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Abstract

Without a clear interpretation of fuzziness, it is hard for fuzzy logic to justify its rules, to

get initial data from users, or to make its results understandable.

It is possible to interpret grade of membership, at least in some cases, as the proportion of

positive evidence. In this way, fuzziness and randomness can be uniformly treated.

1 Zadeh on Fuzziness

Zadeh's idea of \fuzzy set" came from an observation: classes of objects in everyday thinking

usually have no well-de�ned boundary ([29]).
More concretely, he made the following claims:

1. For these classes, no two-valued membership function can be de�ned on instances, and there

are always instances that standing on the boundary, such as (his example) \animal", \beau-
tiful women", \tall men", and \real numbers which are much greater than 1".

2. The above fact doesn't mean there is nothing we can say about the membership relation
between a class (or a set, a concept) and an object (or an instance). On the contrary, such a

relation can be compared, and even measured. It is a continuum of grades.

3. Since \the source of imprecision is the absence of sharply de�ned criteria of class membership
rather than the presence of random variables", and \the notion of a fuzzy set is completely

nonstatistical in nature", probability theory cannot be applied here. A new theory is needed
(also see [3]).

Based on these intuitions, he de�ned the concept of fuzzy set, the relations between fuzzy sets
(equal and containment), and operations on fuzzy sets (complement, union, and intersection), which

become the kernel of the \fuzzy family" (fuzzy set theory, fuzzy logic, fuzzy control system, and so
on).

What provided by these de�nitions are how to get the membership function of a compound set
from the membership functions of its components (they are fuzzy sets themselves). For example,

according to Zadeh, the membership function of red 
ower can be calculated from the membership
functions of red and 
ower by applying the intersection operation, which is de�ned as min ([31]).
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Therefore, a question will be risen naturally, that is, how to determine these functions at the

�rst place, that is, for red and 
ower?
Zadeh suggested two ways to de�ne a membership function ([31]):

1. By enumeratingly assigning membership values to objects in a domain. For example, the fuzzy
concept long-river can be de�ned in the domain fNile, Hudson, Danube, Rhine, Mississippig

as ([11]):

long-river = 1=Nile+ 0:2=Hudson+ 0:7=Danube+ 0:4=Rhine+ 0:8=Mississippi

2. By being a continuous and di�erentiable function of a numeral variable. For example, the
membership of the fuzzy concept old is a function of the variable age ([31]):

old =

Z 100

50

(1 + (
age� 50

5
)�2)�1=age:

It is easy to see that both methods have preconditions: for the former, the domain of objects

must be �nite, and for the latter, there must be a measurable property that can serve as the variable
of the function. Even when these preconditions are satis�ed, there is still a problem: Where are
these values come from? Anyway, people usually think and communicate without these numbers.

To answer the above question, we need to interpret fuzziness, that is, to answer the following
questions:

� Why many (if not all) concepts are fuzzy?

� Why some instances have higher grades of membership than the others?

� What is measured by a grade of membership?

Here are Zadeh's opinions:

1. Fuzziness comes from the description of complex systems. He proposed the \Principle of

Incompatibility" ([31]), which says that as the complexity of a system increases, our ability
to make precise and yet signi�cant statements about its behavior diminishes.

2. A membership function usually maps a continuous numeral variable to a distributed linguistic

variable, so that the information can be summarized approximately. For example, \John is
young" is an approximative way to say \John is 28". Since the underlying numeral variable

changes continuously, there is no meaningful way to cut the boundary between the values of a
linguistic variable. But, by membership function, we can describe the compatibility between
a linguistic label and a numerical value, such as to say the compatibility between the label

young and the age 28 to be 0.7 ([32, 34]).

3. Such a compatibility have no frequency interpretation. By \The membership of John's age
to `young' is 0.7", we don't mean that John's age is a random number, which takes the value

\young" in 70% of the times. In [34], Zadeh proposed a \Possibility/probability consistency
principle": a lessening of the possibility of an event tends to lessen its probability | but not

vice versa.
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4. Membership functions of primary terms are subjective and context-dependent, so there is no

general method to determine them. \Their speci�cation is a matter of de�nition, rather than
objective experimentation or analysis". The task of fuzzy logic is to provide rules to compute

the meaning of composite terms, once the meaning of the primary terms is speci�ed in a given
context ([30, 35]).

