Matlab self-organizing NN project

31.
Generation of the self organizing NN structure


32.
Neuron’s threshold-controlled input


33.
Neuron’s Inputs


44.
Neuron’s arithmetic and logic operations


65.
Neuron’s self-organizing principles


76.
Subspace Learning


107.
Information error and final classification


118.
Matlab self-organizing NN project Training tasks




Write a Matlab program to do NN classification based on the maximum information index.

Assume that the training data is presented to the network in form of horizontal feature vectors.  Each feature vector contains one coordinate of each data points.  Assume that M input data points used for training are described by N-dimensional vectors.  So effectively, the NN have N inputs and reads the information in parallel from N input feature vectors.

The NN is a feed forward structure that can decide about its own interconnections and neuron operations.  It has a prewired organization that contains a number of identical processing blocks (called neurons), which are pseudorandomly connected to the input nodes and other neurons (see neurons connection strategy).  In addition, an entropy based evaluator (EEB) is used to select a proper operation and input selection for each neuron.

General organization of the obtained NN structure is illustrated on Fig. 1
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Fig. 1  Self-organizing NN structure

1.
Generation of the self organizing NN structure

Based on the results of earlier study we know that the best linear transformations may be evolved by iteratively applying Haar wavelet.  Since the two basic operations in a Haar wavelet are averaging and difference of the two inputs we can evolve a linear arithmetic section in the learning hardware by using and adder-subtractor with the right shift.  The reduced-instruction set processor (RISP) will be programmed to either perform addition or subtraction and the right shift of the result (which is equivalent to division by two) will guarantee stability.  Under this assumption the same RISPs can be used in FF and FB structures.  

Besides linear arithmetic operations RISP can perform a selected nonlinear or logic operations on its inputs.  This will be discussed in a separate section.

2.
Neuron’s threshold-controlled input 

Each neuron is clock controlled.  At each clock cycle it is assumed that a different data point is transmitted through the network.   In addition, a threshold-controlled input (TCI) is used to control the neuron’s operation.  Namely, the neuron’s threshold-controlled input is obtained by multiplexing the threshold-controlled outputs (TCO) of the subspace control feeding neurons.  There are three threshold-controlled outputs of a neuron, which are determined as follows:

1. The TCI of this neuron - TCO

2. The TCI AND neuron’s threshold output - TCOT

3. The TCI AND the inverted neuron’s threshold output – TCOTI

Only one of these outputs may be randomly selected as a threshold-controlled input of a new neuron.  Neuron’s threshold output T is defined together with operation of a neuron.

3.
Neuron’s Inputs

Each neuron has five signal inputs and two threshold-controlled inputs (make them design parameters so we can experiment with this numbers to observe changes in the system performance and the resulting NN structure).  Each signal input to a neuron contains a bus with the binary signal information (only a single line in case of logical input signals or analog NN implementation).  Each TCI input uses 1 line needed for the threshold-controlled output – (TCO, TCOT, and TCOTI) of the subspace control feeding neuron (SCFN) and to transfer related output information deficiency of the SCFN (discussed in section 5).  

Neuron selects two (or one) of its inputs to perform a selected arithmetic or logic operation on them.  Therefore, it uses a counter controlled 5-to-2 multiplexer followed by a simple reduced instruction-set processor (RISP).  In addition, neuron selects one of its threshold-controlled inputs by using 2-to-1 multiplexer.  Before a neuron starts processing the input data it first selects one of its threshold-controlled inputs and transfers the output information deficiency of the corresponding SCFN.

4.
Neuron’s arithmetic and logic operations 

A neuron processes its input data by performing one of the selected operations.  These operations must be simple enough to have a small design area and short processing time yet reach enough to perform a variety of linear and nonlinear arithmetic and logic operations.  The processor that performs these operations is a reduced instruction-set processor, which has a controller to select one of its operations and perform this operation on the input data.  We assume that the processor is designed to work with B=8 bit input data (B-bits in general case).  

From our earlier study we know that the average and subtract operations can generate all linear transformations.  Since we would like to include nonlinear operations like logarithm and square root, we assume that all operations are performed on nonnegative integer and produce results that are nonnegative integer.  In addition we will assume that the result of operation may be scaled to full range of integer numbers represented by the bit size of each signal (0-255 for the 8 bit numbers).

