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The Perceptron Paradigm

Historical Background

� introduced by Rosenblatt in 1957.

� based on a model of the retina.

� the retina contains several light sensors arranged as a matrix.

� the sensor outputs are connected to a set of processing elements which recognize particular
patterns.

� the outputs of the PEs go to a threshold logic unit which does not \�re" until a certain level
and type of input occurs.

� this model was based on experimental evidence that certain shapes of similar complexity
can be more easily learned and recalled than others { visual hardware is tuned to particular
shapes.

The Elementary Perceptron

� has the ability to learn to recognize simple patterns.

� the elementary perceptron is a two-layer, heteroassociative, nearest-neighbour pattern
matcher.

� can accept both continuous valued and binary input.

� the perceptron learns o�ine, operates in discrete time and stores the pattern pairs (Ak; Bk); k =
1; 2; : : : ;m using the perceptron error-correction (or convergence) procedure, where
the kth pattern pair is represented by the analog valued vector Ak = (ak

1
; : : : ; akn) and the

bipolar [�1;+1] valued vector Bk = (bk
1
; : : : ; bkp).

� a perceptron decides whether an input belongs to one of two classes.

� the net divides the space spanned by the input into two regions separated by a hyperplane
or a line in 2-D (a decision plane).
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The Perceptron Convergence Procedure

Step 1. Initialize weights and thresholds.

� set the connection weights wi and the threshold value � to small random values.

Step 2. Present new input and desired output.

� present new continuous valued input x0; x1; : : : ; xn�1 along with the desired output d(t).

Step 3. Calculate actual output.

y(t) = fn(
n�1X
i=0

wi(t)xi(t)� �)

Step 4. Adapt weights.

� when an error occurs the connection weights are adapted by the formula:

wi(t+ 1) = wi(t) + �[d(t) � y(t)]xi(t)

where � is a positive gain fraction that ranges from 0:0 to 1:0 and controls the adaption
rate.

Step 5. Repeat by going to Step 2.

The Gain Term (�)

� ranges from 0:0 to 1:0.

� controls the adaption rate.

� must be adjusted to satisfy the conicting requirements of

1. fast adaptation for real changes in the input distributions and

2. averaging of past inputs to provide stable weight estimates.

Perceptron Convergence

� Rosenblatt proved that if the inputs presented from the two classes are separable then the
perceptron convergence procedure converges and positions the decision hyperplane between
those two classes in �nite time.

� problem: decision boundaries may oscillate continuously when the inputs are not separable
and distributions overlap.
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Encoding

First Order Learning

1. Initial hyperplane placement

� assign values in the range [+1;�1] to all the FA to FB inter-layer connections, wij, and
to each FB PE threshold, �j .

2. Hyperplane adjustment

� for each pattern pair (Ak; Bk) do

(a) transfer Ak to the FA PEs, �lter the activations through W and calculate the new
FB activation values

bj = f(
nX
i=1

wijai � �j)

where the bipolar step function, f(), is de�ned as

f(x) =

(
+1 if x > 0
�1 otherwise

(b) compute the error between the computed and desired FB values

dj = b
k
j � bj

(c) adjust the weights
�wij = �aidj

where � is a positive constant controlling the learning rate (gain factor).

3. Repeat Step 2 until the error-correction value dj is either su�ciently low or zero.

Higher Order Learning

� higher order correlations can be e�ectively added to the encoding algorithm.

� second order connections are stored in the n-by-n-by-p matrix V and adjusted by

�vhij = �a
k
ha

k
i dj

and

bj = f(
nX
i=1

wijai +
nX

h=1

nX
i=1

vhijahai � �j)

Recall

� employs the feedforward equation

bj = f(
nX
i=1

wijai � �j)

if only �rst order correlations are used and

bj = f(
nX
i=1

wijai +
nX

h=1

nX
i=1

vhijahai � �j)

if both �rst and second order correlations are used.
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The Least Mean Square Solution

� a modi�cation to the perceptron convergence procedure.

� minimizes the mean square error between the desired output of a perceptron-like net and the
actual output.

� the algorithm is called the Widrow-Ho� or LMS algorithm.

� the LMS algorithm is identical to the perceptron convergence procedure except that the hard
limiting nonlinearity is made linear or replaced by a threshold-logic nonlinearity.

� weights are corrected on every trial by an amount that depends on the di�erence between the
desired and the actual output.

� a classi�er could use desired outputs of 1 for class A and 0 for class B.

� during operation, the input would then be assigned to class A only if the output was above
0:5.

The Gaussian Classi�er

� maximum likelihood Gaussian classi�ers assume inputs are uncorrelated and distributions for
di�erent classes di�er only in mean values.