As a result, many totally di�erent methods are used to get membership functions when fuzzy
logic is applied to practical domains ([5]), which are chosen according to the designer's preference

and experience.

2 Why to Interpret Fuzziness

Do we really need to further interpret the meaning (and origin) of membership values?
Yes, we do. From the standing point of arti�cial intelligence and cognitive science, at least we

have the following reasons to require an interpretation ([5, 20]):

� Without a clear interpretation, it is hard for a computer system to generate the memberships

automatically or to get them either from users or from sensory device. By \hard", I mean
some values can be easily assigned, but they look quite arbitrary and arti�cial. In such a

case, in what sense the system's results, which are determined by these initial assignments,
are better than random choices?

� It is obvious that memberships are context dependent, and may be in
uenced by new knowl-

edge. For example, \If `Mary is young' is uttered in a kindergarten or in a retirement home
situation, the e�ect on the expected age of Mary will be very di�erent" ([4]). However, with-

out a clear interpretation, there is no reasonable way to modify the memberships by new
evidence, so they cannot be self-adjusted or be context-sensitive. On the other hand, it is

unimaginable if the designer have to provide a system with a membership function for every
concept (for instance, young) in every possible context (kindergarten, elementary school, : : : ,

retirement home, even basketball team or cabinet) that the system may meet.

� The max and min operations, which are the most distinguish components of fuzzy theory,
are not strongly supported by experimental evidence or theoretical consideration. They

sometimes obviously lead to counter-intuitive results. For example, in [33] Zadeh de�ne
big = long ^ wide ^ high, but �long � �wide � �high looks much more reasonable than

minf�long ; �wide; �highg as big's membership function. Some psychological results are also
inconsistent with the results predicted by the min rule ([16, 21]). Though there are some
works show that max and min can be deduced from certain axioms ([2, 7]), it is still unclear

that whether human cognitions really follows these axioms or why should we follow them.

� In his later papers ([3, 32]), Zadeh admitted that in some contexts the union/intersection

operators should be algebraic sum/product, rather then max/min, but he didn't indicate how
to determine with pair to used when facing a new context.

� The relationship between fuzziness and other types of uncertainty (such as probability and

ignorance) is far from clearly explained. However, in practical problem solving, multiple types
of uncertainty usually co-exist and merge with each other, as shown by the mixing of fuzziness

(representativeness) and randomness (probability) in human judgments ([23, 20]).
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In summary, fuzzy logic is not proposed as a pure formal system that only have some interesting

mathematical properties, but as a formal model of fuzziness that happening all the time in human
cognition, and as a tool that can handle this fuzziness for practical purposes. Why should we

accept such a claim? The popular arguments are: (a) there are fuzziness in human cognition, (b)
no frequency interpretation of the fuzziness has been found, and (c) some practical problems has

been solved successfully by fuzzy logic ([36, 11]). Without a clear analysis of fuzziness in human
cognition, these arguments are not enough for fuzzy logic to be accepted as a general cognitive
model ([20]).

By an interpretation of fuzziness, I mean a mechanism by which membership can be explained,
evaluated and adjusted. Such a mechanism should be able to relate, at least in principle, grade

of membership to some more primary quantities in a psychologically plausible way, and concrete
and formal enough to be implemented in a computer system. This doesn't mean to set up a

universal and objective membership function for all concepts and all instances | membership is
still subjective and context-dependent. What we need is an explanation about how it is in
uenced

by the experience and the context of a system (human or computer).
Let's compare this issue with the case of probability. It's well known that there are various

interpretations of probability, such as logical, empirical, and personal ([8, 10]). However, one idea is
shared by the community: probability do need an interpretation, and all the operations carried on
probabilities should be justi�ed according to it. We cannot simply call it \degree of con�rmation

(or chance, belief)", then use any intuitively reasonable operations on it.
It is amazing that the same problem has not attracted enough attention in the fuzzy community,

where much more e�orts are spent on fuzzifying various mathematical tools and applying them to
various practical domains.

