of � on the circuit, show how the sigmoid

uses a normalized input, show how the gain of the sigmoid is changed at design time and

at run time, and show how the output of the sigmoid can be scaled. I also present the

implementation of the error-layer processing element and show how this circuit operates in

the normalized mode. Finally, I analyze the dynamics of these circuits and analyze how

they di�er from simple resistance{capacitance (RC) dynamics.

5.1 Forward Propagation: The Sigmoidal Unit

The sigmoidal circuit performs a monotonically increasing, compressive, saturating function

on its input. The ith unit in the X layer performs the following function in steady state:

xi =
X
j 6=i

wijf(xj); (5:1)

where xi is the normalized input to the ith sigmoid and f(xj) is the output of the jth

sigmoidal unit. The full description of this equation is given in Chapter 6. This section

deals with the function f(x), which increases monotonically and saturates at both extremes

of input.

5.1.1 Sigmoidal-Circuit Implementation

The sigmoid circuit uses the di�erential pair described in Chapter 3 and uses a stacked-

diode pair or triplet as the input; see Figures 5.1 and 5.2. For each of these circuits, the

equation describing the output of the sigmoid is given by

z = f(x) =
(1 + x)� � (1� x)�

(1 + x)� + (1� x)�
; (5:2)
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X+ Z+ Z� X�

�(Zt)

Figure 5.1 Diode-pair sigmoidal circuit. The normalized input is x �

X+
�X�

X+
+X�

. The normalized output is z � Z+
�Z�

Z+
+Z�

. Using these normalized

variables, z is a sigmoidal function of x with slope of two at the origin.

�(Zt) Zt

X+ Z+ Z� X�

Figure 5.2 Diode-triplet sigmoidal circuit. Inputs enter through X+ and

X�, and outputs are Z+ and Z�. This circuit also yields a sigmoidal function,

but with a slope of three at the origin.
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where for the two-diode case, � = 2; where for the three-diode case, � = 3; and where for

n-diodes, � = n. Of course, for n-diodes, care must be taken to avoid running out of \head

room" (that is, there is a limited voltage di�erence between Vdd and Gnd, and each diode

in the stack requires part of this voltage di�erence).

Figure 5.3 shows these ideal sigmoids for both the diode pair and diode triplet. The

diode-triplet curve has the higher gain. Shown in Figure 5.4 is the case for 1, 2, 3, and

10 diodes. Notice that the one-diode case is nothing more than the di�erential pair we

analyzed in Section 3.2; with � = 1 in Equation 5.2, we get z = x as expected.
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Figure 5.3 Ideal sigmoidal behavior for diode-pair and diode-triplet circuit.

Transfer curves calculated from Equation 5.2 with � = 2; 3. The gain of each

curve around x = 0 is �.

5.1.1.1 E�ect of Kappa

When we actually measure the behavior of one of these circuits, we are quickly confronted

with the inadequacy of Equation 5.2 in describing the output of the sigmoid circuit. Fig-

ure 5.5 shows a �t to data taken from the diode-triplet sigmoid of Figure 5.2 using Equa-

tion 5.2 with � = 3. The inadequacy of the �t results from the idealized equation, Equa-

tion 3.2, used to describe the subthreshold behavior of a transistor. A better equation for

the FET in saturation is Equation 3.3. Using Equation 3.3, we can solve the diode-pair

and diode-triplet cases for the sigmoid circuit. What we once again obtain is Equation 5.2,
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Figure 5.4 Range of ideal sigmoidal curves. Ideal sigmoids obeying the

equation z =
(1+x)��(1�x)�

(1+x)�+(1�x)�
for � = 1, 2, 3, and 10, where � = 10 is the highest

gain and � = 1 is the lowest gain and is simply a normalized di�erential current-

mode current mirror.
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Figure 5.5 Bad �t to diode-triplet sigmoid. Shows data of the diode-

triplet sigmoid with �(Zt) =0.64V referenced down from Vdd and shows �t to

the theoretical curve with � = 1:0. The �t is not very good, because of the �

e�ect.
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but now � is a function of � as well as n. For the diode pair, � = �+1
� = ��(2; �) (see

Equation 3.14) and for the diode triplet, � = �2+�+1
�2 = ��(3; �). In general,

�(n; �) =
�(n�1) + � � �+ 1

�(n�1)
= ��(n; �); (5:3)

where n is the number of diodes in the stack and � is given by Equation 3.14. Figure 5.6

shows a �t to the diode-triplet sigmoidal circuit with � = 0:65 and � = 4:9. Using the new

de�nition for � as in Equation 5.3, Equation 5.2 �ts the sigmoid quite adequately.
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Figure 5.6 Better �t to diode-triplet sigmoid. Shows data of the diode-

triplet sigmoid with �(Zt) =0.64V referenced down from Vdd and shows �t to

theoretical curve with � = 0:65

5.1.1.2 Normalized Operation

The sigmoid, as implemented here, is invariant to the scale of the input. Equation 5.2

is a function of the normalized input, and is independent of the absolute current level.

Figure 5.7 shows the sigmoid characteristic for two levels of current input. The two levels

of input current are 12.2 nA for Sig1 and 2.33 nA for Sig2. The shift in the sigmoids is

due to an o�set in the current-mirror pads which are feeding this test circuit (the input
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Figure 5.7 Sigmoid data showing input normalization. Shows data of the

sigmoid characteristics for the same sigmoidal circuit taken for two di�erent

input current levels. Sig1 has an input current level of 12.2 nA and Sig2 has

an input current level of 2.33 nA. The shift in the sigmoid characteristics are

due to o�sets in the input current mirrors.
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Figure 5.8 Variable-gain diode-triplet sigmoid. Shows data from the

diode-triplet sigmoid circuit for various gains of operation ranging from high

gain (below threshold) to low gain (above threshold). The corresponding value

of �(Zt) ranges from 0.64 V to 1.64V referenced down from Vdd.
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current mirrors are located on di�erent parts of the chip and were not well designed for good

current matching). The importance of Figure 5.7 is the normalization of the input. This

normalization is quite an important feature. The sigmoid is self-scaling relative to its input

and it ignores changes in total level of input, which may arise because more synapses are

added, the output currents of the other sigmoids are adjusted (or adapted), di�erent levels

of external input are applied, or the chip heats up; the di�erential current divided by the

the total is the only relevant quantity to the sigmoid. This self-scaling feature is a property

of normalized di�erential current-mode circuits and is an extremely powerful feature in the

design of large systems.

5.1.2 Variable-Gain Sigmoidal Circuit

By operating the bias of the sigmoid (Zt in Figure 5.2) in the moderate or strong inversion

regime of the transistor, the gain of the sigmoid is reduced. Figure 5.8 shows several sigmoids

with various gains. All of these sigmoids are taken from the same diode-triplet circuit with

the input di�erential the same and only the bias, Zt, is changed between runs. In Figure 5.8

�(Zt) ranges from 1.64V referenced down from Vdd, which is above threshold and results in

a relatively low gain, down to 0.64V referenced down from Vdd, which is subthreshold and

results in the highest gain. The threshold voltage for these transistors was approximately

1.0 V.

5.1.3 Variable Output-Scaling Sigmoidal Circuit

By adding an additional di�erential pair to the sigmoid, as shown in Figure 5.9, it is possible

to cause the sigmoid to saturate at normalized outputs less than one and thereby change

the gain. The way this works is that neither output branch, Z+ nor Z�, is able to source

all the current. Since the output is normalized by the total current in both branches, and

since the current in neither branch can go to zero, the saturated normalized output will

approach a value less than one. The equation describing the scaled sigmoid is

z = f(x) � zt; (5:4)
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X+
Z+ Z� X�

�(Z+t ) �(Z�t )

Figure 5.9 Variable-gain sigmoidal circuit. This sigmoidal circuit is con-

structed by adding a cross-coupled di�erential pair to the original diode-triplet

sigmoidal circuit. This new di�erential pair adds current to the opposite

branch of the sigmoid, e�ectively reducing the gain.
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Figure 5.10 Subthreshold data from variable-gain diode-triplet sigmoidal

circuit. �(Z+
t ) = 0:64V , �(Z�t ) =0V, 0.54V, and 0.59V referenced down from

Vdd. The curve with the largest range was taken with �(Z�t ) =0V. The e�ective

scaling factor zt is 1, 0.8 and 0.6 for these three cases.
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Figure 5.11 Above-threshold data for variable-gain diode-triplet sigmoidal

circuit. �(Z+
t ) = 1:24V , �(Z�t ) = 0V, 1.04V, and 1.14V referenced down from

Vdd. The curve with the largest range was taken with �(Z�t ) = 0V. The e�ective

scaling factor is about 1, 0.6 and 0.3.
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where f(x) is shown in Equation 5.2 and zt is
Z+
t �Z�t

Z+
t +Z�t

. zt is the scaling factor of this sigmoid.

Figures 5.10 and 5.11 shows data from the output scaling sigmoid for below-threshold

and above-threshold biasing conditions, respectively. zt can also be negative giving us a

monotonically decreasing sigmoid. Anecdotally, I have used the negative sigmoid to unlearn

some patterns, but this has not been studied quantitatively.

The ability to change the saturating limit is a useful way to limit the a�ect of any

particular sigmoid on the inputs of other sigmoids. In Chapter 6, I show how this saturation

below one can be used to guarantee global asymptotic stability of the network.