The operations defined for our RISP processor will use only add, subtract, compare, and shift of the input data to build other arithmetic operations.  In addition a single bit operation is defined as follows:

	a
	0
	1
	2
	4
	8
	16
	32
	64
	128

	Li(a)
	0
	0
	1
	2
	3
	4
	5
	6
	7


We define the following function that approximates the logarithm base 2.

Lm(a)=Li(a)+farc(a/2^Li(a))=Li(a)+ frac(shr(a,Li(a)))

Where shr(a,b) represents shift a right by b bits and frac(a) is the fraction part of a.

The inverse function to logarithms can be also easily obtained.  The function Em(a) takes the integer part of a (in Matlab floor(a)) and the fraction part of a (fract(a) )

Em(a)= (1+fract(a))*2floor(a)=shl((1+fract(a)),floor(a))

Where shl(a,b) represents shift a left by b bits.  With these functions we also have Em(Ln(a))=a, which is nice.

Next we define the following operations (were division by 2 is accomplished by the shift right by one bit):

Add(a,b)=(a+b)/2


addition
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subtraction

Mult(a,b)=Em(Sub(Lm(a)+Lm(b),B))
multiplication

Divd(a,b)=Em(Sub(Lm(a),Lm(b)))

division

Root(a)=Em(Lm(a)/2+B/2)


square root

Invr(a)=Em(Sub(B,Lm(a)))


inverse

Sqre(a)=Em(Sub(2Lm(a),B)))

square

Log2(a)= Em(Lm(Lm(a))+B-Lm(B))

logarithm 


Exp2(a)= Em(Sub((Lm(a),B-Lm(B))))
exponent


Since we may assume that the input data are already loaded to the RISP input and functions L(a) and E(a) are automatically latched each time to the input registers, very few clock cycles are needed to complete these operations.  We can represent these operations by elementary assembly like instructions as follows:

Add
-
add a,b


shr

Sub
-
add a,-b

clear on n

Log2
-
shl4 Lm(a)


Exp2
-
Em(shr4 a)
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In addition some combinational operations may be useful, like

These six basic functions will be combined to obtain all nonlinear transformations. Together with input selection they will define 11 different operations on the input data.

These basic functions can implement various nonlinear transformations of the input data as shown below.
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You can develop quite a realistic arithmetic (close to structural VHDL code) using Matlab binary operations like:

dec2bin



% converts decimal integer to a binary string

bin2dec



% converts binary string to decimal integer

bitget



% returns the value of the specified bit position

bitset



% sets the specified bit position to 1

bitxor



% returns the bit-wise exclusive OR

bitor




% returns the bit-wise OR

bitand



% returns the bit-wise AND

bitcmp(a,8)

   % returns bit complement of a to 8 bit number
bitshift(a,k)
% shifts a to the left by k bits
5.
Neuron’s self-organizing principles  

The neuron counts the number of samples transmitted (by counting the clock impulses to its clock input).  This gives us a total local sample count nt.  At the rising edge of the system clock, neuron performs an operation on the selected inputs (or a single input).  If the TCI input to the neuron is high, the result of this operation is compared against a set threshold value.  If TCI is zero, this means that the data is not in the selected subspace and no comparison with threshold takes place.  The counter controlled by the neuron’s TCI input counts how many times the threshold value was satisfied and probabilities of samples from various classes satisfying the threshold value are estimated.  In a similar way we estimate probabilities of samples from various classes not satisfying the threshold.  Effectively, the threshold partitions the input space of a given neuron into two subspaces.  Our knowledge of the subspace into which a training point falls is similar to our knowledge of the cluster to which it belongs.

Suppose that class c samples were counted and that the number of points from this class that satisfied the threshold equals to nsc.  The probability of this class samples satisfying the threshold is estimated using 
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.  Likewise we can estimate subspace probabilities and local class probabilities by calculating 
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, respectively.  We can use these probabilities to determine the value of the information index.
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where the summation is performed with respect to all classes and two subspaces (for training samples in a given subspace that either satisfy or do not satisfy threshold, respectively).  The information index should be maximized to provide an optimum separation of the input training data.  When the limit value of the information index equals to 1, the problem at hand is solved completely, i.e. the training data is correctly classified (separated into various classes) by the NN.  