From a theoretical point of view, the laking of an interpretation means that fuzziness is accepted
as a matter of fact, but not clearly analyzed, so the operations on it seems quite arbitrary.

From a practical point of view, when fuzzy set theory and its variations are applied, the system
designers are given enough freedom to choose membership functions and operators, usually in a

try-and-error way. After a hand-tuning process, the system can do pretty well. However, the same
methodology is hardly applicable when the system is general purpose, and the context is dynamic
changed, not completely predictable by the designer. This suggests another explanation for why

the most successful applications of fuzzy logic happen in some control systems ([11]), rather than in
natural language processing, knowledge base management, general purpose reasoning, and machine

learning ([6]), though in the latter domains fuzziness are more notable and more closely related to
the initial idea of fuzzy set.

To solve the problem, we need to start by analyzing fuzziness.

3 Fuzziness from Relativity

At the very beginning, we need to distinguish two types of fuzziness: that mainly happens with

adjectives and adverbs, and that mainly happens with nouns and verbs. Let's call them \type 1"
and \type 2", respectively.

The di�erence between the two types is: though a concept of the type 2 can be treated as a
fuzzy set with a relatively stable membership function, the same is not true for a concept of the

type 1 | its membership function usually depends on the noun or verb it describing.
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For example, if we treat \big" as a fuzzy set, just like \
ea" and \animal", then \big 
ea"

can be represented as big ^ flea. From �big^flea(A) = 0:9, �flea(A) = 1, and flea � animal, we
get �big^animal(A) = 0:9, which is counter-intuitive (\A big 
ea is a big animal"). In other words,

many adjectives are not predicative ([9]).
In AI community, this problem is usually explained by saying \the membership function of `big'

(as well as `young', `far', etc.) is context dependent". Of course it is, but why and how?
Now let's analyze and compare the following sentences:

1. \A is big."

2. \A is bigger than B."

3. \A is a big 
ea."

4. \A is a big animal."

Obviously, if there is no default or assumption about the context, \A is big" provides no

information about A's size.
\A is bigger than B" does provide information about A's size, but in a relative way. The \bigger

than" relation may become uncertain, due to incomplete information or imprecise measurement,

but usually there is no fuzziness, since the relation is well-de�ned.
\A is a big 
ea" can be rephrased as \A is a 
ea, and it is big comparing with the other 
eas".

Similarly, \A is a big animal" can be rephrased as \A is an animal, and it is big comparing with
the other animals". Now we can see that the information about A's size is also given in a relative

way in this type of sentences.
The type 1 fuzziness appears exactly in this situation. \Bigger than" is a well-de�ned binary

relation between two objects. When it is used between an object and a class of objects, uncertainty
emerges. If we are told that \A is a big 
ea, and B is also a 
ea", then it is more plausible to

assume that A is bigger than B than the reverse. However, there is uncertainty about whether the
assumption will be conformed, since the concept \big 
ea" is fuzzy. Only when A is the biggest

ea, can the uncertainty disappear, since we are sure that all other 
eas are smaller.

Generally speaking, the fuzziness of type 1 appears in sentences with the pattern \A is a R C",
where C is a class of objects, A is an object in C, and R is an adjective those comparative form

\R-er than" is a binary relation on C, which is asymmetrical, transitive, and non-fuzzy. In such a
case, \R C" is a fuzzy concept (such as \big 
ea", \tall men", and so on), because the information

is given by comparing an object to a reference class.
Under such a situation, it is not a surprise to see that membership is a matter of degree, since

\R C" means \R-er than the other Cs", whose truth value can be measured by an object's relative
ranking in C with respect to the relation \R-er than".