5.2 Backward Propagation: The Linear-Error Unit

The dynamical system of the Y units in Equation 1.2 calls for a similar function as computed

for the X layer discussed in Section 5.1. The equation at equilibrium is

yi = f 0(xi)(
X
j 6=i

wjiyj + Ji) = f 0(xi) � yini: (5:5)

Several di�erences exist between this equation and Equation 5.1, though. First it is nec-

essary to compute the derivative, f 0(x), of the sigmoid. Second, the weighted sum of the

inputs is not passed through a sigmoid as in forward propagation; instead the resulting

weighted sum is simply multiplied by the derivative of the sigmoid.

5.2.1 Linear-Error Circuit Implementation

Figure 5.12 shows the actual circuit implementation of Equation 5.5. The inputs to the ith

Y unit are the outputs of the ith sigmoid, denoted as �(f(X�)) in the circuit, as well as

the weighted sum of contributions from the other Y units,
P

j 6=iwjiyj, which is denoted in

the circuit as Y �
in . The outputs from the Y unit are Y �

out. The function which the circuit

computes is

�Yout =
�Yin
Ytotal

� Yc = yin
Yt
4
(1� f(x)2) � Yt

4
f 0(x)yin; (5:6)

where Ytotal � Y +
in + Y �

in and Yt and Yc are shown in Figure 5.12.

Figure 5.13 shows data taken from the derivative circuit by sweeping x, the input to the

sigmoid, and measuring �Yout. The family of curves is obtained by varying �Yin, which
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�(f(X�))�(f(X+))

Figure 5.12 Current-mode derivative circuit. This circuit takes input from

sigmoidal output �(f(X�)) and Y �in and produces output, Y �out.
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Figure 5.13 Data showing derivative-circuit output. Data for Y units ob-

tained by sweeping �Xin vs �Yout for the derivative circuit (Figure 5.12). The

family of curves is obtained by varying �Yin, from �4:46nA (bottom curve) to

4:42nA (top curve).
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Figure 5.14 Theoretical �t to data of the tailcurrent Yc of the derivative

circuit. Two �ts are shown: one is for the derivative of the sigmoid circuit

(Yderiv in Equation 5.8); the other �t uses the ideal current correlator equation

coupled with the sigmoid equation (Ycorr in Equation 5.9). Both �ts use Yt =

2:05nA and � = 0:65 (� = 4:9). The derivative equation, Equation 5.7, is scaled

by Yt=4�.
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ranges from �4:46 nA (bottom curve) to 4:42 nA (top curve).

Figure 5.14 shows two theoretical �ts to the tailcurrent, Yc, of the derivative circuit.

The �rst �t to Yc, (seen in Figure 5.14 as the outer of the two �ts), uses the derivative of

the sigmoid, Equation 5.2, which is,

dz

dx
= f 0(x) =

4�(1� x2)(��1)

((1 + x)� + (1� x)�)2
: (5:7)

Scaling f 0(x) by Yt
4� , we obtain our �rst �t to Yc,

Yderiv =
Ytf

0(x)

4�
=

Yt(1� x2)(��1)

((1 + x)� + (1� x)�)2
: (5:8)

The second �t to Yc uses the ideal current correlator equation, Equation 3.9, coupled

with the sigmoid equation, Equation 5.2,

Ycorr =
Yt(1� x2)�

((1 + x)� + (1� x)�)2
: (5:9)

Both equations �t the data quite well. I assume henceforth that the Y unit actually uses

the derivative of f(x) to perform

�Yout
Yt

=
1

4
yin � f 0(x): (5:10)

5.2.2 Normalized Derivative Operation

The analysis of the previous part normalizes the di�erential signals by Yt, where Yt is shown

in Figure 5.12. This normalization is seen in Equation 5.10 where �Yout is normalized by

Yt, instead of the total output current, Yc.

To calculate the normalized output, we need to normalize the di�erential output current

by total output current, Y +
out+ Y �

out. This current is set by the tail current, Yc, which is the

quantity containing the derivative information as seen in Equation 5.6. To normalize this

equation, we need to divide by Yc, in which case Equation 5.6 becomes,

�Yout
Yc

� yout = yin: (5:11)



75

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
xin

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

y
o
u
t

A

B

C

D

E

Curve �Yin (nA) yin

A 4.42 0.89

B 2.22 0.45

C 0.00 0.00

D -2.25 -0.44

E -4.46 -0.86

Figure 5.15 (a) Data obtained by sweeping xin vs yout for the derivative

circuit (Figure 5.12). The family of curves was obtained by varying �Yin, from

�4:46nA (curve E) to 4:42nA (curve A). The curves are from the same raw

data as in Figure 5.13, but they are normalized by the total output current,

Yc. The drooping behavior at the start and �nish of each curve is caused by

the outputs not settling before the data is taken. (b) Shows yin used for each

of the curves in (a).

Figure 5.15(a) shows the output for the derivative circuit (as in Figure 5.13), but the

output is here normalized by the total output current, Yc. The values for yin are shown in

Figure 5.15(b).

It appears the derivative circuit is nothing but a current mode identity function. But

remember, the output of the circuit is scaled by the derivative. The total current output

is proportional to the derivative of the sigmoid. Thus, any system, which accumulates the

outputs of many of the Y units at its input, is dominated by the activity of the largest such

input. As we shall see in Chapter 6, this computation is suitable for the adjoint network.
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Iin

IoutIc �C

V

Figure 5.16 Generalized I{V characteristic element in parallel with a ca-

pacitor. If the generalized element � has a monotonically increasing I{V rela-

tionship, then this circuit has one stable equilibrium at Iout = Iin.

5.3 Dynamics

The dynamics which govern both the X and the Y units are quite complex, but with some

simplifying assumptions, we can gain some insight into the relaxation of both of these units.

In this section, I discuss how the equations of motion for this system are calculated and

measured.

5.3.1 Generalized Model

In general, if the circuit we are considering has a capacitor in parallel with an element, whose

current is monotonically increasing in the voltage across the element (see Figure 5.16), then

the equation which describes the dynamics of the current through the element �, dIout
dt , as

a function of the input and output current, Iin and Iout, is

dIout
dt

=
dIout
dV

dV

dt
=

dIout
dV

1

C
(Iin � Iout): (5:12)

In this generalized model, if dIout
dV � 0 for element �, then the only stable equilibrium is

Iout = Iin. In the case of element � being a resistor, with resistance R, then dIout
dV = 1=R

and the dynamics are simply given by

dIout
dt

=
1

RC
(Iin � Iout):
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Iin

Iout
Ic

Iout

C

Figure 5.17 _Iout versus Iout for mirror connected FET. The generalized

element from Figure 5.16 is now a diode-connected FET. Near equilibrium,

Iout approaches Iin exponentially with the time constant set by Iin.

5.3.2 Current Mirror

In the case where the element � is a diode-connected FET (see Figure 5.17) with Iout = I0e
�V
Vt

, then dIout
dV = �IoutVt

and the dynamics are described by,

dIout
dt

=
�Iout
VtC

(Iin � Iout): (5:13)

Figure 5.18 shows _Iout versus Iout for Equation 5.13. The two curves are for two di�erent

input currents. This curve intersects _Iout = 0 at the equilibrium points for Equation 5.13.

Physically this analysis is only valid for V � 0, in which case, the minimum Iout is I0.

The only stable equilibrium for this equation is Iout = Iin. As Iout approaches Iin, a linear

approximation to the _Iout versus Iout is made. The slope around Iout = Iin is � � �Iin
CVt

.

Thus, as Iout approaches Iin, these dynamics exhibit exponential decay-like characteristics

with the time constant

� =
1

�
=

VtC

Iin�
: (5:14)

Notice � is inversely proportional to the input current, Iin. We can use this to design a

system which requires di�erent time constants by setting the total current to di�erent levels

for the dynamical systems which require the di�erent settling times.
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Figure 5.18 _Iout versus Iout for current-mirror diode. Shows relation be-

tween _Iout and Iout for two di�erent input current levels for the current-mirror

dynamics. The time constant near equilibrium drops as 1

Iin
.

5.3.3 Diode Stack and the � E�ect

If instead of a single diode as in Figure 5.17, we have a stack of diodes, the di�erential

equation describing the relationship between Iout and Iin is:

dIout
dt

=
Iout

�(n; �)VtC
(Iin � Iout); (5:15)

where �(n; �) =
Pn

i=1
1
�i for n diodes assuming each has the same e�ective � as given in

Equation 3.14. For the diode-triplet sigmoid, 1
�(3;0:65) = 0:13 with � = 0:65. The time

constant for an exponential decay as Iout approaches Iin is,

� =
�(n; �)VtC

Iin
: (5:16)

To guarantee the validity of this equation, the system must be designed such that any

parasitic capacitances are negligible compared with the capacitance C.
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�(Zt) Zt

X+ Z+ Z� X�
Cin Cin

Cout Cout

S+S�

Figure 5.19 Diode-triplet sigmoidal circuit with the associated signi�cant

capacitances, Cin and Cout. The dynamics of the sigmoid within the network

are dominated by these capacitances because they are large capacitances (they

are physically wires stretching the length of the chip).
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Figure 5.20 Dynamics of normalized sigmoidal circuit and sigmoidal circuit

branch currents. Left axis shows normalized output for the curve labelled `z.'

