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Objective

Write a Matlab program to do NN classification based on the maximum information index.  Assume that the training data is presented to the network in form of horizontal feature vectors.  Each feature vector contains one coordinate of each data points.  Assume that M input data points used for training are described by N-dimensional vectors.  So effectively, the NN have N inputs and reads the information in parallel from N input feature vectors.

The NN is a feed forward structure that can decide about its own interconnections and neuron operations.  It has a prewired organization that contains a number of identical processing blocks (called neurons), which are pseudorandomly connected to the input nodes and other neurons (see neurons connection strategy).  In addition, an entropy based evaluator (EEB) is used to select a proper operation and input selection for each neuron.

General organization of the obtained NN structure XE "neural network:structure"  is illustrated on Fig. 1-1
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Figure 1‑1 Self-organizing NN structure

1. Generation of the self organizing NN structure
No signal processing takes place in the input nodes and their outputs are equal to the inputs.  Thus input nodes have their drivers and outputs established.  At this stage we assume that any nonlinear transformation of the input signals was already performed.  The remaining nodes (neurons) in the self-organizing NN structure will contain programmable arithmetic-logic units.



In general, we may consider two types of organization of the NN structure:

1 feed-forward XE "neural network:structure:feed-forward"  (FF)

2 feed-back XE "neural network:structure:feed-back"  (FB).  

The FF organization is constructed under the assumption that all inputs of each new neuron are connected to the existing neuron outputs or the primary inputs.  The neurons are either generated sequentially or in groups.  As new neurons are added, the number of existing neurons increases and the increased number of outputs can be used as inputs in subsequently generated new neurons.  In this organization neurons generated later in the process cannot feed neurons generated earlier.  An FF organization is always stable.

In the FB organization all neurons are generated concurrently.  Inputs of each neuron can be connected to outputs of any neuron (including itself).  An FB arithmetic organization may become unstable in case a positive feedback causes the increase in the input signal values.  Therefore, a care must be taken to limit a type of arithmetic operations performed on the input data.  We must guarantee that the transformation obtained is contractive, which means that the norm of the output of a neuron must be less or equal to the average norm of all the inputs. 

Based on the results of earlier study we know that the best linear transformations may be evolved by iteratively applying Haar wavelet.  Since the two basic operations in a Haar wavelet are averaging and difference of the two inputs we can evolve a linear arithmetic section in the learning hardware by using and adder-subtractor with the right shift.  The reduced-instruction set processor (RISP) will be programmed to either perform addition or subtraction and the right shift of the result (which is equivalent to division by two) will guarantee stability.  Under this assumption the same RISPs can be used in FF and FB structures.  

Besides linear arithmetic operations RISP can perform a selected nonlinear or logic operations on its inputs.  This will be discussed in a separate section.

1.1. Initial neurons’ wiring in FF structure

In this experiment the FF structure will be generated.  We may assume that a fixed number of neurons is added per each layer (this will be a design constraint parameter and in simulation any number can be assumed).  Suppose for simplicity, that a neuron is set on a fixed grid structure, such that each neuron can be identified by its position (row,col) on the grid, where row represents the row number and col the column number of the neuron location.  Based on this a Manhatan distance between neurons can be easily established as abs(row1-row2)+abs(col1-col2).  For the feed forward structure in which neurons are connected only to previously generated neurons number of neurons to chose from as a function of Manhatan distance is respectively 1,3,5,7,9, etc. (assuming an infinite grid).  Since the points in neighborhood should be preferred we would generated connections to closes neighbors with higher probability.

To obtain a specific desired pdf function from uniform pdf function (using Matlab rand function with uniform distribution from 0 to 1) we first calculate function
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and then find 
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 to determine the value of the resulting sample y with desired pdf function pdf(y) (make sure that x(ymax)=1).

Example

Suppose that we want to generate random numbers with pdf(x)=sin(x*pi).  The following Matlab code was used to demonstrate the above result.  Fig. 1-1 shows histogram of 100 experiments each with 1000 data points generated.
y=(1:100)/100;

%plot(sin(pi.*y))
pdfy=sin(pi.*y).*pi./2;

x=(1-cos(pi.*y))./2;

%
so the random variable t with the desired pdfy can be computed from

t=acos(2.*x-1)/pi;

plot(t)

x=rand(1000000,1);
t=acos(2.*x-1)/pi;

hist(t,50)

[image: image3.wmf]
Figure 2‑1 Histogram of randomly generated points with pdf(x)=sin(x*pi).

2. Neuron’s Inputs

A neuron XE "neuron"  can be considered as a design entity with input/output ports and internal state information that differentiate it from a generic neuron.
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Figure 3‑1 Neuron entity

2.1. Neuron’s threshold-controlled input

Each neuron is clock controlled.  At each clock cycle it is assumed that a different data point is transmitted through the network.   In addition, a threshold-controlled input XE "threshold-controlled :input"  (TCI) is used to control the neuron’s operation.  Namely, the neuron’s threshold-controlled input is obtained by multiplexing the threshold-controlled outputs XE "threshold-controlled :outputs"  (TCO) of the subspace control feeding neurons.  There are three threshold-controlled outputs of a neuron, which are determined as follows:

1. The TCI of this neuron - TCO

2. The TCI AND neuron’s threshold output - TCOT

3. The TCI AND the inverted neuron’s threshold output – TCOTI

Only one of these outputs may be randomly selected as a threshold-controlled input of a new neuron.  Neuron’s threshold output T is defined together with operation of a neuron.

2.2. Neuron’s signal inputs

Each neuron has five signal inputs XE "neuron:signal inputs"  and two threshold-controlled inputs (make them design parameters so we can experiment with this numbers to observe changes in the system performance and the resulting NN structure).  Each signal input to a neuron contains a bus with the binary signal information (only a single line in case of logical input signals or analog NN implementation).  Each TCI input uses 1 line needed for the threshold-controlled output – (TCO, TCOT, and TCOTI) of the subspace control feeding neuron (SCFN) and to transfer related output information deficiency of the SCFN (discussed in section 5).  

Neuron selects two (or one) of its inputs to perform a selected arithmetic or logic operation on them and produces signal outputs which may be distributed to other neurons.  Therefore, it uses a counter controlled 5-to-2 multiplexer followed by a simple reduced instruction-set processor (RISP).  In addition, neuron selects one of its threshold-controlled inputs by using 2-to-1 muliplexer.  Before a neuron starts processing the input data it first selects one of its threshold-controlled inputs and transfers the output information deficiency of the corresponding SCFN.

3. Neuron’s arithmetic and logic operations 

A neuron processes its input data by performing one of the selected operations.  These operations must be simple enough to have a small design area and short processing time yet reach enough to perform a variety of linear and nonlinear arithmetic and logic operations.  The processor that performs these operations is a reduced instruction-set processor, which has a controller to select one of its operations and perform this operation on the input data.  We assume that the processor is designed to work with B=8 bit input data (B-bits in general case).  

From our earlier study we know that the average and subtract operations can generate all linear transformations.  Since we would like to include nonlinear operations like logarithm and square root, we assume that all operations are performed on nonnegative integer and produce results that are nonnegative integer.  In addition we will assume that the result of operation may be scaled to full range of integer numbers represented by the bit size of each signal (0-255 for the 8 bit numbers).