There are many ways to represent information about relative ranking, but the most natural
way is by a ratio

�R C(A) =
j(fAg � C) \Rer thanj

jC � fAgj

In the case of \big 
ea", A's membership is the ratio

the number of 
eas that are smaller than A : the number of 
eas minus 1
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(it's not necessary to compare A to itself). Now �R C(A) = 1 means that A is the biggest 
ea;

�R C(A) = 0 means that A is the smallest 
ea.
If the probability distribution of the size of 
eas is given as P (x), we can get a direct relation

between the size of a 
ea, S(A), and its grade of membership to \big 
ea", �R C(A):

�R C(A) =

Z S(A)

0

P (x)dx

Actually, this function identi�es �R C(A) with the percentage of 
eas that are smaller than A.
This equation can be generalized to all fuzzy concepts of the type 1 by considering S(y) : C !

(�1;1) as a measurement corresponding to the relation \R-er than", and P (x) : (�1;1)! [0; 1]
as the probability distribution of objects in C with respect to S(y).

In this way, we get a function that calculates the membership of an object from a fundamental
argument, as Zadeh did (see section 1). However, there is a basic di�erence. According to Zadeh,

\The label young may be regarded as a linguistic value of the variable age, with the understanding
that it plays the same role as the numerical value 25 but is less precise and hence less informative"
([32]). But here, it is interpreted as an approximate way to tell someone's relative youngfulness, with

respect to a reference class. Only with a corresponding probability distribution, can the relative
measurement be related to the absolute measurement. This is obvious in the above formula, where

the reference class and a probability distribution are explicitly taken into consideration, while in
Zadeh's formulas the context is implicit.

I say \A is a R C" provides information in a relative way, rather than in a absolute way, for
the following reasons:

� As discussed previously, a word like \big" and \young" cannot be represented as a predicate
or attribute that can be possessed by an object, but should be treated as a relation between

objects.

� If \John is tall" is an approximate way to tell John's height, than it follows that this type of
sentences is always less informative than the sentence like \John is 6 feet high". However, it is

not always the case. For example, the sentence \To play basketball, tall players usually take
advantage" cannot be rewritten by replacing \tall" by an accurate height, without lossing its

generality. The sentence make the same sense in many contexts (from elementary school to
MBA), where how \high" is mapped to height is drastically di�erent.

� To say \A is a big 
ea", what one need to know it not A's size, but how it compares with
other 
eas. If A is the only known 
ea, we cannot say if it is a \big 
ea", even when we know

its size exactly. On the contrary, if we always observe 
eas through a magnifying glass, whose
magnifying power is unknown, then we may have little idea about A's size, but \A is a big


ea" still make sense. Actually, the sentence make the same sense, no matter how the sizes
of 
eas are distributed.

In practical usage, the context is often omitted in sentences. As a result, we only say \John is
tall" or \A is big". Such omissions will cause problems in communication. If the default context

of the speaker and that of the listener are di�erent, misunderstandings will happen; if the listener
doesn't sure what is the speaker's intended context, a guess has to be made, maybe according to

the using frequency of various related contexts. Even when the reference class is explicitly in the
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sentence, as in \A is a big 
ea", it is still possible for the speaker and the listener to make di�erent

estimation about A's size, since due to personal experience, they may have di�erent objects in mind
when \
ea" is mentioned. These factors cause uncertainty in communication, and they are closely

related to fuzziness, but should not be confused with fuzziness, which (here I only mean the type
1) happens when an object is compared with a class of objects.

4 Fuzziness from Similarity

Now we'll turn to \type 2 fuzziness". This type happens mainly in nouns and verbs (such as
\animal", \furniture", \to play", \to exist", and so on).

Psychologists have demonstrated the existence of fuzziness by well-documented experiments. It
has been shown that people judge some instances to be better examples of a concept than some

other instances are, and can answer category membership questions more rapidly for good examples
than for poor examples ([18, 19, 15]).

Several theories are proposed by psychologists to explain the phenomena.

One explanation, prototype theory, suggests that from given members of a category, people
abstract out the central tendency or prototype that becomes the summary mental representation

for the category, then membership of a novel instance is measured by how similar it is to the
prototype ([18, 19]).

Another explanation, exemplar theory, assume that membership of a novel instance is evaluated
by directly comparing it with given members of the category ([12, 14]).