The normalized curve is obtained from the two sigmoidal branch currents

labelled `Z+' and `Z�.' Dynamics of both Z+ and Z� are shown, with right

axis showing output current level. The input is a square wave provided to the

linear portion of the sigmoid, as shown in Figure 5.21.
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Figure 5.21 Sigmoid used to produce data in Figure 5.20. Dotted lines

show the square wave input{output relationship.

5.3.4 Measurements from the X Units

Here we analyze the dynamics of the sigmoid. Figure 5.19 shows the locations of the

signi�cant capacitances which exist for the sigmoid in the network architecture. The input

and output capacitances are large relative to the parasitic node capacitances, since the

inputs and outputs are wires which travel much of the length of the chip. The dynamics

are simpli�ed by the fact that the sigmoid input currents are signi�cantly larger than the

output currents. Therefore, the dynamics of the sigmoid are dominated by the outputs.1

The dynamics for the outputs of the sigmoid are shown in Figure 5.20 (measured on the

right axis). Input is provided as a square wave as shown in Figure 5.21 and the outputs

of this sigmoid are the measured quantities in Figure 5.20. The input current level was

set large enough to ensure the input reached steady state much faster than the output for

the lowest input level. The normalized output dynamics are also shown in Figure 5.20

(measured along the left axis). Notice that the slower sigmoidal output branch currents

1This claim is not true, though, if the normalized input is near � 1, in which case, the input with the

smaller current could potentially dominate the dynamics.
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Z+ Z� Input

Theory (�sec) Data (�sec) Data (�sec) Current ( pA)

�low 500 99.7 91.0 27.8

�high 60 10.5 8.95 262

�low=�high 8.45 9.48 10.16 9.42

Table 5.1 Time constants for the positive and negative output branches of

the sigmoid changing between �0:8 in normalized units. The ratios of the high

and low time constants scales with ratio of one over the ratio of high and low

currents. The di�erence between theory and experiment here is due mainly

to errors in the measured absolute current level (this current is measured as

the output of current ampli�er, whose gain was inferred from layout).

dominate the behavior of the normalized sigmoid.

Assuming that X� are large compared with Z�, we can calculate the dynamics of the

sigmoid as follows. The dynamics of the output branch currents are described by

dS+

dt
=

�

VtCout
S+(Z+ � S+);

dS�

dt
=

�

VtCout
S�(Z� � S�): (5.17)

At steady state, Z� = S�. The normalized di�erence of the two branch currents, Z� at

steady state is
Z+ � Z�

Zt
� z = s = f(x) =

(1 + x)� � (1� x)�

(1 + x)� + (1� x)�
; (5:18)

where s is the normalized di�erence of S�. As in Equation 5.14, the time constant for

Equation 5.17 near steady state are

�+x =
VtCout

�Z+
;

��x =
VtCout

�Z�
: (5.19)

The dynamics of the sigmoid is dominated by the slower of �+x and ��x , which is determined

by the branch with the smaller current, Z+ or Z�.

Table 5.1 shows the time constants calculated and measured from the data in Figure 5.20.
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The calculated time constants are computed assuming the following values: the capacitances

used on the outputs of the sigmoid are inferred from the layout and are roughly 400fF; � is

assumed to be 0.65; Iin measured at steady state are shown in Table 5.1. The discrepancy

between the measured and calculated time constants is due mainly to the calculation of the

current gain through the current ampli�ers from the test structure to the outside world (see

Section 3.6). In addition the value of the capacitance used is an approximation intended

only to calculate the time constant within the correct order of magnitude. What is really

of interest is the ratio of the low and high time constants. This ratio removes any error

due to current level and capacitance calculations. In addition, this ratio emphasizes the

main point that the time constant has a reciprocal dependence on the input current levels.

Thus, by controlling the system current levels, we are able to set the time constants of each

system.
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Chapter 6

Network Dynamical System: An

Implementation

...And learning, a mere hoard of

gold kept by a devil till sack commences

it and sets it in act and use.

Shakespeare

Henry IV, Part 2

In the preceding chapters, I introduce the elemental building blocks for a normalized current-

mode learning neural network. In this chapter, I put the blocks together to build a layer of

synapses and neurons. Coupled with this layer is an adjoint layer designed to collectively

calculate gradient information for each weight to perform supervised training tasks. This

chapter describes the entire network implemented in analog VLSI along with the associated

dynamical equations, discusses stability of the X and Y layers, shows the chip architecture,

and presents examples of the chip learning.
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Figure 6.1 X layer with a single sigmoid and several connecting synapses.
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Figure 6.2 Y layer with a single Y unit and several connecting synapses.
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6.1 Network Implementation in Analog VLSI

Figures 6.1 and 6.2 show the X and Y layers as implemented in silicon. The synapse is

described in Chapter 4 and the X and Y units are described in Chapter 5.

6.1.1 Feedforward Layer

The X layer performs the following function in steady state:

xi =
1

n� 1 + �

0
@X

j 6=i

wijf(xj) + � � inputi
1
A ; (6:1)

where � is Ibias
Xb

(Ibias is the bias current for the external input and Xb is the bias current for

the sigmoids), where inputi is the normalized di�erential external input, and where f(xj)

is given in Equation 5.2 and repeated here for convenience:

f(xj) =
(1 + xj)

� � (1� xj)
�

(1 + xj)� + (1� xj)�
; (6:2)

where � = �2+�+1
�2 . With � = 0:65, � is approximately 4.9, which is also the slope of the

sigmoid at the origin. The steady state reached in Equation 6.1 is the same equilibrium

that the ideal equation in Chapter 1 reaches (see also Equation 1.1), but the dynamics of

the ideal system and the implemented system are di�erent. The dynamical system for the

implemented system is derived from Equation 5.17,

dS+
i

dt
= S+

i (Z
+
i � S+

i );

dS�
i

dt
= S�

i (Z
�
i � S�

i ); (6.3)

where,

Z+
i =

Zt

2
(1 + f(xi));

Z�
i =

Zt

2
(1� f(xi)); (6.4)

are the branch currents as shown in Figure 5.19 and where S+
i and S

�
i are the output variables

of the sigmoid, as shown in Figure 5.19, and  = �
VtCout

.
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6.1.2 Error Layer

The Y units compute the following function in steady state:

yini =
1P

j f
0(xj)� f 0(xi) + �

(
X
j 6=i

wji � yinj � f 0(xj) + � � errori); (6:5)

where � � 8Jbias
Yt

(Jbias is the bias current for the external error input and Yt is the bias cur-

rent for the Y unit); and where errori � Targeti�f(Xi)
2Jbias

(the normalized di�erential external

error input as shown in Figure 6.5).

The steady-state solution of the actual circuit implementation (see Equation 6.5), and

the ideal equation (Equation 1.2) di�er in the derivative prefactor and the derivative term,

f(xj) multiplied by yinj, in the summation. In Pineda's formulation, yini increases linearly

with f 0(xi), whereas in this implementation, yini increases monotonically with f 0(xi). This

implementation is not exact.

In Equation 6.5, if we are dealing with a Y unit that receives external input, and

the total external input is large compared with
P

j 6=i f
0(xj) and is large compared withP

j 6=iwji � yinj � f 0(xj) which can be guaranteed by making � of Equation 6.5 much larger

than one, then the steady-state output for these units is

yini = errori: (6:6)

Equation 6.6 is equivalent to the steady-state solution of the ideal dynamics given by Equa-

tion 1.2 for large external error inputs.

For those units that receive no external error information (that is, input units and

hidden units), Equation 6.5 describes the steady-state solution. In the ideal steady-state

solution, as the sigmoids begin to saturate (that is, the derivative goes to zero), the Y units'

outputs tend to zero. The output Y units of this implementation also tend to zero, but

the minimum is limited by the sum of all the derivatives. Also, those Y units of the

implementation that receive no external error inputs tend to zero only if the derivative

information of its associated sigmoid is small compared with the other derivatives. Thus,

these new Y units scale their derivative by the sum of all derivatives.
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Figure 6.3 Steady-state solutions for ideal Pineda algorithm. Steady-state

solutions shown with dark lines at y = 0 and f(x) = 0. Training signal is the

product of y and f(x).

6.1.3 Training Algorithm and Convergence

The dynamics for the weights are also somewhat di�erent than the ideal dynamics as in

Equation 1.4. The new dynamics are

�w _wij = tsgn(yini � f(xj); �); (6:7)

where tsgn, abbreviated from thresholded signum, is the same as that in Equation 4.3 and

duplicated here,

tsgn(z; �) �

8>>>><
>>>>:
�1 if z < ��
0 if �� � z � �

1 if z > �;

(6:8)

where the threshold, �, is either a constant, which sets the total current to a follower, as in

Equation 4.4, or is set by a current-correlator follower as in Equation 4.5. Figure 4.9 shows

the contours of the learning algorithm as implemented for the follower paradigm. Figure 6.3

shows the contour for Pineda's algorithm. The solid lines along the axis show the regions

where the gradient information goes to zero. Notice that in the Pineda algorithm, one of

two conditions must be met before the gradient information goes to zero; either the output
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of the X units are zero, or the Y units are zero. Having all X units zero is the trivial case

and is not a stable equilibrium. Having all Y units zero guarantees one of two conditions:

either the derivatives are all zero, or the error term is zero. In a computer simulation, where

the derivatives never reach zero, the only possible equilibrium is where the errors are zero.