3.1. Basic operations

The operations defined for our RISP processor will use only add, subtract, compare, and shift of the input data to build other arithmetic operations.  In addition two single bit operations are defined:

L(a) returns the location (starting from 0) of the most significant bit position of a,

	a
	0
	1
	2
	4
	8
	16
	32
	64
	128

	L(a)
	0
	1
	2
	3
	4
	5
	6
	7
	8


E(a) forces 1 on a-th bit position ( a modification of this operation forces 1 on a, a-2, a-4 etc. bit positions)

	a
	0
	1
	2
	3
	4
	5
	6
	7
	8

	E(a)
	0
	1
	2
	4
	8
	16
	32
	64
	128


Obviously we have the following property

 L(E(a))=E(L(a))=a

Next we define the following operations (were division by 2 is accomplished by the shift right by one bit):

Add(a,b)=(a+b)/2


addition
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subtraction

Mult(a,b)=E(Sub(L(a)+L(b),B))
multiplication

Divd(a,b)=E(Sub(L(a),L(b)))

division

Root(a)=E(L(a)/2+B/2)

square root

Invr(a)=E(Sub(B,L(a)))

inverse

Sqre(a)=E(Sub(2L(a),B)))

square

Qdrt(a)=E(L(a)/4+3B/4))

quadruple root

Qdre(a)=E(Sub(4L(a),3B)))

power 4

Log2(a)= E(L(L(a))+B-L(B))

logarithm 
(for B=8     Log2(a)=L(a)*16 )

Exp2(a)= E(Sub((L(a),B-L(B))))
exponent
(for B=8  Exp2(a)=E(a/16) )

Although these arithmetic operations are somehow artificial, they do satisfy many properties of the corresponding functions.  For instance we can get:

Divd(a,b)=Mult(a,Invr(b))

Root(Sqre(a))=a

Qdrt(Qdre(a))=a

Log2(Exp2(a))=a

Some of these operations can be easily obtained from other.  For instance Qdrt and Qdre can be obtained by using Root and Sqre twice.  Besides, they yield results close to Log2 and Exp2, so they will be eliminated from the required set of RISP processor instructions.

Since we may assume that the input data are already loaded to the RISP input and functions L(a) and E(a) are automatically latched each time to the input registers, very few clock cycles are needed to complete these operations.  We can represent these operations by elementary assembly like instructions as follows:

Add
-
add a,b


shr

Sub
-
add a,-b

clear on n

Mult
-
add L(a),L(b)

add ac,-8

clear on n

E(ac)

Divd
-
add L(a),-L(b)

clear on n

E(ac)

Root
-
shr L(a)

add L(a),4

E(ac)

Invr
-
add 8,-L(a)

E(ac)

Sqre
-
shl L(a)

add L(a),-8

clear on n

E(ac)

Log2
-
shl4 L(a)


Exp2
-
E(shr4 a)
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In addition a combinational operations may be useful, like

Or we could reduce these instructions even further, simplifying the RISP design.

The following Matlab file contains calculations that emulate some of these operations.  

a=(1:256);

b=(1:256);

la=log2(a);

lb=log2(b);

lla=log2(la(2:256));

plot(2.^(la+lb-8),':')


%plot multiply function

hold on

plot(a,'--')





%plot input function

plot(2.^(la/2+4),':')


%plot squre root function

plot(2.^(8-la),'-')



%plot inverse function

plot(2.^(lla+5),'-.')


%plot logarithm function

plot(2.^(a/32),'-')



%plot exponent function

legend('square','input','square root','inverse','logarithm','exponent')

title('Selected functions of the positive integer input from 0 to 255');

plot(4.^(la+lb-12),':')


%plot power 4 function

plot(2.^(la/4+6),':')


%plot quadruple root function
and the result for some of these functions is displayed on Fig. 3-1. 
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Figure 4‑1 Elementary functions.

3.2. Refined basic operations

An alternative arithmetic system can be developed using a refined logarithm function Lm(a) related to L(a) as follows:

	a
	0
	1
	2
	4
	8
	16
	32
	64
	128

	Li(a)
	0
	0
	1
	2
	3
	4
	5
	6
	7


Lm(a)=Li(a)+farc(a/2^Li(a))=Li(a)+ frac(shr(a,Li(a)))

Where shr(a,b) represents shift a right by b bits and frac(a) is the fraction part of a

Notice that this approximation is very close to the logarithm function (see figure 3-2), yet it only uses a lookup table and shift with add operations.  The resulting logarithm uses fractions, so it will require expanding the operations that use logarithms to include fractions.
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Figure 4‑2 Approximation of the logarithm function

The inverse function to logarithms can be also easily obtained.  The function Em(a) takes the integer part of a (in Matlab floor(a)) and the fraction part of a (fract(a) )

Em(a)= (1+fract(a))*2floor(a)=shl((1+fract(a)),floor(a))

Where shl(a,b) represents shift a left by b bits.

With these functions we also have Em(Ln(a))=a, which is nice.

The following Matlab code illustrates these functions:

a=(1:255);

b=(1:255)/32;

la=dec2bin(a);

for i=1:size(a,2)

   Li(i)=8-min(find(la(i,:)=='1'));

end;

Lm=(a./(2.^(Li))-1)+Li;

plot(Lm,':')

hold on

plot(log2(a))

title('The logarithm and its approximation')

Em=2.^floor(b).*(1+(b-floor(b)));

plot(Em,':')

hold on 

plot(2.^b)

title('The exponent and its approximation')
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Figure 4‑3 Approximation of the exponent function

Example

To illustrate the binary operations resulting in the Lm(a) and Em(a) functions let us consider a binary representation of a=237d= 11101101b and calculate the logarithm of a using 

Lm(a)=Li(a)+frac(shr(a,Li(a)))
Following the procedure described, define first the position of the most significant bit.  In this case Li(a)=7 (as the 8th bit was the most significant).  In the binary notation 7 d =111 b so we append 111 with the fraction obtained by the remaining bits of a (except the leading bit) to obtain

Lm(a)=111.1101101 b = 7.8516

The exact value of log2(a)=7.8887

As another example let us illustrate the use of Em(a) and calculate 23.425= 10.7406 using

Em(a)=shl((1+fract(a)),floor(a))

Since a=3.425=11.011011 b, we have the floor(a)=3.  So we obtain the exponent by shifting 1+fract(3.425)=1.011011 b to the left by 3 bits and adding 23, therefore Em(a)= 1011.011 b =11.375.

Multiplication can be obtained as a combination of the logarithm and power functions 
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Se we can approximate it as follows

a*b=shl(1+ frac(frac(shr(a,Li(a)))+ frac(shr(b,Li(b)))),Li(a)+Li(b)+ovfl)

where ovfl is equal to 1 if frac(shr(a,Li(a)))+ frac(shr(b,Li(b)))>1

Example

Let us multiply a=18=10010 b by b= 183=10110111 b
First we add 1+0.0010 b+0.0110111 b=1.1000111

And then we shift left by 4+7 bits which correspond to Li values of a and b.

The result is 110001110000 b =3184, while the true value equals to 3294.