� this type of Gaussian classi�er and the associated Euclidean distance metric are often used
in speech recognition.

� the decision regions formed by perceptrons are similar to those formed by maximum likelihood
Gaussian classi�ers.

� the weights and threshold in a perceptron can be selected such that the perceptron structure
computes the di�erence between log likelihoods required by such a Gaussian classi�er.

A Gaussian Classi�er Implemented Using the Perceptron

� Class A

{ mAi
{ the mean of input xi when the input is from class A.

{ �2Ai
{ the variance of input xi.

� Class B

{ mBi
{ the mean of input xi when the input is from class B.

{ �2Bi
{ the variance of input xi and

{ �2Ai
= �2Bi

� the likelihood values required by a maximum likelihood calssi�er are monotonically related
to

LA =
n�1X
i=0

(xi �mAi
)2

�2i
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= �
X x2i

�2i

+ 2
X mAi

xi

�2i

�
X m2

Ai

�2i

and

LB = �
X x2i

�2i

+ 2
X mBi

xi

�2i

�
X m2

Bi

�2i

[ LB = (Term 1) (Term 2) (Term 3) ]

� a maximum likelihood classi�er must calculate LA and LB and select the class with the highest
likelihood.

� since Term 1 is identical for LA and LB , it can be dropped.

� Term 2 is a product of the input times the weights and can be calculated by a perceptron.

� Term 3 is a constant which can be obtained from the threshold in a perceptron node.

� a Gaussian classi�er for two classes can thus be formed by using the perceptron to calculate
LA � LB by setting

wi =
2(mAi

�mBi
)

�2i

and

� =
n�1X
i=0

m2

Ai
�m2

Bi

�2i

� the perceptron structure can be used to implement

1. classi�ers which use the perceptron training algorithm

{ makes no assumptions concerning the shape of underlying distributions; instead it
focuses on errors that occur when distributions overlap.

{ more robust than classical techniques.

{ works well when inputs are generated by nonlinear processes and are heavily skewed
and non-Gaussian.

2. Gaussian maximum likelihood classi�er

{ makes strong assumptions concerning underlying distributions and is more appro-
priate when distributions are known and match the Gaussian assumption.

� neither is appropriate when classes cannot be separated by a hyperplane.

In Conclusion

� the perceptron is limited by its linear separability condition.

� the perceptron's strengths:

{ its well understood behaviour

{ its adequate storage capacity
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{ its immediate recall.

� the perceptron's limitations:

{ poor at generalization

{ requires lengthy supervised o�ine learning

{ cannot encode nonlinearly separable classi�cations.

� the perceptron is ideally suited to pattern matching applications that are inherently linear
and only require a two-class response.
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Adaline and Madaline

The Adaptive Linear Element (Adaline)

� introduced by Widrow and Ho� in 1960.

� two-layer feedforward perceptron with n FA PEs and one FB PE.

� the Adaline is a combinatorial logic circuit that accepts several inputs and produces one
output.

� similar to Grossberg's instar { the minimal structure capable of recognizing a spatial pattern.

The Multiple Adaline (Madaline)

� a con�guration of several Adalines in a two-layer feedforward topology.

� a heteroassociative, nearest-neighbour pattern matcher that stores pattern pairs using the
least mean square (LMS) error-correction encoding procedure.

� the input pattern is represented by the analog valued vector Ak = (ak
1
; : : : ; akn).

� the output is the bipolar [�1;+1] valued vector Bk = (bk
1
; : : : ; bkp).

� Madaline learns o�ine and operates in discrete time.

Encoding - Least Mean Square Algorithm

1. Assign random values in the range [�1;+1] to all wij and each �j .

2. For each pattern pair (Ak; Bk) do

(a) Input Ak, �lter FA activations through W and calculate the new FB activations

bj =
nX
i=1

wijai + �j

(b) Compute the error
dj = b

k
j � bj

(c) Adjust the weights
�wij = �aidj
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� This correction procedure does gradient descent on the n-dimensional mean square error
surface and was found by calculating the gradient of error with respect to the weights.

3. Repeat Step 2 until the error correction is su�ciently low or zero.

Madaline Recall

� uses a thresholded version of the encoding equation that produces bipolar values

bj = f(
nX
i=1

wijai + �j)

where the bipolar step function f() is de�ned as

f(x) =

(
+1 if x > 0
�1 otherwise

Convergence

� the LMS encoding procedure is proven to converge to the global error minimum through an
analysis of its mean squared error.

Comparison of the Perceptron and Madaline

� in the encoding procedure, they are identical except for

{ the sign of the threshold

{ the omission of the threshold function.