In the original system (the Pineda algorithm), the only case in which the gradient is zero

is when the Y outputs are zero. In our implementation, the Y outputs are never absolutely

zero due to inherent o�sets [51] and noise [16]. For this reason, I added a \dead zone" to our

weight update dynamics. This is the region in Figure 4.9 encompassing the zero-gradient

region. In this zero-gradient region, no weight change occurs irrespective of the noise and

o�sets inherent in the X and Y units. In the new thresholded signum dynamics, the

qualitative behavior is similar to the original system. The advantage of the new dynamics

is due to insensitivity of the new algorithm to noise. There is a noise margin built into the

algorithm. As a consequence of the \dead zone," the solution does not converge on zero

error, but it does converge close to zero.

Ref

Enable

Ibias

X+ X�

Input

C

Figure 6.4 Circuitry used for external inputs.

6.1.4 External Inputs and Targets

The circuitry used for external inputs and targets is shown in Figure 6.4 and Figure 6.5.

For each of these, Enable is a digital bit set to `0' (Gnd) or `1' (Vdd). If the Enable is `0,' no
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Figure 6.5 Circuitry used for external targets.

external input is provided. If the bit is `1,' a total Ibias current is provided by the external

input. The di�erence between Input and Ref determines the di�erential signal provided as

an external input. The sources of each input transistor are degenerate. This degeneration

allows a larger allowable swing between Input and Ref before the external input saturates.

By making Ibias large relative to the other input current ( (n � 1)Zt), this external input

dominates the sigmoids static input.

The external error input shown in Figure 6.5 provides external input to the Y units.

The Enable bit functions the same for this circuit as for the external input to the sigmoid.

The Target input, which is referenced to Ref, has f(X+) � f(X�) subtracted from it to

provide an error input to the Y layer.

6.2 Stability

Stability of the network is of concern. If we do not guarantee that the network will be stable,

it may oscillate and may not perform the task we wish it to learn. To consider stability,

we must consider the stability of the X and Y layers. It has been shown previously by

Almeida [1] that if the X layer is stable, then the Y layer is stable as well. Additionally,

there exist several stability criteria from Matsuoka, Guez, Kelly, Sugawara, and Hirsch

[40, 23, 32, 62, 25] with which conditions for the stability of the X layer can derived. I use
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these criteria to show under what conditions I can guarantee global asymptotic stability for

the X layer.

6.2.1 Stability of X Layer

Stability requirements for the X layer deal with constraints on the weight matrix. An early

condition from Hop�eld [27] was that the connection strengths are symmetric. From this

condition, he found a Lyapunov function and global asymptotic stability was guaranteed. I

cannot ensure that our weight matrix will be symmetric and must look for other criteria.

A second type of constraint deals with the sizes of the weights in the network relative

to the maximum gain of the nonlinearity. The early constraints of Sugawara [62] impose

the following as a su�cient condition for global asymptotic convergence:

max
i

X
j

jwijj < 1: (6:9)

Other constraints which are less restrictive have been recently found, but the constraint in

Equation 6.9 is adequate for our network. The network used by Sugawara is of the form

dxi
dt

= �xi +
X
j 6=i

wijgj(xj) + Si; (6:10)

where

0 < g0i(z) � sup
z
g0i(z) = 1: (6:11)

6.2.2 X Layer with Resistor-Capacitor Dynamics

If we assume that the static equilibria of the X layer were obtained from a layer which had

an RC circuit establishing the dynamics, then the dynamical equations describing the static

output of Equation 6.1 is

dxi
dt

= �xi +
X
j 6=i

� � wij

n� 1 + �

�
f(xj)

�

�
+

� � inputi
(n� 1 + �)

; (6:12)
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where � is the maximum slope of f(xj). By now de�ning new variables ŵij � ��wij

n�1+�,

f̂(xj) � f(xj)
� and x̂ini � �

inputi
n�1+� , we obtain

dxi
dt

= �xi +
X
j 6=i

ŵij f̂(xj) + x̂ini: (6:13)

With these new functions, we see that

0 < f̂ 0(z) � sup
z
f̂ 0(z) = 1 (6:14)

is true, since the largest slope of the sigmoid in Equation 5.2 is at the origin and is �.

The dynamical system of Equation 6.13 is of the same form used by Sugawara. Since the

maximum value of jwij j is 1,

max
i

X
j

jŵij j = �

n� 1 + �
max
i

X
j

jwijj � �

n� 1 + �
max
i

X
j 6=i

1 = �
n� 1

n� 1 + �
� �: (6:15)

We assume wii = 0. Also note, from the de�nition of � in Equation 6.1, � is not negative.

We note the bound of � is not small enough to guarantee global asymptotic stability as

stipulated in Equation 6.9, since � � 4:9 for � = 0:65. When training begins, though, if

all of the weights are within approximately �0:20 or 1=� of the origin, we have guaranteed

global asymptotic stability until the weights grow beyond this size.

Another technique used to guarantee stability is to reduce the overall e�ectiveness of

any sigmoid on the other sigmoids. Using the sigmoid scaling described in Section 5.1 and

Equation 5.4, the e�ectiveness of the sigmoid on a�ecting other sigmoids is reduced. The

equation describing this is

dxi
dt

= �xi +
X
j 6=i

�wij

n� 1 + �

ztf(xj)

�
+

� � inputi
(n� 1 + �)

dxi
dt

= �xi +
X
j 6=i

~wij f̂(xj) + x̂ini; (6.16)

where zt describes the sigmoid scaling factor and is between � 1, where f̂j and x̂ini are

de�ned as in Equation 6.13, and where the weight ~wij =
zt�wij

n�1+� is scaled by zt. Here, the

scaling of the sigmoid can be seen as a scale on the size of the weights in the network. It is
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this insight that we use to guarantee global asymptotic stability of the X layer. Now, if we

set zt < 1=�, we now obtain,

max
i

X
j

j ~wijj < 1; (6:17)

which is the required stipulation of Equation 6.9. Thus, by using the sigmoid-scaling circuit,

and by making zt less than 1=�, we are able to guarantee asymptotic global stability of the

X layer. This analysis is only true if the output conductances can be considered as resistors

instead of diodes and with a resistance such that RC = 1.

6.2.3 X Layer with Diode-Capacitor Dynamics

In reality, though, my network is composed of diode-connected FETs in parallel with ca-

pacitors. The dynamics of this layer are

dS+
i

dt
= S+

i (Z
+
i � S+

i )

dS�
i

dt
= S�

i (Z
�
i � S�

i ); (6.18)

where

zi = f(xi);

xi =
X
j

ŵijsi + inputi; (6.19)

and where zi � Z+
i �Z�

i
Zt

, ŵij � wij
n�1+�, si �

S+
i �S�

i
Zt

, inputi � �
I+
i
�I�

i

(n�1+�)Zt
and xi �

X+
i
�X�

i

Xt
. Also  = �

VtC
. The variables S�

i and Z�
i are shown in Figure 5.19. Following

a method employed by Hirsch [25] and outlined in Appendix B we obtain the following

criteria for stability of the X layer,

�
X
j 6=i

jŵjij < 4� " (6:20)

where " � 1 and 0 � f 0(x) � �. Thus, we need the gain of our sigmoid to be less than 4.

By running the sigmoid in the moderate inversion regime of the transistor we can guarantee

this condition. In addition, we can reduce ŵij by introducing sigmoid scaling to achieve the
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criteria in Equation 6.20.

6.3 Overall Chip Architecture

I designed and tested a modi�ed version of the Pineda network in a 2�m CMOS process.

The chip was fabricated through the MOSIS service. Figure 6.6 shows a schematic of the

chip. This test chip contains 12 neurons, shown along the diagonal in Figure 6.6, each fully

connected through the synapses to the other 11 neurons, but with no self-feedback connec-

tion. The full connectivity applies for the X units and Y units equally. All together there

are 132 synapses. Each synapse contains a weight, which is a di�erential voltage contained

on two oating nodes, and shared between two multipliers, a structure used for adaptation,

a four-quadrant multiplier for the feedforward layer, another four-quadrant multiplier for

the error layer, circuitry to calculate the training signal, and two di�erential pairs used for

scanning out the weights and the training signal. The synapse is approximately 200�m

square.

The 12 fully connected neurons contain a sigmoidal unit and an error processing unit.

The sigmoid unit is used for the nonlinear mapping and the error unit is used to calculate

the weight updates. The sigmoidal unit and error unit along with two di�erential pairs for

scanning out the state information of each unit occupy approximately 200�m square, as

well.