3.3. Error analysis

The following figure shows the absolute error of approximating the log2(a) function by Lm(a).  As we can see the maximum error in evaluation of the logarithm is 0.0861, and it is maintained for the growing input values.
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Figure 4‑4 Approximation error of the logarithm
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You can obtain more accurate value of the logarithm function by using the following formula:
Where  r= frac(shr(a,Li(a)))

With the error function significantly reduced as shown on the figure (the dashed line shows the error based on Lm(a) and the solid line based on LM(a).  The mean error value for calculation of the logarithm using this function is 0.0017 and the maximum error is 0.0097.
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Figure 4‑5 Approximation error of the logarithm and LM function

In order to compensate for the positive error deviation for Lm(a) we could subtract a constant value form it to obtain a modified formula

Lm(a)= Li(a)+ frac(shr(a,Li(a)))+1/16

Which shows the error as compared to LM(a).  The mean error value was reduced from 0.0568 for the original  Lm(a) function to -.0057 for the modified Lm(a) function, and the absolute error is less than 0.0625.
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Figure 4‑6 Approximation error with smaller mean value 

The modified power function will be defined as

Em(a)= (1+fract(a)-1/16)*2floor(a)=shl((1+fract(a)-1/16),floor(a))

These two versions of the exponent functions are compared and their error is plotted as a function of x on the figure below.  The error measures log2(Em(a))-a, which would indicate the deviation from the expected value zero.

The mean and maximum errors for these functions were respectively equal to: 

Mean and absolute error for Em  are  0.0575, and 0.0861

Mean and absolute error for the modified Em  are   -0.0071, and  0.0931

Again the reduction of the mean value is more important for average error caused by these functions.
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Figure 4‑7 Comparison with the original approximation error

3.4. Matlab code for basic operations

Basic functions can be implemented easily in digital hardware.  Assuming that all the data and function values are limited to 8 bit integer representation in binary arithmetic we will limit all values to the range 0-255.  We can then redefine basic operations scaling their results to the same full range of integer numbers.  These basic functions were implemented in Matlab using the following code

a=(1:255);
aa=Lm(a);

b=2.*Lm(a)-8;

plot(Em(b));





%plot multiply function
hold on
b=8-Lm(a);

plot(Em(b),'-')




%plot inverse function
plot(a,'--')





%plot input function

b=Lm(a)/2+4;
plot(Em(b),':')




%plot square root function

b=Lm(aa(2:255))+5;
plot(Em(b),'-.')




%plot logarithm function

plot(Em(a/32),'-')



%plot exponent function

legend('square','input','inverse','square root','logarithm','exponent')

title('Selected functions of the positive integer input from 0 to 255');

where the functions Lm and Em are as follows:

function result=Lm(a)

%
this function computes the logarithm of a

for i=1:size(a,2)

Li(i)=-1;

la=a(i);

while la~=0

   la=bitshift(la,-1);

   Li(i)=Li(i)+1;

end;

end;

frac_shr_a=(a./(2.^(Li))-1);

result=Li+frac_shr_a;
function result=Em(b)

%
this function computes the exponent of b
result=2.^floor(b).*(1+(b-floor(b)));
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Figure 4‑8 Approximated basic functions for 8 bit data

Using the Lm and Em functions we can now redefine the instructions as described earlier by replacing L and E operators by Lm and Em.

You can develop quite a realistic arithmetic (close to structural VHDL code) using Matlab binary operations like:

dec2bin



% converts decimal integer to a binary string

bin2dec



% converts binary string to decimal integer

bitget



% returns the value of the specified bit position

bitset



% sets the specified bit position to 1

bitxor



% returns the bit-wise exclusive OR

bitor




% returns the bit-wise OR

bitand



% returns the bit-wise AND

bitcmp(a,8)

   % returns bit complement of a to 8 bit number
bitshift(a,k)
% shifts a to the left by k bits
3.5.  Simplified sigmoidal functions

Using the approximate of the exponent operation, we can implement simpler sigmoidal function for NN training if one wishes to use a similar training as in backpropagation.

Typical sigmoidal functions used in backpropagation learning include hyperbolic tangent and inverse tangent functions.  
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In order to make use of the simplified calculations based on the exponent function (power of two) we are going to use the following function as a sigmoidal transformation of a neuron’s net input.
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These sigmoidal functions can be compared by running the following Matlab code
plot(x,sign(x).*(1-exp(-abs(x))))

hold on

plot(x,(1-exp(-(x)))./(1+exp(-(x))), 'g')

plot(x,2/pi*atan(pi*x./2),'m')

title('Various implementations of sigmoidal functions ')

xlabel('Input value x');

ylabel('Output value y');

legend('sign(x).*(1-exp(-abs(x)))','tanh(x/2)','2/pi*atan(pi*x/2)')
The result shown in figure indicate close resemblance of all these functions with f(x) being a better fit to f2(x) near the origin and close to f1(x) far away from the origin.  Similar results can be obtained if ex is replaced by 2x in f(x) and f1(x).  Since in this case we need to find negative powers of 2, similar procedure 

[image: image16.png]Output value y

Various implementations of sigrmoidal functions

Sign(a.(
anh(x2)
Zpratan(pixi2)

Input value x





Figure 4‑9 Comparison between sigmoidal functions

Since to implement f(x) we need to compute negative powers of two, this can be accomplished in a simple way by the following operations, that correspond to subtraction and right shift only.

clear all

a=(1:255)/10;

for i=1:size(a,2)

result=2.^(-floor(a)-1).*(2-(a-floor(a)));

end

b=-a;

plot(b,result)

hold on

plot(b,2.^(-a),'g')

title('Approximation of the exponent function ')

xlabel('Input value x');

ylabel('Output value 2^x');

figure

plot(b,(result-2.^(b))./2.^(b),'m')
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Figure 4‑10 Approximation of 2x for negative x

The relative approximation error is computed by dividing the error by the function value.
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Figure 4‑11 Relative approximation error for 2x with negative x

Function 
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such that weights in backpropagation can be easily updated using
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and e is the output error.

4. Neuron’s self organization principles 

The neuron counts the number of samples transmitted (by counting the clock impulses to its clock input).  This gives us a total local sample count nt.  At the rising edge of the system clock, neuron performs an operation on the selected inputs (or a single input).  If the TCI input to the neuron is high, the result of this operation is compared against a set threshold value XE "threshold value" .  If TCI is zero, this means that the data is not in the selected subspace and no comparison with threshold takes place.  The counter controlled by the neuron’s TCI input counts how many times the threshold value was satisfied and probabilities of samples from various classes satisfying the threshold value are estimated.  In a similar way we estimate probabilities of samples from various classes not satisfying the threshold.  Effectively, the threshold partitions the input space of a given neuron into two subspaces.  Our knowledge of the subspace into which a training point falls is similar to our knowledge of the cluster to which it belongs.

Suppose that class c samples were counted and that the number of points from this class that satisfied the threshold equals to nsc.  The probability of this class samples satisfying the threshold is estimated using 
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.  Likewise we can estimate subspace probabilities and local class probabilities by calculating 
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, respectively.  We can use these probabilities to determine the value of the information index. XE "information index." 
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where the summation is performed with respect to all classes and two subspaces (for training samples in a given subspace that either satisfy or do not satisfy threshold, respectively).  The information index should be maximized to provide an optimum separation of the input training data.  When the limit value of the information index equals to 1, the problem at hand is solved completely, i.e. the training data is correctly classified (separated into various classes) by the NN.  