6.
Subspace Learning

In order to accumulate learning results from different subspaces we need to consider what is the amount of added learning and weight it against increased system complexity and resulting error of statistical learning.   This is the case when a set of training data is obtained from a small subspace of the original space and therefore it is related to less reliable statistics about the training data.

Let us define the subspace s information deficiency (normalized relative subspace entropy) as
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Information deficiency indicates how much knowledge must be gained to resolve the classification problem in the given subspace.  Initially, when a neuron receives its data from the NN primary inputs (raw signal data) we assume that the information index is zero, which means that the input information deficiency for the first layer of neurons is equal to 1.
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If the space was divided into several subspaces, then the information index and information deficiencies are simply related as in the following

Therefore, each subspace can be separately learned by minimizing its information deficiency.  If a new subspace is subdivided a new information index Is in this subspace is obtained.   In order to select which feature gives the largest local improvement in overall information we must maximize the information deficiency reduction  (IDR)
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Once the local feature is selected based on the maximum deficiency reduction, its output has to carry the information deficiency for the next stage of learning.   We define the output information deficiency as the product of the local subspace information deficiency with the input information deficiency.  If the TCO is the same as the TCI for a given neuron, then the output information deficiency is equal to the input information deficiency.  Otherwise it is a product of the input information deficiency and the subspace (T or TI) information deficiency. 
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When subsequent space divisions take place the information deficiency must be replaced by the accumulated information deficiency expressed as a product of information deficiencies in each subsequent partition.
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where the product is taken with respect to all the partitions.    In order not to carry to many data lines in a locally interconnected set of neurons, we only need to pass the value of accumulated information deficiency to the next neuron as its input information deficiency.  So, effectively the accumulated information deficiency of a subspace becomes the output information deficiency of a neuron and the input information deficiency of the following neuron, once this particular subspace created in the feeding neuron is selected as a TCI of the consecutive neuron.
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In such case the deficiency reduction is calculated using a product of the accumulated information deficiency and the subspace information index.

Therefore the port organization of the RISP entity related to information processing in a given neuron is as shown below:
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Fig. 2
RISP entity.

When a neuron processes the input data its information index is used to predict reduction of the subspace entropy.  However, this reduction will take place only if the subspace is really divided using the selected threshold, which is accomplished by selecting the TCOT or TCOTI to drive TCI of another neuron or the system output.  If instead, TCO is selected as the next neuron TCI, then no division takes place (no change in the estimated space entropy) and neurons role is only used to better organize the input data.

In general, several neurons may need to act on the input data in a given subspace to organize them in a way that facilitates classification before the space is divided.  Since it is not known yet how many neurons should process the subspace data before the subspace is divided, the rate of selection of the TCO over selection of TCOT or TCOTI should be set experimentally.  This rate should be adjusted by the results of experiments over many different sets of NN learning problems. It will determine a statistical parameter pss (probability of subspace selection) that is the probability of selecting either TCOT or TCOTI as the current neuron TCI.  Since the probability of selection of the TCI must equal to one we have p+2*pss=1, where p is the TCO probability.  It is expected that p>pss, therefore pss<0.33.

7.
Information error and final classification

Obviously, the more partitions we already have the smaller the value of the accumulated information deficiency.  Once this value reaches a specified threshold the learning must stop.  This threshold must depend on the size of the training data and must not be smaller than the information deficiency error that results from the size of the confidence interval for the partition.   Set information deficiency threshold (IDT)  for instance IDT=0.01, and make the neuron outputs TCOT or TCOTI to be the self-organizing neural network outputs (SONNO).

During training, establish which class each SONNO is most correlated to and calculate the probability of correct classification for each one.   You can do it by simply counting how many times the SONNO went high for each training class nc.  Then divide the number of times it went high for each class by the total number of times it was high nt to estimate the probability of correct classification for each class using:
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Notice that the SONNO may be quiet for most of the time, since most likely if try to recognize only certain samples, so the total nt can be small.  If it is smaller than four or five samples do not use it to classify since our probability has a large error.

What is desired is to have a fusion function that will weight the votes of each SONNO for each class.  The fusion function provides a score for each target class based upon the training data performance of each SONNO voting for that target class and is computed as:
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Where:

 
Pcc max = maximum pcc of all SONNO’s  “voting” for class c

       
Pcci = Pcc of each “vote” for class c

       
 n  = number of “votes” for class c
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 = small number preventing division by zero.