Inputs and targets are scanned in on a single line and sampled on the appropriate

capacitor. Each input and each target has an associated one bit of memory called the

enable bit. If an input is enabled, the associated sigmoid receives an external input. If a

target is enabled, the associated error unit receives an error signal calculated from the target

and the output of associated sigmoid. The inputs are scanned into the input sample-and-

hold (s/h) circuitry and the target outputs are scanned into the target s/h circuitry. Both

inputs and targets have an associated single bit memory which is also scanned in which

designates whether the input is enabled, and whether the associated target is enabled. In

this way, X units can be designated as input units, output units, or hidden units.
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Figure 6.6 Overall learning chip architecture. Each long thin rectangular

box is a scanner through which a digital bit can be clocked. The small boxes

represent digital registers. Any number of 1's may be present within the scan-

ner at any time. The digital input to a scanner may be a 0 or a 1. These inputs

are not shown. The boxes labelled `Scanner' (either H or V) are wired in such

a fashion as to generate their own bit for scanning. The boxes labelled scanner

are used to scan information o� the chip either directly to a NEC multisync

monitor (sync and blank are generated on chip) or to a host computer. Hclk

and Vclk are both provided to allow easy access to any cell on the chip. Inputs

and Targets are sampled and held in boxes labelled with the same name. A `1'

in any register connects input `A' (for Analog) to the associated sample-and-

hold capacitor. Enable bits are scanned in and stored into the boxes labelled

with the same name. These enable bits control whether an input or target is

actually input into the network.
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6.3.1 Recruiting Units

The X units can be recruited to perform several di�erent tasks. They can behave as input,

output, bias, or hidden units.

6.3.1.1 Input Units

By enabling the appropriate external inputs, the current sunk by the external input circuitry,

shown in Figure 6.4, provides external input. If the amount of this current is large compared

with the level of current supplied by the network, the external input dominates the input

to a particular sigmoidal unit. In this mode of operation, this sigmoidal unit is referred to

as an input unit.

6.3.1.2 Output Units

If the target for an associated X unit is enabled, then this sigmoid is being used as an

output unit.

6.3.1.3 Bias Units

Many problems require bias units. Bias units have constant outputs, irrespective of the

input pattern being applied. Bias units are implemented on the chip by dedicating several

processing elements (X units) as bias units. These units receive the same external input

for every input pattern presented. In addition, I specify a target for these units to match

the applied input, so that the weights feeding the unit change in the direction to make the

output of the bias unit more consistent with the inputs.

6.3.1.4 Hidden Units

X units which have neither the input nor target enabled are referred to as hidden units.

These units are essential for solving tough problems. It may prove useful to actually drive a

hidden unit to a speci�ed value by enabling its target input. This technique can encourage

symmetry breaking.
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6.3.2 Scanners for Visualizing Network Parameters

Also shown in Figure 6.6 are scanners used to scan values o� the chip. These scanners are

designed to connect to a NEC Multisync monitor and are described in detail by Mead [46].

The network parameters which are monitored during training are the weights, the outputs

of the X and Y layers, the inputs, the targets, and the error signals. This information is

an invaluable debugging aid.

The same scanners can be used to scan values o� the chip or into the chip. There is a

clock for the horizontal and vertical scanners. Software was written to move anywhere onto

the grid and read o� the associated values.

6.4 Demonstration of Learning

This section describes the process of training the network. To train, I supply the inputs and

associated targets. With a UV source turned on, the gradient signals generated on the chip

cause the weights to change such that the di�erence between the output units and desired

target is minimized.

6.4.1 Control of the Learning Rate

It is necessary to control the learning rate on the chip. The learning rate is the constant

of proportionality, by which the weights change in the learning rule. In my case, the

learning rate is �w. There are several parameters I can control to change this rate. These

parameters are length of pattern-presentation time, UV intensity, power supply rail levels,

and the weight reference voltage. I discuss each of these parameters.

6.4.1.1 Remove Learned Patterns (RLP)

By presenting each pattern to the chip for a controlled amount of time, I do not a�ect

the �w of Equation 6.7, but I do change the amount a weight changes on each pattern

presentation. When training a problem with several patterns, it is sometimes necessary to

change selectively the time of presentation. For those patterns that have learned the correct

output below some threshold in square error, I present the pattern to the network for a short

time. For those patterns with a square error above the threshold, I present the pattern to
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the network for a longer time. I call this technique Remove Learned Patterns (RLP),

since learned patterns are e�ectively removed from the training epoch. I use this technique

use to train the two-input parity problem on the chip discussed later in this section.

6.4.1.2 Controlling UV Intensity

By controlling the intensity of UV exposure to the chip, I can control the learning rate. I

use �lters, which are a proprietary glass from UVP, Inc., which allow transmission of UV.

By stacking several �lters, I control the level of UV intensity reaching the chip. I also reduce

this intensity by moving the UV source farther from the chip. I place the source three or

four cm from the chip for much of the training presented here.

6.4.1.3 Power Supply Rail

Another control I have over the size of the weight change is the power supply rail. By

changing the supply voltage, I am able to change linearly the size of the weight modi�cation

when I present a pattern to the chip for a �xed time.

6.4.1.4 Weight Reference

The weight reference is used to balance weight increments with weight decrements. By

moving the weight reference closer to Gnd than to Vdd, I am able to decrease the weight

decrements and increase the weight increments. Moving the weight reference closer to Vdd,

I get the opposite e�ect.

6.4.2 Training Examples

Here I show training data from the chip for four di�erent training runs. For all four cases,

the output unit was chosen arbitrarily as X unit number 11. There are two input units for

each of the training examples, which are arbitrarily chosen as X units 2 and 3. There are

two bias units for each of the runs, as well, which are arbitrarily chosen as units 5 and 6

(unit 5 is a negative bias, that is it always receives a negative input, and unit 6 is a positive

bias). The training data is plotted as number of pattern presentations versus the square

error of the output. For the error plots, the square error shown can range from 4.0 down

to 0. An error less than one implies the output is on the same side of zero as the required
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target. In all cases, I assume the problem is solved if the square error is less than 0.9 for

all patterns. I use this threshold for the Remove Learned Patterns algorithm as well.

0 100 200 300 400 500 600 700 800 900

Pattern Presentations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
q
u
a
r
e
E
r
r
o
r

Figure 6.7 Square error versus pattern presentations for one pattern. For

this curve the input pattern is `00' and the associated output is `0.' For

consistency with multiple pattern training runs, the time axis is in units of

pattern presentations, with each pattern presentation lasting 30 seconds.

6.4.2.1 One Pattern

The �rst task I put to the chip is to learn a single pattern from input to output. The input

pattern is `00,' where `0' refers to a normalized input of minus one. The associated output

for the network was `0.' This task is easy for the network and it requires none of the hidden

units. Figure 6.7 shows the chip learning this single pattern. The pattern was presented to

the chip and the resulting output was measured as a function of time. The error shown is

the target minus the output squared.

6.4.2.2 Two Patterns

A more di�cult problem of two patterns was next presented to the network. The patterns

presented to the network were `00' and `01' with the associated outputs `0' and `1,' respec-
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Figure 6.8 Square error versus pattern presentations for two patterns. For

this curve the input patterns are `00' and `01' and the associated outputs are

`0' and `1,' respectively. The time axis is in units of pattern presentations,

with each pattern presentation lasting 30 seconds. The bottom curve is the

`00' input pattern error curve.
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Pattern Inputs Output

1 00 0

2 01 1

3 10 1

4 11 0

Table 6.1 Two-input parity problem. `0' is represented by a -1 in the

network. '1' is represented by a 1.

tively. Figure 6.8 shows the error curve of training with two patterns following the training

session with one pattern.
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Figure 6.9 Shows square error versus pattern presentations for four pat-

terns. The four patterns are from the two-input parity problem presented

sequentially to the network. The remove learned patterns (RLP) threshold

was set to 0.9. The jaggedness in the curves is caused by the RLP paradigm.

6.4.2.3 Two-Input Parity Problem

Next the two-input parity (XOR) problem was presented to the network. This problem

has inputs and targets as shown in Table 6.1. Originally the task was not solvable for the
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Figure 6.10 Output and gradient information for the four patterns of the

two-input parity problem. The outputs are labelled with triangles, and the

gradients are shown with boxes. The gradients are for the synapse which

connect to the output node. Dotted line shows the value of the Y unit output.

Figures (a) through (d) shows the response to inputs `00,' `01,' `10,' and `11,'

respectively. Input units are triangles 2 and 3. Notice the input units show

the appropriate input values. Bias units are triangles 5 and 6; 5 is a negative

bias; 6 is a positive bias. Triangle 11 is the untrained output. All other units

are hidden units.
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network. Three of the patterns would be learned easily, but it was di�cult for the network

to solve the complete problem. I introduced into the learning paradigm the concept of

removing learned patterns (RLP) discussed previously in this section. I implement RLP by

showing a pattern to the network and subsequently reading the output. If the square error

is less than some threshold, then the network is shown the next pattern. If the error is

greater than the threshold, then the network is shown this pattern a �xed amount of time.

This procedure is used until all patterns exhibit a square error less than the threshold at

which time each pattern is shown to the network for a �xed time. RLP has the e�ect of

reducing the learning rate for learned patterns.

Using RLP, I was able to get the XOR problem trained on the network. Figure 6.9 shows

the training for four patterns. I use a square error threshold of 0.9 for RLP. Figure 6.10

shows the values of gradients and outputs for the four patterns of the XOR problem. This

data was taken before any training was done.

6.4.2.4 Catastrophic Training Event

I trained the XOR problem for a long time after the network had learned. Figure 6.11

shows a catastrophe in the learning process. It is hypothesized that the network's input

units received large enough signals from other X units to e�ectively cancel the inputs they

were receiving externally.
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Figure 6.11 Catastrophic event during training. Shows square error versus

pattern presentations for four patterns of the two-input parity problem pre-

sented sequentially to the network. The catastrophic event probably is due to

the input units receiving inputs from other X units and e�ectively cancelling

their external inputs.
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Chapter 7

Conclusions

Now this is not the end. It is not even the beginning of the end. But it is,

perhaps, the end of the beginning.