This does not mean that the test data will be correctly classified as well.  Since the only acceptable verification of the NN classifying ability comes from the classification test performed on the test data, we have to maximize statistical chance for obtaining high classification probability on the training data.  One robust way of obtaining such high probability is to implement a redundant classification system, and self-organizing NN is a perfect choice for this kind of system.  Based on our earlier study, we know that locally learned properties should be combined with global properties for more robust system.  The proposed organization of self-organizing NN will do that.

In the information index formula it is assumed that no prior information about the problem (except know class probabilities) was developed.  However, whenever the self-organizing NN learns more about the problem, the learned information must be discounted from the total information value we are trying to maximize.

4.1. Iterative threshold selection 

Since threshold selection requires estimation of probability density functions of all classes in all subspaces, it may be a very time consuming process.  To simplify calculations in this step we use iterative search for the best threshold point by referring to combined subspace probability.

We first set threshold that corresponds to the accumulated subspace probability equal to 0.5.   Then we evaluate the information index that corresponds to selected threshold.  Then we repeat calculations for the cumulative space probability that differ from the probability that corresponds to the maximum so far information by a selected delta.  After each step delta is divided by 2 until the desired accuracy is reached – this results in a fast convergence.

Below is the Matlab code that illustrates this process for arbitrary selection of triangular pdf functions.  The information index inf is calculated step by step and then its maximum is determined in iterative way.

In addition this code calculates an approximation of the information index infs based on the approximate formula discussed in the section 4.2.

clear;

steps=200;

x=(1:steps)/steps;

eps=10^-7;

colors=['b','g','m','r','k','y','c','b','g','m','r','k','y','c'];

colory=['g*','b.','rs','mx','k<','ch','bp','mv'];

%set triangle parameters

devl=[0.132 .4 .145 .23 .133 .138];

devr=[0.132 .4 .145 .23 .133 .138];

meanv=[.15 .23 .35 .47 0.68 .79];

%meanv=[.45 .43 .45 .47 0.48 .49];
h=[.2 .15 .38 .053 .25 0.14];

b=meanv;

a=b-devl;

c=b+devr;

h=h/norm(h);

for j=1:size(a,2)

   for i=1:size(x,2)

%
make triangle abc


if a(j)<=x(i) & x(i)<=b(j)

   
y(j,i)=h(j).*(x(i)-a(j))./(b(j)-a(j));


elseif b(j)<x(i) & x(i)<c(j)

   
y(j,i)=h(j).*(c(j)-x(i))./(c(j)-b(j));


else

   
y(j,i)=0;


end;


end;

end;

prob=(cumsum(y'))';

nsubs1=sum(prob);

ntot=nsubs1(size(nsubs1,2));

nsubs2=ntot-nsubs1;

%
calculate probabilities of subspaces

probs1=nsubs1/ntot+eps;

probs2=nsubs2/ntot+eps;

%
calculate class probabilities in the first subspace

probcs1=prob/ntot+eps;

%
calculate class probabilities

probc=probcs1(:,size(probcs1,2));

%
calculate class probabilities in the second subspace

probcs2=probc*ones(1,size(probcs1,2))-probcs1+eps;

%
calculate relative entropy and information index

delentr=sum(probcs1.*log2(probcs1)+probcs2.*log2(probcs2))-probs1.*log2(probs1)-probs2.*log2(probs2);

inf=1-delentr./sum(probc.*log2(probc));

probct=probc

%
find entropy based on class probabilities

hold on

for i=1:size(y,1)

plot(y(i,:),colors(i));

end

plot(inf,'r:');

%
plot an approximation of the index function

%
this approximation uses sum of probabilities 

%
which deviate from 0.5 of class probability

%
and classifies all samples from this class based

%
on the location of its majority points wrt threshold
probcs1s=zeros(size(probcs1));

probcs2s=zeros(size(probcs2));

probc1=zeros(1,size(x,2));

probc2=zeros(1,size(x,2));

for j=1:size(a,2)

   for i=1:size(x,2)

      if probcs1(j,i)<probc(j)/2

         probcs1s(j,i)=-probcs1(j,i);

         probcs2s(j,i)=probcs2(j,i);

         probc2(i)=probc2(i)+probc(j);

      else

         probcs1s(j,i)=probcs1(j,i); 

         probcs2s(j,i)=-probcs2(j,i);

         probc1(i)=probc1(i)+probc(j);

      end;  


end;

end;

delentrs=-probs1.*log2(probs1)-probs2.*log2(probs2)+sum(probcs1s)+sum(probcs2s);

infs=(1-delentrs)/sum(probc.*log2(probc));

hold on

plot(infs,'m');

%
identify iteratively the pick location

%
start with pick position which corresponds 

%
to the cumulative subspace probability = 0.5

pickps1=0.5;

%
delt is the interval size for the subspace probability

delt=.25;

%
ends determine the resolution

ends=0.05;

[im,xm(1)]=min(abs(pickps1-probs1));

while delt>ends

[imr,xm(2)]=min(abs(pickps1-delt-probs1));

[iml,xm(3)]=min(abs(pickps1+delt-probs1));

pickpss=[pickps1,pickps1-delt,pickps1+delt];

%
xm contains the locations of 3 points near the pick

plot(xm,inf(xm),'b.')

%
the maximum pick value is selected and its location passed

%
as xm(1)

[maxinf,ind]=max(inf(xm))

pickps1=pickpss(ind);

xm(1)=xm(ind)

delt=delt/2;

end;

plot(xm(1),inf(xm(1)),'bs')

[maxi,indi]=max(inf)

plot(indi,inf(indi),'g*');

title('Finding maximum information threshold in multiclass problem'); 

The results are shown on Fig. 4-1.  On this e figure square indicates the final information at the selected threshold, while * indicates the location and value of the maximum information.  We can see the exact values of the information index (dashed line) and its discrete values obtained by the iterative process.  In addition a continuous line shows its approximation using the approach from section 4.2.
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Figure 5‑1 Information index and its approximation

4.2. Threshold selection based on approximated information 

Continuous line shows the approximation of the index by the one described by the following equation
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Which simply means that a class is classified based on its majority count.  By using this type of counting and applying it to a fixed point partition (for instance partition threshold set in the middle of all data) we can estimate value of the information index with sufficient accuracy to tell which is the optimum input selection or transformation function.  The results of Matlab simulation for this new index were calculated and the code which computes this index (referred to as infs) was shown in section 4.1.  The approximated index values are shown on Fig. 4-1.  

Further simplification for calculation of the information index may come from a hypothesis that its peak is strongly correlated to the information index value at the mean value of all the training data used.  It is then enough to screen different functions and input selection for their potential to improve the information index, and before the final adjustment to the threshold is performed.  

With this in mind we can further approximate the mean value of the resulting transformation of selected inputs by transforming the mean values of the inputs.  For instance instead of calculating the mean of (a+log(b))/2 we will use (m(a)+log(m(b)))/2, where m( ) stands for the mean value of the corresponding input signal.  This will require using the mean of output signal at the time of calculating the input function values but after selection of the neuron’s characteristic (inputs, function, and threshold).  