� Perceptron

bj = f(
nX
i=1

wijai � �j)

� Madaline

bj =
nX
i=1

wijai + �j

� they are each associated with di�erent mathematical foundations

{ placement of a hyperplane

{ minimization of the mean squared error between desired and computed outputs.

In Conclusion

� Adaline/Madaline Strengths

{ its capacity to hold twice as many patterns as there are Ak dimensions (m = 2n).

{ its well understood mathematics.

� Adaline/Madaline Limitations
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{ lengthy encoding time.

{ inability to learn online.

{ the restriction to linear (Ak; Bk) mappings.

� other notes

{ LMS algorithm is the most pervasive of all encoding algorithms.

{ adaptive signal processing is based largely on the LMS algorithm

� applications: system modelling, statistical prediction, noise cancelling, adaptive echo
cancelling, and channel equalization.

Adaptive Signal Processing

� digital signals generally originate from sampling continuous input signals by A-to-D conver-
sion.

� �ltering digital signals is often done by means of a tapped-delay-line or transversal �lter.

� the sampled input signal is applied to a string of delay boxes which each delay the signal by
one sampling period.

� an adaptive linear combiner (ALC) is connected to the taps between delay boxes { the �ltered
output is a linear combination of the current and past input signal samples.

� by varying the weights in the ALC's, the impulse response from input to output is directly
controllable { the weights are usually adjusted to cause the output signal to be a best least
squares match over time to the desired-response input signal.

Adaptive Filters

� the simplest, most robust and widely used �lter is the adaptive digital �lter adapted by the
LMS algorithm.

� an adaptive threshold element is a key component in adaptive pattern recognition systems.

� it is composed of

{ an adaptive linear combiner cascaded with

{ a quantizer to produce a binary `decision'.

� the adaptive threshold element is trainable and capable of implementing binary logic func-
tions.

� the LMS algorithm was originally developed to train the adaptive threshold element (Adaline).

� Adaline

{ adaptive linear neuron.

{ an early neuronal model

� adaptive weights were analogous to synapses.

9



� input vector components related to dendritic inputs.

� quantized output was analogous to the axonal output.

� the output decision was determined by a weighted sum of the inputs, much the way
real neurons were believed to behave.

Example { Noise Cancelling

� a common problem in signal processing is that of separating a signal from additive noise.

� a classical approach uses optimal Wiener or Kalman �ltering { attempts to pass the signal s
without distortion while stopping the noise n0. In general, this cannot be done perfectly.

� another approach uses adaptive �ltering { only viable when an additional \reference input"
is available containing noise n1 which is correlated with the original noise n0.

� adjusting or adapting the �lter to minimize the total output power is tantamount to causing
the output � to be a best least squares estimate of the signal s for the given structure and
adjustability of the adaptive �lter, and for the given reference input;

{ therefore, little or no prior knowledge of s, n0 or n1 or of their interrelationships is
required.

Cancelling Maternal Heartbeat in Fetal Electrocardiography

� need to cancel interference from the mother's heart when attempting to record clear fetal
electrocardiograms.

� the abdominal leads provide the primary input (containing fetal ECG and interfering maternal
ECG signals).

� chest leads provide the reference input (containing pure interference, the maternal ECG).

� the maternal ECG was adaptively �ltered and subtracted from the abdominal signal leaving
the fetal ECG.

� fetal and maternal ECG signals have spectral overlap { the two hearts are electronically
isolated and work independently but the second harmonic frequency of the maternal ECG is
close to the fundamental of the fetal ECG.
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Back-Propagation

Learning by Example

� in a multilayer net, the information coming to the input nodes could be recoded into an
internal representation and the outputs would be generated by the internal representation
rather than by the original pattern.

� input patterns can always be encoded, if there are enough hidden units, in a form so that the
appropriate output pattern can be generated from any input pattern.

The Learning Scenerio

� the network is provided with a set of example input-output pairs (a training set).

� the connections are to be modi�ed so as to approximate the function from which the in-
put/output pairs have been drawn.

� the net is then tested for the ability to generalize.

� error correction learning procedure

{ during training an input is put into the net and ows through the net generating a set
of values on the output units.

{ the actual output is compared with the desired target and a match is computed.

� if there is a match, no change is made to the net,

� otherwise a change must be made to some of the connections.

{ the problem is to determine which connections in the entire network were at fault for
the error { credit assignment problem.

Back to Rosenblatt's Perceptron

� the series-coupled perceptron

{ randomly preset feedforward connections between FA and FB .

{ adaptable connections between FB and FC .