Winston Churchill, 1941

This chapter discusses the goals met by this research, novel ideas developed along the way,

and directions for further research.

7.1 Goals

I designed, built, and tested a supervised learning neural network analog VLSI chip. The

learning chip addresses the goals set forth in Section 1.2. The feedforward nonlinear mapping

proceeds uninterrupted in tandem with the training process, which proceeds in real-time.

The weight updates are calculated as part of a network and performed in parallel. The

weights are nonvolatile in the absence of a UV source. The chip is run in the subthreshold

mode of the transistor and consumes very little power.
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7.2 Novelties

The work presented here is built upon the work of many others before me. I mention work

that is novel for clarity and preciseness.

At the algorithmic level, I made modi�cations to Pineda's recurrent algorithm [53] to

make it more suitable to the demands of the medium. I changed the weight update dynamics

to give more immunity to the noise present in analog VLSI systems [51, 16]. Also, the details

of the dynamics of the processing layer are new. The dynamics are di�erent, because instead

of RC dynamics as implied by the original Pineda system[53], a diode replaces the resistor.

These new dynamics lead us to new stability criteria for the feedforward dynamics.

At the circuit level, I made several new contributions. The entire system is a novel

implementation. The use of oating gates which use UV-activated conductances for control

of synaptic weight storage is new as well. The designs of the sigmoid and modulated sigmoid

are inventions. The circuitry controlling the bang-bang learning including the current-

correlator follower is novel and was inspired by a need for a \dead zone" in the weight update

for noise immunity. The method of using the current correlator to perform the derivative

calculation of the sigmoid is also new. Other interesting novel circuits are contained in

Appendix A. These include a CMOS subthreshold four-quadrant eight-transistor sine-

approximation circuit and a subthreshold di�erential current inverter.

At the implementation level, there are also several novel ideas. The use of a multisync

monitor and on-chip scanners to view on-chip parameters was pioneered by Mead [46]. I use

this idea to monitor the weights and gradient information during training and feedforward

processing. This tool was an invaluable debugging aid. The idea of calculating the gradient

information collectively in the same fashion as the forward network is not new, but the

implementation here is.

These innovations have led me to realize some future directions of research to follow to

obtain more robust and simpler designs of analog VLSI learning systems.

7.3 Recommendations

Much of the work here has suggested new and better ways of constructing a remote low-

power learning system. Here I outline some of these suggestions.
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Do not use a UV source. It is not compatible with the desire for a remote learning

system. It is impractical to have a UV source for every chip residing at remote locations.

In addition, UV is quite cumbersome to deal with. The dangers of UV sources also abound.

The UV source is dangerous if not properly shielded. Also, ozone created by the source

can be harmful if the experiments are not conducted in well-ventilated rooms. On the chip,

the UV light complicates sensitive circuitry by generating minority carriers whereever the

UV light is not shielded. This includes circuitry around the periphery of the chip, such as

pads or sense ampli�ers. More speci�cally, if the learning task involves visual inputs, such

as those used by the silicon retina, the use of UV interferes with the desire to sense visible

light on the chip. It is for these reasons that structures that use tunnelling or hot-electron

injection are much better suited for remote-learning chips.

Construct sparsely connected architectures, which are better suited for large-scale neural

networks. Fully-connected architectures are interesting for their mathematical simplicity,

but impractical as the number of neurons grows. For this reason, solutions will be speci�c to

the task, rather than general purpose and will demand more locally-connected architectures.

Speci�c changes to the network implemenation I recommend are varied and numerous.

Two of the most germane recommendations are outlined here. Remove the derivative infor-

mation being passed to the error network and provide an explicit weight zeroing method.

The network could have recruited hidden units more e�ectively if the error propagation was

not diluted by the derivative information. Qualitative results suggest removing the deriva-

tive information altogether from gradient-descent algorithms does not prevent the system

from converging and sometimes even helps the system converge. I believe this change would

help the convergence of the network on the tougher training tasks. The second recommen-

dation of providing weight zeroing structures is critical for practicality of using the chip.

This chip relied on each weight decaying to the same analog level, but since there were vari-

ations in conductive and capacitive coupling, the zeroing by decay simply did not happen.

This lack of zeroing made it very di�cult to start the training over.

Overall, the results of this research look very promising. The goals of a learning chip

which adapts as it is processing information has been challenging, but I am certainly much

closer to attaining this goal in a robust and viable way.
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Appendix A

Other Current-Mode Circuits

In this appendix, I introduce some new current-mode circuits. The four-quadrant sine-

approximation circuit uses the current-correlator circuit discussed in Section 3.3. The

inverted-di�erential-pair circuit is an alternative to the di�erential-pair circuit discussed

in Section 3.2.

X+ Z+ Z� X�

Q1 Q2 Q3 Q4

Figure A.1 The four-quadrant sine-approximation circuit. It receives in-

puts through X+ and X� and provides outputs through Z+ and Z�. z has an

error of approximately two percent from an ideal sine.
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Figure A.2 The ideal four-quadrant sine-approximation circuit compared

with �sin(�x). This circuit ideally obeys Equation A.1
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Figure A.3 Error in the four-quadrant sine-approximation circuit. The

error is de�ned in Equation A.2 for two di�erent values of �. Fit1 is with

� = 0:1501, which is the maximum for Equation A.1 and Fit2 is with � = 0:1516,

which is near minimax error.
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A.1 The Four-Quadrant Sine-Approximation Circuit

Using the current-correlator circuit discussed in Section 3.3 as the bias to a di�erential pair,

we can obtain an approximation to a sine function. Figure A.1 shows the sine circuit. Fig-

ure A.2 shows the output of the ideal function of the sine circuit compared1 with �sin(�x)

over the same period, where � is used to scale the sine to �t to the circuit output. The

equation the sine circuit computes is

z =
1

2

 
x� x3

1 + x2

!
; (A:1)

where both z and x are normalized by the total input current. z attains a maximum (and

minimum) at x = �
qp

5� 2 � �0:486, where z � 0:1501. Figure A.3 shows the di�erence

between the sine circuit approximation and �sin(�x) for � = 0:1501 (Fit1 in Figure A.3)

the maximum of the Equation A.1 and for � = 0:1516 (Fit2 in Figure A.3) where we achieve

near minimax error. The error used is given by

Error =
�sin(�x)� z

�
� 100; (A:2)

where z is the output of the circuit given in Equation A.1. The maximum deviation from

ideal is about � two percent for the near minimax case. The minimax error is de�ned as

the minimization of the maximum error. The use of near in near minimax error is used

to mean the search for minimax is performed iteratively and approximately rather than

analytically.

Seevinck [57] reports a current-mode sine circuit built with bipolar junction transis-

tors (BJTs), which has better accuracy, but at the expense of more transistors. Seevinck

also has a sine circuit which performs Equation A.1 which uses seven BJTs.

The circuit shown here is designed for a CMOS FET technology. The advantage of this

circuit over Seevinck's is that no extra bias is required. In my circuit, the input sets the

scale for the output. This scaling may or may not be desirable depending on the application.

1The sine- approximation circuit is the only circuit that I have not fabricated in this dissertation. Thus,

I am not showing data, but rather theoretical curves that should approximate closely the circuit.
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A.1.1 Intuition for Four-Quadrant Sine-Approximation Circuit

Intuitively, the sine circuit has three places where the output is zero. When the inputs are

equal, the output is zero since Z+ and Z� are equal. When the inputs are very di�erent,

the output of the correlator becomes small and the output also becomes small.
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Figure A.4 Family of curves for the sine-approximation circuit obtained

by varying �. The curve which is most skewed relative to an ideal sine wave

(it also has the largest amplitude) has � = 0:1. The family of curves has �

increasing as the curves drop in amplitude. � is 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0

for the curves shown.

A.1.2 E�ect of �

If now we use the FET equation which takes � into account (Equation 3.3), we get the

following relationship for the sine circuit,

1 + ẑ

1� ẑ
=

�
1 + x

1� x

�1+1=�

; (A:3)



115

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

5

10

15

20

25

30

35

40

45

P
e
r
c
e
n
t
M
in
im
a
x
E
r
r
o
r

�

Figure A.5 Dependence of near minimax error on �.

where ẑ � Z+�Z�

Zc
, Zc =

Xt

2 (1� x2), and x � X+�X�

Xt
. Solving for ẑ, we �nd,

ẑ =
�1 + x+

�
1+x
1�x

�1=�
(1 + x)

1� x+
�
1+x
1�x

�1=�
(1 + x)

: (A:4)

Now de�ne z � Z+�Z�

Xt
. Then,

z =
1

4

0
B@�1 + x+

�
1+x
1�x

�1=�
(1 + x)

1� x+
�
1+x
1�x

�1=�
(1 + x)

1
CA (1� x2): (A:5)

For � = 1:0, Equation A.5 reduces to the sine-approximation equation used previously

(Equation A.1). Figure A.4 shows the behavior of the ideal circuit for various values of �.

Shown in the Figure A.4 are six curves for values of � ranging from 0.1 (largest amplitude) to

1.0 (smallest amplitude). Figure A.5 shows how the near minimax percent error increases

as � becomes smaller. A reasonable range for � is between 0.6 and 0.9, where the near

minimax error remains below 10 percent.