Generally speaking, the basic cause of the type 2 fuzziness is: the concept is not de�ned by
su�cient/necessary conditions, but is exempli�ed by many objects/actions/events, which share

common properties.
These results are often quoted as evidence in favor of fuzzy logic ([11]). However, exactly

speaking, they only support the existence of fuzziness, rather than Zadeh's interpretation and

suggested operations on it.
To psychologists, fuzziness, or grade of membership, is not a primary attribute of a concept that

cannot be further analyzed. Rather, it is usually treated as a result that determined by some (more
primary) factors, and there are rules that determine the membership evaluations ([18, 5, 12]).

More concretely, there is a consensus that grade of membership is determined by the degree of
similarity between an instance to be judged and a prototype or a known instance, so (at least at

the simplest cases) membership measurement is reduced to similarity measurement ([22, 14]).
Two kinds of similarities can be distinguished: those are symmetric and those are asymmetric

([22]). To avoid confusion, I'll de�ne \inheritance relation" as an asymmetric similarity relation,
and reserve the name \similarity relation" for the symmetric one. By \A inherit B's property", we
mean that A has all the properties that B has, but not necessarily vice verse. By \A and B are

similar", we mean that A has all the properties that B has, and vice verse.
How to measure the degree of inheritance and similarity? In the simplest case, let's assume that

whether a object A has a property P is a matter of \all-or-none", and all properties of a object
are equally weighted. Then the most natural measurement for the uncertainty in \A inherit B's

property" is the \inheritance ratio" jSA\SB j

jSB j
, and the most natural measurement for the uncertainty

in \A is similar to B" is jSA\SBj

jSA[SBj
, where SA and SB are the set of properties forA and B, respectively

(both formulas are special cases of ratio model of similarity, de�ned by Tversky in [22]).
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Now, if we replace the A in the above two formulas by a variable X , the formulas become

B's membership function, corresponding to the two interpretations of similarity (symmetric and
asymmetric).

Various measurements of similarity (and inheritance, de�ned as above) have been suggested
for di�erent purposes ([22, 1, 14, 28, 13]). However, as long as they are de�ned in [0,1] (with 1

for \identical", and 0 for \completely di�erent"), and are functions of weight of evidence, these

measurements share the common form w+

w++w�
, that is, as the proportion (when all evidence is

provided at the same time), or frequency (when evidence comes in a stream), of positive evidence.
They only di�er in the way that (positive and negative) evidence are de�ned and weighed. 1

Such a membership evaluation depends on the system's experience and context. To a fuzzy
concept, di�erent (human or computer) systems may assign di�erent properties to it, according to

how the concept relate to the system's experience. On the other hand, when a system evaluate
the degree of similarity of two concepts, usually only some of the properties, which are \acti-

vated" by the current situation, are taken into consideration. However, as in the previous section,
these experience/context in
uences can be represented and processed explicitly, under the given

interpretation.

5 A Uni�ed Measurement of Uncertainty

In the previous sections, two interpretations are provided for the fuzziness of type 1 and 2, re-

spectively. As a result, the membership functions of such fuzzy concepts are no longer come from
intuition, preference, or experience of the system designer, but determined by the relevant evidence.

Concretely, all the interpretations can be generalized into the following form:

�c(x) =
w+

w

where C is the fuzzy concept, w is the weight of all relevant (to the membership relation) evidence,
and w+ is the weight of all positive evidence.

For a proposition like \A is a big 
ea", all 
eas (except A) are relevant evidence, where 
eas
smaller than A are positive evidence of the proposition, and 
eas bigger than A are negative

evidence. The weight of evidence can be simply de�ned as the number of 
eas under consideration.
For a proposition like \Penguins are birds", all properties of bird are relevant evidence, where

those properties that shared by Penguin are positive evidence of the proposition, and whose prop-

erties that not shared by Penguin are negative evidence. The weight of evidence can be simply
de�ned as the number of properties.

For a proposition like \A penguin and a robin are similar to each other", all properties of a
penguin or a robin are relevant evidence, where those properties that shared by both are positive

evidence of the proposition, and the properties that not shared are negative evidence. The weight
of evidence can be simply de�ned as the number of properties.