According to the results of approximation for the information index by Ia, and assuming that the class probability in a given subspace is constant and that threshold is set at the approximated mean value of the output function we can further reduce the amount of calculations needed to select the most promising input combinations and the best transformation function.  Namely we can approximate the information index by function Ib defined as follows:
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and chose the combination of inputs and the transformation function which maximizes Ib.  This in turn can be accomplished by a single counter that counts the difference between number of samples from each class that satisfy the threshold and those that do not.  Let us assume that a counter increases count by 1 for each sample that satisfy threshold and reduces by -1 for each sample that does not.  The final count for each class ncdiff

is a measure of difference for probabilities psc needed to estimate Ib.  So finally we can simply check the total count determined by Ic as follows:
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which can be determined easily with a little hardware effort.  The combination of inputs and function that maximizes Ic should be selected.

With large number of classes to classify even Ic index may be too difficult to obtain.  It will either require a large number of counters to count each class separately, repeated training cycles to accumulate the index values from different classes, or training organized sequentially for each class (all samples from one class sent to the neuron one by one).  Additional reasons to still modify the information estimation formula are the final learning stages where it is expected that a single class samples will dominate other classes.  In such a case it is no longer true that the optimum of the information index is expected around mean value of all the training samples.  

To compensate for these reasons we modify information index estimating formula by introducing weighted averages to estimated mean of samples values.  The weights are set to equalize class probabilities around mean.  First we estimate a regular mean value of the training samples as the initial XE "threshold value:initial"  threshold point Th0.  Then classes which have their means less than Th0 are considered as one super class XE "super class"  and all the remaining as another.  Next super class probabilities p1 and p2 are estimated based on the count of points n1 and n2 of both super classes and their samples are weighted to obtain the weighted average XE "threshold value:weighted average"  threshold
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Where E(c1), E(c2) are the expected (mean) values of two super classes.   By using the weighted average threshold and weighting the super class samples with the other super class probabilities, we can simplify calculation of the information index to 
where, as in the Ic index, nidiff counts the difference between the number of samples from each class that satisfy threshold and those that do not.

The super class index was found by adding the following code to the previous code

%
find weighted mean threshold

ma=y(1,:).*x;

mb=y(2,:).*x;

meanav=(mean(ma)/mean(y(1,:))+mean(mb)/mean(y(2,:)))/2

thwave=min(find(x>meanav));

plot(thwave,infs(thwave),'r*');

with triangle parameters set to 

%set triangle parameters

devl=[0.1 .3 ];

devr=[0.1 .3 ];

meanv=[.4 .6 ];

h=[2 .25 ];

The resulting plot of information and approximate information index confirm a good correlation of the selected threshold value (at the red star location) with the optimum threshold (at the green star location)
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Figure 5‑2  Illustration for the weighted average threshold selection
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The super class weighted average threshold and information index Id work well when the super classes have similar spread, however when the spread is significantly different the threshold location and the resulting index are not optimum.  A simple modification of the weighted average approach provides better result.  By substituting the weighted average threshold by a defined XE "threshold value:defined"  threshold

Where E(cdef) is the expected value of the more defined class (with smaller standard deviation ).  The following code was used to illustrate the use of defined threshold 

%
find more defined pdf

[smldev,defind]=min(devl);

other=3-defind;

%
find greater mean

if meanv(defind)>meanv(other)

   meand=meanv(defind)-smldev;

else

   meand=meanv(defind)+smldev;

end;

%
find defined threshold
thdef=min(find(x>meand));

plot(thdef,infs(thdef),'r*');

with the triangle parameters set to

%set triangle parameters

devl=[0.12 .34 ];

devr=[0.12 .34 ];

meanv=[.62 .65 ];

h=[2 2 ];

The resulting plot of information and approximate information index confirm a good correlation of the selected threshold value (at the red star location) with the optimum threshold (at the green star location).  Notice that in this case the weighted average method would place threshold somewhere between the two mean values, which would fall into a local minimum of the information index.
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Figure 5‑3  Illustration for the defined threshold selection
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Finally, a combination of the two threshold values seems to be a robust approximation of the optimum threshold.  

Where is the weight based on the formula
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The following code was used to illustrate the use of the combined XE "threshold value:combined"  threshold 

%
find weighted mean threshold

ma=y(1,:).*x;

mb=y(2,:).*x;

meanav=(mean(ma)/mean(y(1,:))+mean(mb)/mean(y(2,:)))/2

thwave=min(find(x>meanav));

plot(thwave,infs(thwave),'r*');

%
find more defined pdf

[smldev,defind]=min(devl);

other=3-defind;

%
find greater mean

if meanv(defind)>meanv(other)

   meand=meanv(defind)-smldev;

else

   meand=meanv(defind)+smldev;

end;

%
find defined threshold

thdef=min(find(x>meand));

plot(thdef,infs(thdef),'r*');

%
find combined threshold
rho=abs(devl(1)-devl(2))/sum(devl);

meancomb=meanav*(1-rho)+meand*rho;

thcomb=min(find(x>meancomb));

plot(thcomb,infs(thcomb),'m*');

This results in the following figure.  Notice the difference between three threshold values with the combined threshold marked with the magenta star.  The figure was obtained with the following set up of triangle parameters

%set triangle parameters

devl=[0.32 .1 ];

devr=[0.32 .1 ];

meanv=[.42 .55 ];

h=1./devl;
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Figure 5‑4  Illustration for the combined threshold selection

4.3. Relations between basic operations

Basic operations can be generated from three unary operators x, exp(x), and log(x) for selected neuron inputs and seven two argument operators F1=ADD(a,b); F2=SUB(a,b) with F3=SUB(b,a); F4=ADD(a,b/2); F5=ADD(b,a/2); F6=SUB(a,b/2) with F7=SUB(b/2,a);  F8=SUB(b,a/2) with F9=SUB(a/2,b).

Functions (F2, F3), (F6, F7), and (F8, F9) have to be used together as they complement each other on the input space (combined they provide divisions of the input space).

Functions F1-F9 can be applied to all pairs of selected arguments:

(x, y), 

(x, log(y)), (log(x), y), (log(x), log(y)), 

(x, exp(y)), (exp(x),y), (exp(x), exp(y)), 

(log(x), exp(y)), (exp(x), log(y)).

This way each function will be considered with 9 different pairs of arguments created from two selected inputs.  Total number of created functions will be equal to 9*9*10+5 = 815 for each neuron.  Neuron selects the one with the maximum information.

Analysis of all 81 two-argument functions of each selected pair will slow down learning process.  This is aggravated by the need to find the optimum threshold value for each function.  By considering the gradient of information index we can save steps in searching for the best function.   Let us first analyze the choice between the unary operations and binary operations.  In a two dimensional input space of a binary operations a unary operator acts as a projection on one of the two axis and its threshold corresponds to the vertical separation between data on the two dimensional space.   If a two argument function is to have a better information index than its input spaces, then separation provided by this function must be different than the vertical (or horizontal) separation line.