For two percent accuracy, we can place each of the transistors in its own well, with the

well tied to each individual source. Actually, only four separate wells are needed. One well

for Q1 and Q4 each of Figure A.1. One well only for both Q2 and Q3, and one well for all
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the remaining transistors. With this circuit, we get the behavior simulated by � = 1:0 and

given in Equation A.1.

Zt�(Zt)

Z�Z+

X+ X�

Z+ Z�

Figure A.6 The inverted-di�erential-pair circuit. The inputs are X+ and

X� and the outputs are Z+ and Z�.

A.2 The Inverted-Di�erential-Pair Circuit

Figure A.6 shows the inverted-di�erential-pair circuit. The inverted-di�erential-pair circuit

takes its inputs as X+ and X�; its outputs are Z+ and Z�. The circuit computes

z = �x; (A:6)

where x and z are the normalized di�erential quantities of X� and Z� respectively. It

has several advantages over the standard di�erential pair. First, inputs and outputs have

the same direction so no additional current-mirror circuitry is required, unlike a standard

di�erential pair. It uses the two-transistor current conveyor introduced by Boahen [8] and

is a close relative of the winner-take-all circuit of Lazzaro [36], but performs a very di�erent

function. In the unipolar mode of operation, it performs

Z+

Zt
=

1�
X+

X�

��
+ 1

and
Z�

Zt
=

1�
X�

X+

��
+ 1

: (A:7)
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Data taken from this circuit is shown in Figure A.7 along with theoretical �ts given by

Equation A.7.
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Figure A.7 Data from the unipolar-mode inverted-di�erential-pair circuit.

The input to the circuit is X+

X�
and the outputs Z� are normalized by Zt.

Theoretical �ts using Equation A.7 with � = 0:73 for Z+ and � = 0:67 for Z�.

This circuit may be useful in gain-control applications where one input sets the average

of a time varying signal; the time varying signal is the other input. The output then

reports how di�erent one input is from the other in a logarithmic sense over several orders

of magnitude, with a relatively linear range over about two orders of input magnitude.
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Appendix B

Stability of the X Network

To guarantee global asymptotic stability for the X network, we follow the same approach

used by Hirsch [25]. Hirsch proves the following theorem

Theorem B.1 Assume there is a constant �� < 0 such that each Jacobian matrix A =

DF (y) has the property that hA�; �i � ��k�k2 for all � 2 <n. Then the dynamical system

_x = F (x) is globally asymptotically stable.

In our case, the dynamical system we are considering is

dS+
i

dt
= S+

i (Z
+
i � S+

i ) � F+
i ;

dS�
i

dt
= S�

i (Z
�
i � S�

i ) � F�
i : (B.1)
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See Section 6.1 for a description of this system. The vector Fi is a concatenation of vectors

F+
i and F�

i . Thus the Jacobian A has the following form:

A �

0
BBBBBBBBBBBBBBBBBBBBBBB@

@F+
i

@S+
i

� � � @F+
j

@S+
i

� � � @F�
i

@S+
i

� � � @F�
j

@S+
i

� � �
...

. . .
...

. . .

@F+
i

@S+
j

� � � @F�
i

@S+
j

� � �
...

. . .
...

. . .

@F+
i

@S�
i

� � � @F+
j

@S�
i

� � � @F�
i

@S�
i

� � � @F�
j

@S�
i

� � �
...

. . .
...

. . .

@F+
i

@S�
j

� � � @F�
i

@S�
j

� � �
...

. . .
...

. . .

1
CCCCCCCCCCCCCCCCCCCCCCCA

: (B:2)

Hirsch further shows that the conditions of the theorem are valid if the largest eigenvalue

of 1
2(A + AT ) is � ��. By Gerschgorin's circle theorem this is obtained by the su�cient

condition

Aii +
1

2

X
j 6=i

kAij +Ajik � ��: (B:3)

For our dynamical system, this gives us two su�cient conditions to guarantee global

asymptotic stability. These conditions are

[Z+
i � 2S+

i +
1

4

X
j 6=i

jf 0(xj)�Sjŵjij] � ��;

[Z�
i � 2S�

i +
1

4

X
j 6=i

jf 0(xj)�Sjŵjij] � ��: (B.4)

For this condition to imply global asymptotic, we need to show that S+
i follows Z+

i

closely and that S�
i follows Z�

i . We have not been able to show this conclusively, but only

in special cases.

What we have done, is assume that the Si's follow the Zi's closely to see what conditions

result. Assume S+
i follows Z+

i closely, such that
Z+
i �2S+

i
Zt

< �1 + " for 0 � " � 1. Then

we need to guarantee
1

Zt

1

4

X
j 6=i

jf 0(xj)�Sjŵjij < 1� ": (B:5)
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We know that 0 � f 0(xj) � �. Also, we know 0 � j�Sj j
Zt

� 1. From this we �nd

�
X
j 6=i

jŵjij < 4� ": (B:6)

We can guarantee stability by adjusting the maximum gain of the sigmoid and the sum

of the magnitude of the weights to which the neuron outputs. Remember though, if we

cannot guarantee that S+
i follows Z+

i closely or the same for S�
i and Z�

i , then we have no

guarantee for global asymptotic convergence.



122

References

[1] L.B. Almeida. A learning rule for asynchronous perceptrons with feedback in a com-

binatorial environment. In M. Caudil and C. Butler, editors, Proceedings of the IEEE

First International Conference on Neural Networks, pages 609{618, San Diego, CA,

1987.

[2] J. Alspector, B. Gupta, and R.B. Allen. Performance of a stochastic learning microchip.

In D. Touretzky, editor, Advances in Neural Information Processing Systems 1, pages

748{760, San Mateo, CA, 1989. Kaufmann.

[3] A.G. Andreou and K.A. Boahen. Synthetic neural circuits using current-domain signal

representations. Neural Computation, 1:489{501, 1989.

[4] R.G. Benson and T. Delbr�uck. Direction-selective silicon retina that uses null inhibi-

tion. In J.E. Moody, S.J. Hanson, and R.P. Lippmann, editors, Advances in Neural

Information Processing Systems 4, San Mateo, CA, 1992. Morgan Kaufmann.

[5] R.G. Benson and D.A. Kerns. UV-activated conductances allow for multiple time scale

learning. IEEE Transactions on Neural Networks, 4(3):434{440, May 1993.

[6] K. Boahen and A. Andreou. A contrast-sensitive silicon retina with reciprocal synapses.

In S. Hanson J. Moody and R. Lippmann, editors, Advances in Neural Information

Processing Systems, Volume 4. Morgan Kaufmann, Palo Alto, CA, 1991.

[7] K.A. Boahen, A.G. Andreou, and C.A. Mead. A generalization of the translinear

principle to the ohmic region of MOS transistor operation. To appear in Electronic

Letters, 1993.



123

[8] K.A. Boahen, A.G. Andreou, P.O.Pouliquen, and A. Pavasovi�c. Architectures for asso-

ciative memories using current-mode analog MOS circuits. In C. Seitz, editor, Proceed-

ings of the Decennial Caltech Conference on VLSI. California Institute of Technology,

MIT Press, 1989.

[9] L.R. Carley. Trimming analog circuits using oating-gate analog MOS memory. IEEE

Journal of Solid-State Circuits, 24(6):1569{1575, December 1989.

[10] G. Cauwenberghs. A learning analog neural network chip with continuous{time recur-

rent dynamics. In Advances in Neural Information Processing Systems, San Mateo,

CA, 1994. Morgan Kaufmann. To appear.

[11] P. Cleaveland. Memory chip stores data in analog form. I&CS Control Technology for

Engineers and Engineer Management, 64(2):81{82, 1991.

[12] M. Cohen and A.G. Andreou. Current-mode subthreshold MOS implementation of

the Herault{Jutten autoadaptive network. IEEE Journal of Solid-State Circuits,

27(5):714{727, May 1992.

[13] T. Delbr�uck. \Bump" circuits for computing similarity and dissimilarity of analog

voltages. Computation and Neural Systems (CNS) Memo 10, Caltech, Pasadena, CA,

1991.

[14] T. Delbr�uck. A silicon network for motion discrimination that uses spatio-temporal

interpolation. In Society of Neuroscience Abstracts, 1991. Session 143.8.

[15] T. Delbr�uck and C.A. Mead. Silicon adaptive photoreceptor array that computes

temporal intensity derivatives. In Proc. SPIE 1541, volume 1541-12, pages 92{99, San

Diego, CA, July 1991. Infrared Sensors: Detectors, Electronics, and Signal Processing.

[16] T. Delbru�uck. Investigations of analog VLSI visual transduction and motion processing.

PhD thesis, California Institute of Technology, 1993.

[17] D.J. DiMaria, F.J. Feigl, and S.R. Butler. Capture and emission of electrons at 2.4 eV-

deep trap level in SiO2 �lms. Physical Review B, 11(12):5023{5030, 15 June 1975.



124

[18] S. Eberhardt, T. Duong, and A. Thakoor. A VLSI analog synapse `building block' chip

for hardware neural network implementations. In L. H. Canter, editor, Proceedings of

IEEE 3rd Annual Parallel Processing Symposium, pages 257{267, March 1989.

