Radial Basis Functions

e In most feedforward networks, new information necessitates total re-
training.

e This re-training’s cost becomes prohibitive when there are many data
points and many weights.

e One way to avoid re-training particularly when large nets are involved
is to allow hidden units to be sensitive only to a limited range of input
patterns.

e One means of accomplishing this is by using radial basis functions as
the activation functions of the hidden units.

e The learning set {v,y} is considered to be a sampled version of some
continuous function y(v) that is not known.

e The goal is to construct an approximation from the samples which
comes close to the true function y(v).

e In the one-dimensional case, the continuous function y(v) is sampled
at regular intervals and the task is to produce the reconstruction d(v)
from the support points.

e If a high enough sampling rate is used then the solution is to apply an
appropriate low-pass filter to the sequence of points, or spikes.

e The low-pass filter changes every spike into a point spread function
given by the impulse response function of the low-pass filter and renders
the approximating smooth function d(v) as the additive superposition
of all the smoothed spikes.

e The approximation of an unknown probability function prob(v) from a
given learning set can be viewed as the combination of histogramming
and smoothing.

e The histogram is established by

1. partitioning the whole measurement space into the required num-
ber of bins

2. counting how many points in the training set fall into each bin



Vector quantization clustering can be used to perform both of these
functions.

This results in a sampled representation of the distribution function
prob(v)
— samples are the cluster cell centroids v; with cluster cell counts h;
— the sampled representation is the set of pairs [v;, hy] where [ =

1,...,L.

The sampled representation must be smoothed to produce a continuous
approximation. This requires a kernel function, usually the normal
distribution function.

The simplest approach is the use of the uniform width rotational Gaus-
sians.

A better approach is to apply individual kernel functions to each of the
cluster cells, making use of the cluster cell covariance matrix K;.

If each of the L cluster cells is represented by a normal distribution
function prob(v|l) then it has its probability mass centred at yu; but
distributed over all the measurement space.

The cluster count, (h;/total number of samples) is an estimate of the
a priori probability prob(l) = P, of the respective component distribu-
tion.

Summation over all L clusters gives a legitimate estimation for prob(v)
L
prob(v) = ZP;prob(VU)
=1

The resulting approximations can be directly used for pattern classifi-
cation applying the Bayes decision rule.

Any least mean-square approximation d(v) targeted to y is an estima-
tion for the vector p of a posteriori probabilities.

This is valid for a linear combination of radial basis functions.

Each of the L radial basis functions consists of three parts



— the reference vector v;
— a distance-measuring function ¢(-)

— the kernel function f(-)

which combine to give

zp = flg(v,v))
The usual choices are

— Euclidean distance for ¢(-)

— negative exponential function for f(-)
This results in
x; = exp(—nlv — v|*)

which is called the Gaussian kernel.

The kernel width is controlled by 7 instead of the standard deviation
o of the normal distribution

The individual kernel function has N + 1 parameters

— N components of the reference point v;
— width parameter 1 — in the simplest case this is kept constant for

all the L kernel functions

The linear combination of the L radial basis functions z;, [ =1,...,L
from the L reference points with weights ¢; to be optimized gives the
estimating function

L
d(v) = Z cx(v)
=1

or

d(v) = ATz (v)

For purposes of pattern classification, we introduce a vector-valued
polynomial function d(v) consisting of K scalar polynomials

d(v) = al z(v) responsible for class k=1,..., K



e The K class-specific coefficient vectors a; are combined into a coeffi-
cient matrix

d(v) = ATz (v)
e Only A will be adjusted during the optimization (learning) procedure.

e Thus radial basis functions are combined with least mean-square opti-
mization for adjusting the coefficient matrix A from the training set

§2 = E{|d(v) - yI*} = E{|ATe(v)  y*} = miny

e The optimizing criterion S? is called the residual variance

— describes the remaining error after y has been approximated by
d(v) = ATz (v)
— function of A and depends quadratically on A

— the goal is to find the minimum of a quadratic function of A

if A is a scalar, finding the minimum involves

¥ compute the first derivative of S? with respect to A
* set the result to zero

* the result is a linear expression for the optimum parameter A
e Procedure for finding the optimum coefficient matrix A

— assume that A is the optimum solution to S?

— any deviation § A from the optimum A results in an increase of S?

S*AH46A) > S?(A) VSA#0

the right side of this equation can be transformed to

SH(A) = E{|ATe —y*} = B{[ATe —y]T[AT2 —y]

in general, the estimation d(v) does not fit the target y exactly so
that an error vector Ad remains

Ad(v) =d(v) —y = ATz (v) —y

e the optimum coeflicient matrix A is simply computed by solving a
system of linear equations that consist of the two moment matrices
F{zz"} and E{xy’} which describe the properties of the pattern
source from which the patterns [v, y] come.



— the moment matrices must be computed from a given set of learn-
ing samples {v,y}
Learning from examples consists of collecting moment matrices from
the training set and solving a linear matrix equation.

given an input vector z;, the output of a hidden unit is given by

Fla)=e= ((xi = ki)/o)?

K3

where k; is the centre of the radial basis function and ¢ is the width of
the Gaussian distribution specified by the function.

This activation function dictates that the hidden unit’s largest response
occurs when the input matches k; and falls off rapidly according to the
degree of mismatch.

In the 2-D case, this is like the response curve of a sensory cell.

Main advantage is the limited effect of any input on the network’s
hidden units and weights.

In the simplest case,

— L reference vectors v; and the width parameter 5 are discovered
from vector clustering

— the only free parameters are the coeflicients in A

— least mean-square technique is used to solve for A
More complex variant,

— use of individual width parameters 7

— these are included in the optimization procedure which must be a
comprehensive gradient descent procedure

Even more complex,

— including the L reference vectors v; into the optimization proce-
dure

— the Euclidean metric can be replaced by the Mahalanobis distance
(v—o) K7 (v —v)

— the matrix K; of this metric can be included in the set of adjustable
parameters