Example:

Suppose that we have 3 classes and 6 SONNO’s and they have their probabilities pcc calculated as in the following table

	class
	1
	2
	3

	SONNO1
	0.9
	0.1
	0.1

	SONNO2
	0.3
	0.6
	0.1

	SONNO3
	0.2
	0.2
	0.6

	SONNO4
	0.1
	0.2
	0.7

	SONNO5
	0.2
	0.7
	0.1

	SONNO6
	0.2
	0.1
	0.7


Suppose that 4 test samples were sent through the system and the following outputs went high (as shown in table).  Then the calculated values for each class are as shown in the table:

	SONNO # and vote
	Class # and weight Wc

	1
	2
	3
	4
	5
	6
	1
	2
	3

	1
	0
	1
	1
	0
	0
	0.9126
	0.3908
	0.8301

	0
	1
	1
	0
	0
	0
	0.4960
	0.7120
	0.6898

	0
	1
	0
	1
	0
	1
	0.4775
	0.7038
	0.8521

	0
	0
	0
	0
	1
	1
	0.4080
	0.7615
	0.7615


According to these results the winning class will be class # 1, 2, 3, and 3 for these four samples.
8.
Matlab self-organizing NN project Training tasks

All N inputs are treated the same way as outputs of neurons, i.e. they provide the output signal (input to other neurons, deficiency information equal to one, and TCO equal 1 for all input data). 

Each neuron in Matlab software can be represented as a record or an array.  It should contain its initial wiring information (other neurons or inputs to which they are connected), selected inputs (2 out of 5), selected operation on the input data, output neurons (neurons to which its output is wired) and controlled neurons (neurons to which its TCO, TCOT, and TCOTI) are wired.  

For convenience, number your neurons starting from N+1, so the index for the input would simply represent which outputs it is connected to.

A neuron can be considered as a design entity with input/output ports and internal state information that differentiate it from a generic neuron.
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Fig. 3 
Neuron entity

For instance if you decided to arrange the neuron information in a vector form a particular neuron in your design can be represented as the following 32 by 1 vector: 

N=(5,7,1,3,9,2,4,33,7,125,43,49,55,0,0,0,0,0,0,0,33,41,0,0,0,0,1,0)

With interpretation of its elements given in the following table

	5 Inputs
	Selected 2 inputs
	TCI 
	Func

tion 
	Threshold

Value
	Outputs
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	TCO
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Input data

 

TCOT
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TCOTI
	SONNO

	5,7,1,3,9
	2,4
	33
	7
	125
	43,49,55
	33,41
	25,38
	
	1,0


Where SONNO represents two possible system outputs for a neuron SOT and SOTI.  Each system output is set high if during training the information deficiency in the corresponding subspace is less than a set minimum (for instance 
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d

=0.001).  This means that this particular neuron’s threshold controlled output will be used in the voting mechanism during classification.

Notice that a similar format can be assigned to all the inputs.  They will have the first elements of this table equal to 0, and the outputs containing the numbers of neurons connected to a particular input (up to 10 neurons).  In addition neurons connected to TCO, TCOT, and TCOTI outputs of the input layer will receive 1 for each training sample.

· Initially you will generate a neuron and specify its Id#, 5 inputs (to which it is prewired), and its TCI input.

· Neuron receives data through its inputs and uses TCI information to evaluate the information index.

· After sending training data through the neuron and evaluating information you will select the function and the threshold values.

· Finally, when consecutive neurons are generated they may select this neuron as their inputs or use its TCO output as their TCI.  At this stage you will fill in the required information in the rest of the neuron record. 

Since in Matlab only sequential operations are performed, you will generate and train a single neuron at a time.  In a parallel hardware a whole layer of neurons can be added at a time. 

During training you will take the corresponding vectors of the input training data and perform operations on them.  These input training data vectors will either represent your original input vectors (M dimensional rows of the training data) or outputs of other neurons which have been already trained.   You will use a procedure which cycles through a predefined set of operations on selected inputs and calculate the maximum information.  This will define the selected inputs, selected function, and selected threshold for this neuron.  This information is then stored in this neuron memory.  