� about the series-coupled perceptron from Rosenblatt's The Principles of Neurodynamics

(1962):
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The procedure to be described here is called the `back-propagating error cor-
rection procedure' since it takes its cue from the error of the R-units, propagating
corrections back towards the sensory end of the network if it fails to make a satis-
factory correction quickly at the response end. The actual correction procedure for
the connections to a given unit, whether it is an A-unit or an R-unit, is perfectly
identical to the correction procedure employed for an elementary perceptron, based
on the error-indication assigned to the terminal unit.

� but Minsky and Papert in Perceptrons (1969) on multilayer machines:

The perceptron has shown itself worthy of study despite (and even because of!)
its severe limitations. It has many features that attract attention: its linearity; its
intriguing learning theorem; its clear paradigmatic simplicity as a kind of parallel
computation. There is no reason to suppose that any of these virtues carry over
to the many-layered version. Nevertheless, we consider it to be an important re-
search problem to elucidate (or reject) our intuitive judgement that the extension
is sterile. Perhaps some powerful convergence theorem will be discovered, or some
profound reason for the failure to produce an interesting \learning theorem" for the
multilayered machine will be found.

A Brief History of Back-Propagation

� error back-propagation through nonlinear systems has existed in variational calculus for many
years { more recently these methods have been widely used in optimal control.

� �rst gradient descent approach to training multilayered nets was by Amari in 1967 { used a
single hidden layer PE to perform nonlinear classi�cation.

� in 1974, Werbos discovered \dynamic feedback" in Beyond Regression: New Tools for Pre-

diction and Analysis in the Behavioral Sciences (P. Werbos, PhD thesis, Harvard University,
August 1974).

� in 1982, Parker talked about \learning logic" and this appears again in an 1985 MIT report.
Reference: Learning-Logic (Invention Report S81-64, File 1, O�ce of Technology Licensing,
Stanford University, October 1982).

� in 1985, Rumelhart, Hinton and Williams published their version { most e�ect on dissemi-
nation of the algorithm in the neural net community. Learning internal representations by

error propagation, ICS Report 8506, Institute for Cognitive Science, University of California
at San Diego, September 1985.

The Need for Internal Representation

� a constraint on two-layer networks: similar inputs lead to similar outputs.

� problem: the case of XOR.
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INPUT PATTERNS OUTPUT PATTERNS
00 ! 0
01 ! 1
10 ! 1
11 ! 0

� Note: a two-layer net could solve:

INPUT PATTERNS OUTPUT PATTERNS
000 ! 0
010 ! 1
100 ! 1
111 ! 0

� Problem:

{ there is a guaranteed learning rule for all problems that can be solved without hidden
units but there is no equally powerful rule for nets with them.

� Three Responses:

1. Competitive Learning

{ unsupervised learning rules are employed so that useful hidden units develop, but
no external force is there to ensure that appropriate hidden units develop.

2. Assume an internal representation that seems reasonable, usually based on a priori
knowledge of the problem.

3. Develop a learning procedure capable of learning an internal representation adequate for
the task.

Back-Propagation

� three-layer perceptron with feedforward connections from the FA PEs (input layer) to the
FB PEs (hidden layer) and feedforward connections from the FB PEs to the FC PEs (output
layer).

� heteroassociative, function-estimating ANS that stores arbitrary analog spatial pattern pairs
(Ak; Ck) using a multilayer gradient descent error-correction encoding algorithm.

� learns o�ine and operates in discrete time.

Encoding

� performs the input to output mapping by minimizing a cost function.

� cost function minimization

{ weight connection adjustments according to the error between computed and desired
output (FC) PE values.

{ usually it is the squared error
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� sqaured di�erence between computed and desired output values for each FC PE
across all patterns in the data set.

{ other cost functions

1. entropic cost function

� White (1988) and Baum & Wilczek (1988).

2. linear error

� Alystyne (1988).

3. Minkowski-r back-propagation

� rth power of the absolute value of the error.

� Hanson & Burr (1988).

� Alystyne (1988).

{ weight adjustment procedure is derived by computing the change in the cost function
with respect to the change in each weight.

{ this derivation is extended to �nd the equation for adapting the connections between
the FA and FB layers

� each FB PE's error is a proportionally weighted sum of the errors produced at the
FC layer.

{ the basic vanilla version back-propagation algorithm minimizes the squared error cost
function and uses the three-layer elementary back-propagation topology. Also known as
the generalized delta rule.

Vanilla Back-Propagation Encoding Algorithm

1. Assign random values in the range [+1;�1] to all FA to FB connections, vhi, all FB to FC

connections, wij , to each FB PE threshold �i and to each FC PE threshold, �j .