It is then natural to differentiate between ADD and SUB operations since they will yield separation lines with monotonically increasing (SUB) or monotonically decreasing (ADD) separation line.  So the first test will be to compare information for ADD(a,b)=128 (diagonal from upper left to lower right corner of x,y plane) with the one for SUB(a,b)=0 (diagonal from upper right to lower left corner of x,y plane).  If ADD is beter we only investigate operations derived from ADD.  After that the optimum threshold if found for the selected operation (ADD(a,b)=th or SUB(a,b)=th).  Once a family of operations is selected we then focus on the shape of dividing curves based on threshold value set to F1 or F2.  If the information was increasing for functions changing to convex, then only convex functions will be searched for the optimum.

The search for the optimum function should be based on a tree structure in which a choice of the next operation is consider at each node.  For instance consider result of threshold based on ADD(a,b)=128.  The following code was used to produce the plot represented on Fig. 5-5.

%
in general constant can be a positive or negative value from 1-255

   %
plot result of ADD(a,b)=const or b=256-a

   plot(a,256-a);

   %
plot result of ADD(a,log(b))=const or b=exp(256-a)
   plot(a,Expo(256-a),'m');   

   %
plot result of ADD(log(a),b)=const or b=256-log(a)

   plot(a,256-Loga(a),'m');

   %
plot result of ADD(log(a),log(b))=const or b=exp(256-log(a))

   plot(a,Expo(256-Loga(a)),'m');

   %
plot result of ADD(a,exp(b))=const or a=256-exp(b)

   plot(a,Loga(256-a),'g:');

   %
plot result of ADD(exp(a),b)=const or b=256-exp(a) 


plot(a,256-Expo(a),'g');

   %
plot result of ADD(exp(a),exp(b))=const or b=log(256-exp(a)) 

   plot(a,Loga(256-Expo(a)),'g'); 

   %
plot result of ADD(log(a),exp(b))=const or b=log(256-log(a))

   plot(a,Loga(257-Loga(a)),'y:');

   %
plot result of ADD(exp(a),log(b))=const or b=exp(256-exp(a)) 

   plot(a,Expo(256-Expo(a)),'y'); 

where the logarithm and exponent functions are as follows:

function result=Loga(a)

%
this function computes the logarithm of a

%
normalized to 0-255 square box

range=find(a>=1);

result=Em(Lm(Lm(a(range)))+5);

function result=Expo(a)

%
this function computes the exponent of a

%
normalized to 0-255 square box

result=Em(a/32);
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Figure 5‑5 Curves generated by ADD(a,b)=const

It is assumed that if the improvement in the information index came from using one of the convex functions ADD(a,exp(b)), ADD(exp(a),b), ADD(exp(a),exp(b)) then these functions will be searched first.  Functions ADD(a,log(b)), ADD(log(a),b), and ADD(log(a),log(b)) will be searched as a separate group.  In addition function ADD(a,exp(b)) is close to ADD(log(a),exp(b)) therefore function ADD(log(a),exp(b)) can be considered as a branch from ADD(a,exp(b)).

Another group of functions to consider are functions built around SUB(a,b) operation.  This operation is performed only for a>b, therefore full range of values in the integer box (256x256) is obtained if we consider both SUB(a,b) and SUB(b,a).  Since each of them is responsible for half solutions in the box they can be considered with half of the resolution for the threshold step size, this will save half of the steps.  So when we select the initial threshold for SUB(a,b) based on the 50% of training data which satisfy threshold and the answer is 0, then we switch to the SUB(b,a) instead.

For instance consider results of threshold based on SUB(a,b)=0.  The following code was used to produce the plot represented on Fig. 5-6.

%
plot result of SUB(a,b)=const or b=a-const  assume const=0

%
in general constant can be a positive or negative value from 1-255

   plot(a,a);

   hold on;

   %
plot result of SUB(a,log(b))=const or b=exp(a-const)

   plot(a,Expo(a),'m');   

   %
plot result of SUB(log(a),b)=const or b=log(a)-const

   plot(a,Loga(a),'m');

   %
plot result of SUB(log(a),log(b))=const or b=exp(log(a)-const)

   plot(a,Expo(Loga(a)),'m');

   %
plot result of SUB(a,exp(b))=const or b=log(a-const)

   plot(a,Loga(a),'g:');

   %
plot result of SUB(exp(a),b)=const or b=exp(a)-const 


plot(a,Expo(a),'g');

   %
plot result of SUB(exp(a),exp(b))=const or b=log(exp(a)-const) 

   plot(a,Loga(Expo(a)),'g'); 

   %
plot result of SUB(log(a),exp(b))=const or b=log(log(a)-const)

   plot(a,Loga(Loga(a)+1),'y:');

   %
plot result of SUB(exp(a),log(b))=const or b=exp(exp(a)-const) 

   plot(a,Expo(Expo(a)),'y');
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Figure 5‑6  Curves generated by SUB(a,b)=const

Having a large variety of functions we can simplify the threshold search process by the following approach:

1. Use ADD(a,b)=const to determine the threshold value const=th for which the information index is maximum.

2. Calculate the information index at the threshold value obtained at step 1 for the remaining 8 functions from Fig. 5-2.

3. Chose the function for which the information is maximum and adjust its threshold.

Assuming that the search for optimum threshold initiated with ADD(a,b)=th, we can find thresholds of the associated functions by setting the a value to th/2 and setting the function value to th/2.

The following code illustrates solution to threshold values for different functions in relation to threshold found in the step 1.

a=(1:255);

%
assume that the following threshold was found for ADD(a,b)=th

%
notice that since the add operation is performed as (a+b)/2=th

%
and th is between 0 and 256

th=100;

hold on;

%
plot result of ADD(a,b)=th0 or b=min(th0-a,256)

      %
threshold for addition th0=2*th

      plot(a,max(0,min(2*th-a,255)),'b');

      %
plot result of ADD(a,log(b))=th1 or b=exp(th1-a)
      %
threshold th1=Loga(th)+th 
      plot(a,min(256,Expo(Loga(th)+th-a)),'m:'); 

      %
plot result of ADD(log(a),b)=th2 or b=th2-log(a)

      %
threshold th2=Loga(th)+th

      plot(a,max(0,min(256,Loga(th)+th-Loga(a))),'m');

      %
plot result of ADD(log(a),log(b))=th3 or b=exp(th3-log(a))

      %
threshold th3=2*Loga(th)

      plot(a,min(256,Expo(2*Loga(th)-Loga(a))),'r');

      %
plot result of ADD(a,exp(b))=th4 or b=log(th4-a)

      %
threshold th4=Expo(th)+th

      plot(min(256,Loga(Expo(th)+th-a)),'g:');

      %
plot result of ADD(exp(a),b)=th5 or b=th5-exp(a)

      %
threshold th5=Expo(th)+th

      plot(a,min(256,max(0,Expo(th)+th-Expo(a))),'g');

      %
plot result of ADD(exp(a),exp(b))=th6 or b=log(th6-exp(a))

      %
threshold th6=2*Expo(th)

      plot(max(0,Loga(2*Expo(th)-Expo(a))),'c'); 

      %
plot result of ADD(log(a),exp(b))=th7 or b=log(th7-log(a))

      %
threshold th7=Expo(th)+Loga(th);

      plot(min(256,Loga(Expo(th)+Loga(th)-Loga(a))),'y:');

    
%
plot result of ADD(exp(a),log(b))=th8 or b=exp(th8-exp(a)) 

      %
threshold th8=Expo(th)+Loga(th);

   
plot(a,min(256,Expo(Expo(th)+Loga(th)-Expo(a))),'y');