The output data vector produced by this neuron will be appended to the set of input training vectors and outputs of other neurons.  Effectively this will increase the size of the input training matrix from NxM to (N+K)xM, where K is the number of neurons.  Threshold controlled outputs will be as follows: TCO=TCI, TCOT=TCI*XT, where XT is equal to 1 for each training sample which satisfies threshold, and is equal to 0 if not.  In a similar way we calculate TCOTI.  TCO, TCOT, and TCOTI vectors will also be appended to form (N+K)xM matrices in a similar fashion as the signal output matrix.  The difference is that TCO signals are binary unlike the output signals.

Your project will include the following steps (you do not have to follow this organization – it is just to make your understanding of your task easier(:

1. Generate a dummy NN structure.  This structure provides only the interface between neurons.  Neurons are generated one layer at a time.  The first layer neurons are only connected to the NN inputs.  You may select the number of neurons in each layer to be fixed and for instance equal to the number of inputs divided by four.  This should be a design parameter and may result from the final layout size of each neuron.   Each neuron should select 3 of its inputs from its neighborhood and two from all previously generated neurons (including inputs).  Connect both the signal inputs and threshold inputs to previously generated neurons.  Generate enough layers for your network to be able to solve a complex classification problem (at least 20 layers). 

2. Read the input data and form the NxM training matrix TR as well as NxM threshold matrices TO, TOT, TOTI (all elements equal to 1), and generate “input neurons”.  Formulate the Nx1 information deficiencies vector ID, IDT, IDTI (all equal to 1).  Set the system outputs SO, and SOI to zero for all “input neurons”.
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Train a single neuron at a time.   Obtain Out, TCO, TCOT, TCOTI vectors.  Calculate the information deficiencies for the threshold-controlled outputs (3 scalar values).

Where the corresponding values represent information deficiencies in the whole subspace (input information deficiencies) and its parts (those which satisfy threshold and those who do not).  If the calculated information deficiency is less than a specified number (let us say 0.001), then activate the system output of this neuron subspace (SOT or SOTI).

4. Append the neuron output signals to the training data matrix TR =[TR; Out] and threshold matrices TO=[TO; TCO], TOT=[TOT; TCOT], and TOTI=[TOTI; TCOTI].  Append the information deficiency scalars to the information deficiency vectors for all neuron outputs ID=[ID; 
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5. If any neuron set its system output high use this neuron in the voting procedure for test data.  During the training stage of your project it is enough if you print out the neuron information, their information index and information deficiency.

The internal block level structure of a neuron is represented on the following figure: 
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Fig. 4
Block level neuron organization

Notice that in hardware realization the entropy based evaluator may be designed as a separate unit.  Several neurons (one form each layer) can be served by the same entropy based evaluator.

Hint:

Since a nonlinear transformation of a single input will not change the information index, consider two stages of setting a neuron transformation function:

1. Select one of each 5 inputs and calculate the maximum information index for each.

2. Select two x and y out of five inputs (10 combinations) and calculate the following values: log(x), log(y) and exp(x), exp(y).

3. Consider two argument operations:

F1=ADD(a,b); F2=SUB(a,b); F3=SUB(b,a); 

F4=ADD(a,b/2); F5=ADD(b,a/2); F6=SUB(a,b/2);  F7=SUB(b,a/2)

and apply them to all pairs of selected arguments.  For instance F1 can be considered with the following pairs:

(x, y), (x, log(y)), (log(x), y), (log(x), log(y)), (x, exp(y)), (exp(x),y), (exp(x), exp(y)), (log(x), exp(y)), (exp(x), log(y)).

This way each function will be considered with 9 different pairs of arguments created from two selected inputs.

Total number of created functions will be equal to 9*7*10+5=635 for each neuron.  Neuron selects the one with the maximum information.

Since the number of inputs may be smaller than the maximum number of inputs in the self-organizing NN structure –  you may either use selected transformations of the applied inputs as additional inputs or simply do not process the data connected to zero inputs (all combinations of neuron inputs connected to this zero inputs are discarded).

In order not to run into not sufficient data for NN processing the first approach is recommended.  Additional inputs are created by first using the one argument operations (like log(x), exp(x)) and then combining two of the inputs using two argument operations (like ADD(x,y), SUB(x,y), ADD(x,y/2), etc.).
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