Now we not only propose an interpretation for fuzziness, but also propose a ratio, or frequency,
interpretation for it, which has be claimed as impossible by Zadeh. What follows naturally is

the relation between fuzziness and randomness, where the latter is usually handled by probability

1Tversky's contrast model cannot be written into a ratio, but it is not a counter example of the above observation,

since it is not de�ned on [0, 1].
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theory. Probability is closely related to the ratio (or frequency, proportion) of positive evidence

among all relevant evidence, so can also be represented as w+

w
, or its limits. Therefore, we can get

an uni�ed representation and interpretation for probability and membership: both are real numbers
in [0; 1], and both are indicating the ratio of positive evidence among all relevant evidence, that is,
w+

w
. 2

Based on such an interpretation, I'm building an intelligent reasoning system, Non-Axiomatic
reasoning System, or NARS for short ([27, 26]), where fuzziness and randomness are uniformly

processed as (part of) a judgment's truth value, and referred as the frequency of the judgment.
However, this doesn't mean that fuzziness and randomness cannot be distinguished. For a

proposition \S is P", randomness always comes from the variety among the instances (or extension)
of S, while fuzziness always comes from the variety among the properties (or intension) of P . When
S has many instances, and some of them are P , while the others are not, \S is P" is a matter of

degree, and the uncertainty is randomness; when P has many properties (or \intended meaning"),
and some of them are possessed by S, while the others are not, \S is P" is also a matter of degree,

but the uncertainty is fuzziness. In NARS, fuzziness and randomness are processed in a symmetrical
way (see [26] for detail), and they are di�erent in how the evidence is collected.

If these two types of uncertainty are di�erent, why bother to treat them in an uniform way?
The basic reason is: in many practical problems, they are involved with each other. Smets stressed

the importance of this issue, and provided some examples, in which randomness and fuzziness are
encountered in the same sentence ([20]). It is also true for inferences. Let's take medical diagnosis

as an example. When a doctor want to determine whether a patient A is su�ering from disease D,
(at least) two types of information need to be taken into account: (1) whether A has D's symptoms,
and (2) whether D is a common illness. Here (1) is evaluated by comparing A's symptoms with D's

typical symptoms, so the result is usually fuzzy, and (2) is determined by previous statistics. After
the total certainty of \A is su�ering from D" is evaluated, it should be combined with the certainty

of \T is a proper treatment to D" (which is usually a statistic statement, too) to get the doctor's
\degree of belief" for \T should be applied to A". In such a situation (which is the usual case,

rather than an exception), even if randomness and fuzziness can be distinguished in the premises,
they are mixed in the middle and �nal conclusions.

Without an uni�ed interpretation, it is still possible to set up rules for above operations, but
such rules are not based on a consistent semantic foundation, therefore hard to be justi�ed.

With a frequency interpretation of truth values, it is not surprise to see that NARS' truth
value functions are the same for both randomness and fuzziness (as well as their \mixtures"), and
the functions are de�ned more similar to probability theory than to fuzzy logic. For instance, the

operations used for disjunction and conjunction are algebraic sum/product, rather than max/min

([26]). As a result, the truth value of the result is sensitive to the truth values of all the premises,

so to avoid some counter-intuitive results of fuzzy logic ([16]).
This doesn't mean that a probability distribution on the proposition space is su�cient for

representing the uncertainty in the system's knowledge base. To represent ignorance and to revise
the system's belief in a general sense, a second number, con�dence, is used in NARS, which is a real

number in (0,1). Intuitively speaking, con�dence indicates the stability of the judgment's frequency
when challenged by new evidence, and is a function of the weight of total available evidence. For

2For small sample size, it is more reasonable to use a \squashed frequency" (in the form of w
++k

w+2k
), rather then the

observed frequency itself, as the estimation of the probability ([8, 26]). However, the same is also true for fuzziness

([26]), so randomness and fuzziness can still be similarly processed.
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detailed discussions on this issue, see [26] and [25].

