
Radial Basis Functions

� In most feedforward networks, new information necessitates total re-

training.

� This re-training's cost becomes prohibitive when there are many data

points and many weights.

� One way to avoid re-training particularly when large nets are involved

is to allow hidden units to be sensitive only to a limited range of input

patterns.

� One means of accomplishing this is by using radial basis functions as

the activation functions of the hidden units.

� The learning set fv; yg is considered to be a sampled version of some

continuous function y(v) that is not known.

� The goal is to construct an approximation from the samples which

comes close to the true function y(v).

� In the one-dimensional case, the continuous function y(v) is sampled

at regular intervals and the task is to produce the reconstruction d(v)

from the support points.

� If a high enough sampling rate is used then the solution is to apply an

appropriate low-pass �lter to the sequence of points, or spikes.

� The low-pass �lter changes every spike into a point spread function

given by the impulse response function of the low-pass �lter and renders

the approximating smooth function d(v) as the additive superposition

of all the smoothed spikes.

� The approximation of an unknown probability function prob(v) from a

given learning set can be viewed as the combination of histogramming

and smoothing.

� The histogram is established by

1. partitioning the whole measurement space into the required num-

ber of bins

2. counting how many points in the training set fall into each bin
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� Vector quantization clustering can be used to perform both of these

functions.

� This results in a sampled representation of the distribution function

prob(v)

{ samples are the cluster cell centroids vl with cluster cell counts hl

{ the sampled representation is the set of pairs [vl; hl] where l =

1; : : : ; L.

� The sampled representationmust be smoothed to produce a continuous

approximation. This requires a kernel function, usually the normal

distribution function.

� The simplest approach is the use of the uniform width rotational Gaus-

sians.

� A better approach is to apply individual kernel functions to each of the

cluster cells, making use of the cluster cell covariance matrix Kl.

� If each of the L cluster cells is represented by a normal distribution

function prob(vjl) then it has its probability mass centred at �l but

distributed over all the measurement space.

� The cluster count, (hl=total number of samples) is an estimate of the

a priori probability prob(l) = Pl of the respective component distribu-

tion.

� Summation over all L clusters gives a legitimate estimation for prob(v)

prob(v) =
LX

l=1

Plprob(V jl)

� The resulting approximations can be directly used for pattern classi�-

cation applying the Bayes decision rule.

� Any least mean-square approximation d(v) targeted to y is an estima-

tion for the vector p of a posteriori probabilities.

� This is valid for a linear combination of radial basis functions.

� Each of the L radial basis functions consists of three parts
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{ the reference vector vl

{ a distance-measuring function g(�)

{ the kernel function f(�)

which combine to give

xl = f(g(v; vl))

� The usual choices are

{ Euclidean distance for g(�)

{ negative exponential function for f(�)

This results in

xl = exp(��jv � vlj
2)

which is called the Gaussian kernel.

� The kernel width is controlled by � instead of the standard deviation

� of the normal distribution

� =
1

2�2

� The individual kernel function has N + 1 parameters

{ N components of the reference point vl

{ width parameter � { in the simplest case this is kept constant for

all the L kernel functions

� The linear combination of the L radial basis functions xl, l = 1; : : : ; L

from the L reference points with weights cl to be optimized gives the

estimating function

d(v) =
LX

l=1

clxl(v)

or

d(v) = ATx(v)

� For purposes of pattern classi�cation, we introduce a vector-valued

polynomial function d(v) consisting of K scalar polynomials

dk(v) = aTk x(v) responsible for class k = 1; : : : ; K
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� The K class-speci�c coe�cient vectors ak are combined into a coe�-

cient matrix

d(v) = ATx(v)

� Only A will be adjusted during the optimization (learning) procedure.

� Thus radial basis functions are combined with least mean-square opti-

mization for adjusting the coe�cient matrix A from the training set

S2 = Efjd(v)� yj2g = EfjATx(v)� yj2g = minA

� The optimizing criterion S2 is called the residual variance

{ describes the remaining error after y has been approximated by

d(v) = ATx(v)

{ function of A and depends quadratically on A

{ the goal is to �nd the minimum of a quadratic function of A

{ if A is a scalar, �nding the minimum involves

� compute the �rst derivative of S2 with respect to A

� set the result to zero

� the result is a linear expression for the optimum parameterA

� Procedure for �nding the optimum coe�cient matrix A

{ assume that A is the optimum solution to S2

{ any deviation �A from the optimum A results in an increase of S2

S2(A+ �A) � S2(A) 8�A 6= 0

{ the right side of this equation can be transformed to

S2(A) = EfjATx� yj2g = Ef[ATx� y]T [ATx� y]

{ in general, the estimation d(v) does not �t the target y exactly so

that an error vector �d remains

�d(v) = d(v)� y = ATx(v)� y

� the optimum coe�cient matrix A is simply computed by solving a

system of linear equations that consist of the two moment matrices

EfxxTg and EfxyTg which describe the properties of the pattern

source from which the patterns [v; y] come.
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{ the moment matrices must be computed from a given set of learn-

ing samples fv; yg

� Learning from examples consists of collecting moment matrices from

the training set and solving a linear matrix equation.

� given an input vector xi, the output of a hidden unit is given by

F (x) = e�
X

i

((xi � ki)=�)
2

where ki is the centre of the radial basis function and � is the width of

the Gaussian distribution speci�ed by the function.

� This activation function dictates that the hidden unit's largest response

occurs when the input matches ki and falls o� rapidly according to the

degree of mismatch.

� In the 2-D case, this is like the response curve of a sensory cell.

� Main advantage is the limited e�ect of any input on the network's

hidden units and weights.

� In the simplest case,

{ L reference vectors vl and the width parameter � are discovered

from vector clustering

{ the only free parameters are the coe�cients in A

{ least mean-square technique is used to solve for A

� More complex variant,

{ use of individual width parameters �l

{ these are included in the optimization procedure which must be a

comprehensive gradient descent procedure

� Even more complex,

{ including the L reference vectors vl into the optimization proce-

dure

{ the Euclidean metric can be replaced by the Mahalanobis distance

(v � vl)
TK�1

l
(v � vl)

{ the matrixKl of this metric can be included in the set of adjustable

parameters
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