 The resulting plot is shown in Fig. 5-7
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Figure 5‑7 ADD functions near the optimum threshold value

For the SUB(a,b) operations similar calculations can be performed to reduce the effort of finding the optimum threshold and function.  Assuming that the search for optimum threshold initiated with SUB(a,b)=th, we can find threshold of the associated functions by setting the a value to 129-th/2 and setting the function value to 128-th/2.

a=(1:255);

%
assume that the following threshold was found for SUB(a,b)=th

%
and th is between -255 and 255, 

th=50;

hold on;

%
plot result of SUB(a,b)=th0 or b=max(a-th0,0)

      %
threshold for subtraction th0=th

      plot(a,min(256,max(a-th,0)),'b');

      %
plot result of SUB(a,log(b))=th1 or b=exp(a-th1)

      %
threshold th1=-Loga(128-th/2)+128+th/2 

      plot(a,min(256,Expo(Loga(128-th/2)-128-th/2+a)),'m:'); 

      %
plot result of SUB(log(a),b)=th2 or b=log(a)-th2

      %
threshold th2=Loga(128+th/2)-128+th/2

      plot(a,max(0,min(256,-Loga(128+th/2)+128-th/2+Loga(a))),'m');

      %
plot result of SUB(log(a),log(b))=th3 or b=exp(log(a)-th3)

      %
threshold th3=Loga(128+th/2)-loga(128-th/2)

      plot(a,min(256,Expo(-Loga(128+th/2)+Loga(128-th/2)+Loga(a))),'r');

      %
plot result of SUB(a,exp(b))=th4 or b=log(a-th4)

      %
threshold th4=128+th/2-Expo(128-th/2)

      plot([zeros(1,max(find((Expo(128-th/2)-128-th/2+a)<1))) min(256,Loga(Expo(128-th/2)-128-th/2+a))],'g:');

      %
plot result of SUB(exp(a),b)=th5 or b=exp(a)-th5

      %
threshold th5=Expo(128+th/2)-128+th/2

      plot(a,min(256,max(0,-Expo(128+th/2)+128-th/2+Expo(a))),'g');

      %
plot result of SUB(exp(a),exp(b))=th6 or b=log(exp(a)-th6)

      %
threshold th6=Expo(128+th/2)-Expo(128-th/2)

      plot([zeros(1,max(find(-Expo(128+th/2)+Expo(128-th/2)+Expo(a)<1))) max(0,Loga(-Expo(128+th/2)+Expo(128-th/2)+Expo(a)))],'c'); 

      %
plot result of SUB(log(a),exp(b))=th7 or b=log(log(a)-th7)

      %
threshold th7=-Expo(128-th/2)+Loga(128+th/2);

      plot([zeros(1,max(find(Expo(128-th/2)-Loga(128+th/2)+Loga(a)<1))) min(256,Loga(Expo(128-th/2)-Loga(128+th/2)+Loga(a)))],'y:');

    
%
plot result of SUB(exp(a),log(b))=th8 or b=exp(exp(a)-th8) 

      %
threshold th8=Expo(128+th/2)-Loga(128-th/2);

   
plot(a,min(256,Expo(-Expo(128+th/2)+Loga(128-th/2)+Expo(a))),'y');
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Figure 5‑8  SUB functions near the optimum threshold value

After step 2 is completed and a specific function is selected the threshold is searched again for the selected function only.  For instance is the selected in step 2 function was ADD(log(a),b) with the selected threshold th2=Loga(th/2)+th/2

then the following code produces the separation curves to find  the final threshold:

for th=64:16:512

   %
plot result of ADD(log(a),b)=const or b=const-log(a)

   %
very slow

   plot(a,max(0,min(th-Loga(a),256)),'m');

end;

These curves are shown in Fig. 5-9.  Notice that only few of these curves will be calculated if we use the iterative search for the optimum threshold.
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Figure 5‑9 Threshold search using ADD(log(a),b)
5. Subspace Learning

In order to accumulate learning results from different subspaces we need to consider what is the amount of added learning and weight it against increased system complexity and resulting error of statistical learning.   This is the case when a set of training data is obtained from a small subspace of the original space and therefore it is related to less reliable statistics about the training data.

Let us define the subspace s information deficiency XE "information deficiency"  (normalized relative subspace entropy) as
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Information deficiency indicates how much knowledge must be gained to resolve the classification problem in the given subspace.  Initially, when a neuron receives its data from the NN primary inputs (raw signal data) we assume that the information index is zero, which means that the input information deficiency XE "information deficiency:input"  for the first layer of neurons is equal to 1.
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If the space was divided into several subspaces, then the information index and information deficiencies are simply related as in the following

Therefore, each subspace can be separately learned by minimizing its information deficiency.  If a new subspace is subdivided a new information index Is in this subspace is obtained.   In order to select which feature gives the largest local improvement in overall information we must maximize the information deficiency reduction XE "information deficiency:reduction"   (IDR)
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Once the local feature is selected based on the maximum deficiency reduction, its output has to carry the information deficiency for the next stage of learning.   We define the output information deficiency XE "information deficiency:output"  as the product of the local subspace information deficiency with the input information deficiency.  If the TCO is the same as the TCI for a given neuron, then the output information deficiency is equal to the input information deficiency.  Otherwise it is a product of the input information deficiency and the subspace (T or TI) information deficiency. 

In a local learning scheme, information should be stored using information deficiencies vector rather than the raw information index.  Then the total information accumulated after the selected subspace is subdivided equals to
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where deficiency reduction in all subspaces was added.  This additive feature permits selection of the optimum local strategy where a local learning component can chose between different input spaces and optimize their partition.  The learning strategy is to arrive to the largest value of Itot.
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When subsequent space divisions take place the information deficiency must be replaced by the accumulated information deficiency XE "information deficiency:accumulated"  expressed as a product of information deficiencies in each subsequent partition.
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where the product is taken with respect to all the partitions.    In order not to carry to many data lines in a locally interconnected set of neurons, we only need to pass the value of accumulated information deficiency to the next neuron as its input information deficiency.  So, effectively the accumulated information deficiency of a subspace becomes the output information deficiency of a neuron and the input information deficiency of the following neuron, once this particular subspace created in the feeding neuron is selected as a TCI of the consecutive neuron.
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In such case the deficiency reduction is calculated using a product of the accumulated information deficiency and the subspace information index.

Therefore the port organization of the RISP entity related to information processing in a given neuron is as shown below:
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Figure 6‑1 RISP entity.

When a neuron processes the input data its information index is used to predict reduction of the subspace entropy.  However, this reduction will take place only if the subspace is really divided using the selected threshold, which is accomplished by selecting the TCOT or TCOTI to drive TCI of another neuron or the system output.  If instead, TCO is selected as the next neuron TCI, then no division takes place (no change in the estimated space entropy) and neurons role is only used to better organize the input data.

In general, several neurons may need to act on the input data in a given subspace to organize them in a way that facilitates classification before the space is divided.  Since it is not known yet how many neurons should process the subspace data before the subspace is divided, the rate of selection of the TCO over selection of TCOT or TCOTI should be set experimentally.  This rate should be adjusted by the results of experiments over many different sets of NN learning problems. It will determine a statistical parameter pss (probability of subspace selection) that is the probability of selecting either TCOT or TCOTI as the current neuron TCI.  Since the probability of selection of the TCI must equal to one we have p+2*pss=1, where p is the TCO probability.  It is expected that p>pss, therefore pss<0.33.