[19] F. Faggin and C.A. Mead. VLSI implementation of neural networks. In S. F. Zornetzer,

J. L. Davis, and C. Lau, editors, An Introduction to Neural and Electronic Networks.

Academic Press, New York, 1990.

[20] B. Gilbert. Translinear circuits: A proposed classi�cation. Electronics Letters,

11(1):14{16, 1975.

[21] B. Gilbert. A monolithic 16-channel analog array normalizer. IEEE Journal of Solid-

State Circuits, SC{19(6), 1984.

[22] L. A. Glasser. A UV write-enabled PROM. In Henry Fuchs, editor, Chapel Hill

Conference on VLSI (1985), pages 61{65, Rockville, MD, 1985. Computer Science

Press.

[23] A. Guez, V. Protopopsecu, and J. Barhen. On the stability, storage capacity, and

design of nonlinear continuous neural networks. IEEE Transactions on Systems, Man

and Cybernetics, SMC{18:80{87, 1988.

[24] J. G. Harris, C. Koch, and J. Luo. A two-dimensional analog VLSI circuit for detecting

discontinuities in early vision. Science, 248:1209{1211, 1990.

[25] M. W. Hirsch. Convergent activation dynamics in continuous time networks. Neural

Networks, 2:331{349, 1989.

[26] M. Holler, S. Tam, H. Castro, and R. Benson. An electrically trainable arti�cial neural

network (ETANN) with 10240 \oating gate" synapses. In The International Joint

Conference on Neural Networks, volume 2, pages 191{196, Washington D.C., June

1989.

[27] J. J. Hop�eld. Neural networks and physical systems with emergent collective compu-

tational abilities. Proceedings of the National Academy of Sciences USA, 79:2554{2558,

April 1982.



125

[28] J. J. Hop�eld. Neurons with graded response have collective properties like those of

two-state neurons. Proceedings of the National Academy of Sciences USA, 81:3088{

3092, May 1984.

[29] J. J. Hop�eld. The e�ectiveness of analogue \neural network" hardware. Network:

Computation in Neural Systems, 1(1):27{40, January 1990.

[30] J. J. Hop�eld and D. W. Tank. Neural computations of decisions in optimization

problems. Biological Cybernetics, 52:141{152, 1985.

[31] P. Horowitz and W. Hill. The Art of Electronics. Cambridge University Press, Cam-

bridge, 1980.

[32] D. G. Kelly. Stability in contractive nonlinear neural networks. IEEE Transactions on

Biomedical Engineering, 37:231{242, 1990.

[33] D.A. Kerns. Experiments in Very Large Scale Analog Computation. PhD thesis, Cali-

fornia Institute of Technology, 1993.

[34] D.A. Kerns, J. Tanner, M. Sivilotti, and J. Luo. CMOS UV-writable non-volatile

analog storage. In Carlo H. S�equin, editor, Advanced Research in VLSI, pages 245{

261, University of California Santa Cruz, 1991. MIT Press.

[35] J. Lazzaro and C.A. Mead. A silicon model of auditory localization. Neural Computa-

tion, 1:47{57, 1989.

[36] J. Lazzaro, S. Ryckebusch, M.A. Mahowald, and C.A. Mead. Winner{take{all net-

works of O(n) complexity. In D. S. Touretzky, editor, Advances in Neural Information

Processing Systems, pages 703{711. Morgan Kaufmann, San Mateo, CA, 1988.

[37] R.P. Lippman. An introduction to computing with neural nets. IEEE ASSP, 4(2),

April 1987.

[38] R. F. Lyon and C.A. Mead. An analog electronic cochlea. IEEE Transactions. Acous-

tics, Speech, Signal Processing, 36:1119{1134, 1988.



126

[39] M.A. Mahowald. VLSI Analogs of Neuronal Visual Processing: A Synthesis of Form

and Function. Ph.D. thesis, California Institute of Technology, Pasadena, California,

1992.

[40] K. Matsuoka. Stability conditions for nonlinear continuous neural networks with asym-

metric connection weights. Neural Networks, 5:495{500, 1992.

[41] M. McLuhan. Understanding Media. 1964.

[42] C.A. Mead. Analog VLSI and Neural Systems. Addison-Wesley, Reading, MA, 1988.

[43] C.A. Mead. Adaptive retina. In C. A. Mead and M. Ismail, editors, Analog VLSI im-

plementation of neural systems, pages 239{246. Kluwer Academic Publishers, Boston,

MA, 1989.

[44] C.A. Mead. Analog VLSI and Neural Systems. Addison-Wesley, 1989.

[45] C.A. Mead. Neuromorphic electronic systems. Proceedings of the IEEE, 78:1629{1636,

1990.

[46] C.A. Mead and T. Delbr�uck. Scanners for use in visualizing analog VLSI circuitry.

Analog Integrated Circuits and Signal Processing, 1:93{106, 1991.

[47] C.A. Mead and M.A. Mahowald. A silicon model of early visual processing. Neural

Networks, 1:91{97, 1988.

[48] A. Moopenn, T. Duong, and A.P. Thakoor. Digital-analog hybrid synapse chips for

electronic neural networks. In D. S. Touretzky, editor, Advances in Neural Information

Processing 2, pages 769{776, San Mateo, CA, 1990. Morgan Kaufmann.

[49] E.H. Nicollian and J.R. Brews. MOS (Metal Oxide Semiconductor) Physcis and Tech-

nology. John Wiley & Sons, 1982.

[50] Y. Nissan-Cohen, J. Shappir, and D. Frohman-Bentchkowsky. Dynamic model of

trapping-detrapping in SiO2. J. of Applied Physics, 58(6):2252{2261, 15 September

1985.

[51] A. Pavasovi�c. Subthreshold Region MOSFET Mismatch Analysis and Modeling for

Analog VLSI Systems. PhD thesis, The Johns Hipkins University, 1990.



127

[52] A. Pavasovi�c, A.G. Andreou, and C.R. Westgate. Characterization of CMOS process

variations by measuring subthreshold current. In C.O. Ruud and R.E. Green, editors,

Non-Destructive Characterization of Materials, vol. IV. Plenum Press, 1991.

[53] F.J. Pineda. Dynamics and architecture for neural computation. Journal of Complexity,

4:216{245, 1988.

[54] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning internal representations

by error propagation. In Parallel Distributed Processing. MIT Press, 1986.

[55] E. S�ackinger and W. Guggenb�uhl. An analog trimming circuit based on a oating-gate

device. IEEE Journal of Solid-State Circuits, 23(6):1437{1440, December 1988.

[56] F.M.A. Salam and Y. Wang. A real time experiment with a 50 neuron CMOS analog

silicon chip, with on chip digital-learning. IEEE Transactions on Neural Networks,

2(4):461{464, July 1991.

[57] E. Seevinck. Analysis and Synthesis of Translinear Integrated Circuits, volume 31 of

Studies in Electrical and Electronic Engineering. Elsevier Science Publishers B. V.,

The Netherlands, �rst edition, 1988.

[58] MOSIS Service. MOSIS parametric test results, run N32A, technology SCNA 2.0�m

CMOS, 1993.

[59] MOSIS Service. MOSIS parametric test results, run N32X, technology SCPE 2.0�m

CMOS, 1993.

[60] M.A. Sivilotti, M.R. Emerling, and C.A. Mead. A novel associative memory imple-

mented using collective computation. In Henry Fuchs, editor, 1985 Chapel Hill Confer-

ence on Very Large Scale Integration, pages 329{342, Rockville, MD, 1985. Computer

Science Press.

[61] M.A. Sivilotti, M.R. Emerling, and C.A. Mead. VLSI architectures for implementation

of neural networks. In J. Denker, editor, Neural Networks for Computing (Snowbird

1986). American Institute of Physics, 1986.



128

[62] K. Sugawara, M. Harao, and S. Noguchi. On the stability of equilibrium states of

analogue neural networks. Transactions of the IECE, J{66{A:258{265, 1983.

[63] S.M. Sze. Physics of Semiconductor Devices. Wiley & Sons, New York, second edition,

1981.

[64] D. W. Tank and J. J. Hop�eld. Simple \neural" optimization networks: An A/D

converter, signal decision circuit, and a linear programming circuit. IEEE Transactions

on Circuits and Systems, CAS{33(5):533{541, May 1986.

[65] R. Tawel, R. Benson, and A.P. Thakoor. A CMOS UV-programmable nonvolatile

synaptic array. In The International Joint Conference on Neural Networks, volume 1,

pages 581{585, Seattle, WA, July 1991.

[66] E. Vittoz, H. Oguey, M. Maher, O. Nys, E. Dijkstra, and M. Chevroulet. Analog

storage of adjustable synaptic weights. In U. Ramacher and U. R�uckert, editors, VLSI

Design of Neural Networks, pages 47{63. Kluwer Academic Publishers, 1991.

[67] E. A. Vittoz. Analog VLSI signal processing: Why, where and how? To be Published

in: Journal of VLSI Signal Processing, 1993.

[68] E.A. Vittoz and X. Arreguit. CMOS integration of Herault{Jutten cells for separation

of sources. In Workshop on Analog VLSI and Neural Systems, Norwell, MA, 1989.

Kluwer Academic Press.

[69] L. Watts. Cochlear Mechanics: Analysis and Analog VLSI. PhD thesis, California

Institute of Technology, 1993.