6 Discussions

In this paper, a frequency interpretation of fuzziness is suggested, which has the following advan-
tages:

� Di�erent types of uncertainty, such as fuzziness, randomness, ignorance, and so on, can be

processed by an uni�ed mechanism;

� The membership function can be generated and modi�ed by the system itself, according to

its experience and the interpretation;

� The operators on uncertainty are no longer intuitively chosen, but can be justi�ed according
to the interpretation;

� Given a clear interpretation to the numbers, it is easier for the user to provide them when put
new knowledge into a system, as well as to understand them when get results from a system.

Some people may argue that in this way, we'll lose one of the advantages of fuzzy logic, that

is, the freedom for the system designer to determine the membership functions and operators. I
disagree. At one hand, without an interpretation is a disadvantage for a theory, since it provide less

guide for its users. On the other hand, with the frequency interpretation, a system (like NARS)
can still be 
exible. Because what the interpretation does is not to provide for each fuzzy set

an \objective" membership function, but to indicate how such a function can be established and
modi�ed by the system according to its experience and the current context. In this sense, the
interpretation takes some \freedom" from a human designer, and give it to the system itself.

There have been some attempts to interpret fuzziness in terms of probability. Let's mention
two of them, and compare them with the approach of NARS.

1. Some people using polls to get membership function by identifying it with the percentage of

people who agree to the membership relation ([5]). However, what this approach measures are
actually the degree of consensus among a group of people. Though this type of uncertainty

is related to fuzziness, as discussed before, it's not fuzziness.

2. Some proposers of Bayesian theory hope to handle fuzziness with probability theory by replace

the frequency interpretation of probability by a personal one ([4]). They claim that fuzziness
is just a type of \degree of belief". A problem of this approach is how to further explain the

\degree of belief". On the other hand, since \Mary is young" is still treated as an approximate
way to tell Mary's age in this approach, it is still unable to explain how the context in
uence

the membership function.

Therefore, what proposed in this paper is not only that fuzziness can be interpreted as a frequency,

but also that what kind to frequency it is.
Of course, the previous analysis of fuzziness is still far from complete. The type 1 and 2 are the

simplest forms of fuzziness. Here are some more complicated cases:
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1. For a fuzzy concept characterized by a set of properties, whether a object has a properties

is usually a matter of degree, and the properties have di�erent weights in determining the
membership of an object. Therefore, the actual formula used (to determine membership) in

NARS is a \weighted sum", rather than the simple \counting", as described above. The same
is true for the case of type 1: whether two objects have a certain relation is often uncertain.

2. These two types of fuzziness are often co-exist in concepts, so should be combined. For

example, a concept may be characterized by a set of properties shared by most of its instances
(so it is \type 2 fuzzy"), and each property is a \type 1 fuzzy" concept itself.

3. Not all fuzzy concepts can be clearly classi�ed as one of the two types de�nes above. For

examples, perceptual categories (such as \red", \warm", and \soft") are neither de�ned in
a completely relative way, nor de�ned purely by similarities, but depend heavily on human

physiology ([18]). Without a physical sensory mechanism, these concepts are hard to handle
for an AI system. For another example, I haven't found a natural way to manage fuzzy

concepts in mathematics, like \real numbers which are much greater than 1", where the
reference class is in�nite.

4. Another interesting idea of Zadeh is linguistic variables ([32]). In NARS, linguistic variables

can be used in the interface language by which the system communicates with users, but are
not used in the internal language by which the system's knowledge is represented. Therefore,
some translation rules are necessary for the mapping between these two languages. Such a

mapping is possible due to the interpretation. For example, \John is young in C" can be
translated into \John is younger than at least 2/3 of the others (in C)", but cannot be trans-

lated into something like \John's age is 18", since the mapping from (relative) youngfulness
to (absolute) age depends on the reference class C. The concrete mapping function can be

established by psychological experiments ([17, 24]).

Even with these problems in mind, we can still see the possibility to extend the interpretation of
fuzziness proposed in this paper to those more complicated situations, so as to provide a frequency

interpretation for fuzziness in general, and to process it consistently with other type of uncertainty.
Can NARS be referred as \a fuzzy logic"? Well, it is a matter of degree. The two approaches

share some properties, but it seems that their di�erences weighs more than their similarities. Of
course, it depends on the reference class of properties to be compared � � �.
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