To illustrate this discussion on the local optimization of the information index and feature selection let us consider the following example.  

The table below illustrates three different SCFNs, and related values of the information indexes in both the feeding and the current neuron.  It also contains the values of the information deficiencies in the SCFN as well as the results of calculations of the information deficiency reduction.  Depending on which was the selected TCI in the current neuron we will have different choices of the neuron operations.  

If the TCI of the current neuron is the same as the TCO of the SCFN we should select the second clock-feeding neuron, if the TCOT is used then the first neuron is the best, and finally, if the TCOTI is used, than the best SCFN is the third one.

Notice that the information indexes of data feeding neurons are not important.  For a specific SCFN, we must always select the operation that maximized the current neuron’s information index.

	Clock-feeding neuron


	Current neuron

	Information index


	Information deficiency 
	Information index
	Information deficiency

Reduction 

	
	Input
	Subspace
	
	CL
	CLT
	CLTI

	Iin  

TTI


	
	T
	TI
	I
	R=I*
	R=I**T
	R=I**TI

	.6
	.8
	.25
	.15
	.7
	.56
	.14
	.084

	.7
	.8
	.1
	.2
	.9
	.72
	.072
	.144

	.5
	.8
	.1
	.4
	.5
	.45
	.045
	.18


As we could see from the presented example, in general the IDR of the TCI equal to TCO is larger than the one equal to TCOT or TCOTI.  Therefore, if these threshold-controlled outputs will be directly compared, then always TCO will be selected and no space partition will ever take place.  So in assigning a clock input, only one of these three threshold-controlled outputs should be randomly selected.

The internal block level structure of a neuron is represented on the following figure:[image: image62.wmf]2
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Figure 6‑2 Neuron organization

6. Information error and final classification

Obviously, the more partitions we already have the smaller the value of the accumulated information deficiency.  Once this value reaches a specified threshold the learning must stop.  This threshold must depend on the size of the training data and must not be smaller than the information deficiency error that results from the size of the confidence interval for the partition.  Set information deficiency threshold XE "information deficiency:threshold"  (IDT)  for instance IDT=0.01, and make the neuron outputs TCOT or TCOTI to be the self-organizing neural network outputs XE "neural network:outputs"  (SONNO).

During training, establish which class each SONNO is most correlated to and calculate the probability of correct classification for each one.   You can do it by simply counting how many times the SONNO went high for each training class nc.  Then divide the number of times it went high for each class by the total number of times it was high nt to estimate the probability of correct classification for each class using:
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Notice that the SONNO may be quiet for most of the time, since most likely if try to recognize only certain samples, so the total nt can be small.  If it is smaller than four or five samples do not use it to classify since our probability has a large error.

What is desired is to have a fusion function that will weight the votes of each SONNO for each class.  The fusion function provides a score for each target class based upon the training data performance of each SONO voting for that target class and is computed as:
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Where:

 
Pcc max = maximum pcc of all SONNO’s  “voting” for class c

       
Pcci = Pcc of each “vote” for class c

       
 n  = number of “votes” for class c
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 = small number preventing division by zero.

Example:

Suppose that we have 3 classes and 6 SONNO’s and they have their probabilities pcc calculated as in the following table

	class
	1
	2
	3

	SONNO1
	0.9
	0.1
	0.1

	SONNO2
	0.3
	0.6
	0.1

	SONNO3
	0.2
	0.2
	0.6

	SONNO4
	0.1
	0.2
	0.7

	SONNO5
	0.2
	0.7
	0.1

	SONNO6
	0.2
	0.1
	0.7


Suppose that 4 test samples were sent through the system and the following outputs went high (as shown in table).  Then the calculated values for each class are as shown in the table:

	SONNO # and vote
	Class # and weight Wc

	1
	2
	3
	4
	5
	6
	1
	2
	3

	1
	0
	1
	1
	0
	0
	0.9126
	0.3908
	0.8301

	0
	1
	1
	0
	0
	0
	0.4960
	0.7120
	0.6898

	0
	1
	0
	1
	0
	1
	0.4775
	0.7038
	0.8521

	0
	0
	0
	0
	1
	1
	0.4080
	0.7615
	0.7615


According to these results the winning class will be class # 1, 2, 3, and 3 for these four samples.

The following Matlab program was used to calculate the weights for all classes:

P=
[0.9
0.1
0.1; ...


 0.3
0.6
0.1; ...

    0.2
0.2
0.6; ...


 0.1
0.2
0.7; ...

    0.2
0.7
0.1;


 0.2
0.1
0.7];

V=[1
0
1
1
0
0; ...


0
1
1
0
0
0; ...


0
1
0
1
0
1; ...


0
0
0
0
1
1];

Wc=[];

for i=1:size(V,1)

   a=V(i,:)';

   M=[];

   CPcc=[];

   DPcc=[];

   for j=1:size(P,2)

      b=P(:,j);

      M=[M a.*b];

      CPcc=[CPcc a.*(1-b+eps)];

      DPcc=[DPcc a.*(1./(1-b+eps))];      

   end;

   Pccmax=max(M);   

   Wc=[Wc ;1-(Pccmax+sum(CPcc).*(1-Pccmax))./(sum(DPcc))];

end;

with P defined as the matrix of SONNO’s probabilities of correct classification pcc, and V defined as SONNO’s binary votes.

The size of the confidence interval is a function of the number of samples in each partition.  For instance we can use 95% confidence intervals of individual class probabilities to estimate the confidence interval of the information deficiency.  Then the confidence intervals in each subspace are combined to estimate the confidence interval of the accumulated information deficiency.  Once the accumulated information deficiency is less than one half of its confidence interval the learning in the selected subspace stops. 

To this end let us assume that c represents the size of the confidence interval for the estimated class probability in a given subspace.  We could estimate the related entropy confidence interval using

[image: image63.wmf]2

4

2

b

a

or

b

a

-

+


[image: image64.wmf]å

å

-

=

D

=

c

c

c

s

s

sc

sc

sc

s

s

p

p

p

p

p

p

E

E

)

log(

)

log(

)

log(

max

d

This formula however is not accurate near pc=0.  So, we can estimate the entropy confidence interval using

Total information deficiency error can be estimated as square root of sum of squares of the confidence intervals of the information deficiencies in individual subspaces
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6.1. Alternative approach to learning limits 

Considering that the accumulated information deficiency  
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where s is a sequence of subspaces in the hierarchy of the original input space divisions and c represents class index, we can find the differential
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and use it to estimate the confidence interval for the subspace output information deficiency.  Whenever the size of this confidence interval exceeds the value of the subspace information deficiency, the learning must stop (i.e. the output information deficiency set to zero).  The exact derivation and discussion is left for an extra credit in this project. (Please give some numerical analysis results to check and illustrate your concept).

6.2. Alternative organization of voting neurons

As an alternative we may consider all neurons as voting neurons and pass their probability information to the output.  The only difference in voting is now that each neurons send out its class probabilities in either subspace 1 or subspace 2 according to which of its two outputs TCOTI or TCOT is active.
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