2. For each pattern pair (Ak; Ck) do:

(a) Process Ak's values to calculate new FB PE activations using

bi = f(
nX

h=1

ahvhi + �i)

where f() is the logistic sigmoid threshold function

f(x) = (1 + e
�x)�1

(b) Filter the FB activations through W to FC using

cj = f(
nX
i=1

biwij + �j)

(c) Compute the error between computed and desired FC PE values using

dj = cj(1� cj)(c
k
j � cj)
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(d) Calculate the error of each FB PE relative to each dj with

ei = bi(1� bi)
qX

j=1

wijdj

(e) Adjust the FB to FC connections

�wij = �bidj

where �wij is the amount of change made to the connection from the ith FB to the jth

FC and � is a positive constant controlling the learning rate.

(f) Adjust the FC thresholds
��j = �dj

(g) Adjust the FA to FB connections

�vhi = �ahei

where � is a positive constant controlling the learning rate.

(h) Adjust the FB thresholds
��i = �ei

3. Repeat step 2 until dj 's are all either zero or su�ciently low.

The Recall Mechanism

� consists of two feedforward operations

1. create FB PE values

bi = f(
nX

h=1

ahvhi + �i)

2. after all FB PE activations have been calculated they are used to create new FC PE
values

cj = f(
nX
i=1

biwij + �j)

Convergence

� BP is not guaranteed to �nd the global error minimum during training, only the local error
minimum.

{ simple gradient descent is very slow because we have information only about one point
and no clear picture of how the surface may curve

� small steps take forever

� big steps cause divergent oscillations across \ravines".

� factors to consider

1. number of hidden layer PEs
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2. size of the learning rate parameters

3. amount of data necessary to create the proper mapping.

� a three-layer ANS using BP can approximate a wide range of functions to any desired degree
of accuracy

{ if a mapping exists then BP can �nd it.

More on Back-Propagation

Advantages

� its ability to store many more patterns than the number of FA dimensions (m >> n).

� its ability to acquire arbitrarily complex nonlinear mappings.

Limitations

� extremely long training time.

� o�ine encoding requirement.

� inability to know how to precisely generate any arbitrary mapping procedure.

Areas of Research and Analysis

1. optimizing the number of PEs in the hidden layer(s).

2. improving the rate of learning.

3. extending the topology to any arbitrary connection topology.

4. analyzing the scaling, generalization and fault tolerance properties.

5. employing higher-order correlations and arbitrary threshold functions.

Hidden Layer Optimization

� added cost functions that will minimize the number of connections and the number of hidden
units as well as the overall squared error during training

{ Rumelhart, 1988

{ training time is greatly increased.

� heuristics for pruning away hidden units during training

{ Sietsma and Dow, 1988

{ Yu and Teh, 1988.

� `dynamic node creation' technique grows hidden layer PEs as they are needed

{ Ash, 1988.
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Learning Rate Improvement

1. Newton's Method

� make precise weight changes without having to decide how large the learning parameters
should be during encoding.

� gives the gradient that will move from the current point on a curve (the error surface)
in a straight line to the intersection on the curve.

� the product of the gradient and the pseudoinverse of the Hessian gives the vector that
intersects the curve.

� can eliminate some of the local minima traps and facilitate a more e�cient adaptation
process but it is di�cult and costly to compute.

2. Momentum

� one way to increase the learning rate without leading to oscillation is to modify the
generalized delta rule to include a momentum term.

� �wij = �bidj changes to �wij(n+1) = �bidj+��wij(n) where n indexes the presenta-
tion number and � is a constant which determines the e�ect of past weight changes on
the current direction of movement in the weight space.

� this provides a kind of momentum in weight space that e�ectively �lters out high-
frequency variations of the error surface in the weight space.

� useful in spaces with long ravines characterized by sharp curvature across the ravine and
a gently sloping oor

{ sharp curvature tends to cause divergent oscillations across the ravine { to avoid
this, small steps are necessary but this is too slow.

{ momentum �lters out the high curvature and allows the e�ective weight steps to be
bigger.

3. Other strategies

� using 10 to 30 times the size of the calculated gradient (weight change) to speed the
learning rate.

� employment of line search routines on the calculated gradient in order to make the
optimal size change during each training iteration.

� performing a priori weight and threshold computations before applying the gradient
descent training procedure.

� sets of heuristics for escaping local minima.

� addition of noise { decreased training time for small problems.

� the use of shaping schedules { a training procedure that starts with the easier-to-learn
mappings and gradually works to the more di�cult.

� constraining the weights during training to prevent oscillations.

Alternate Connection Topologies

� the most general BP topolgy possible is one that allows any PE to connect to any other PE.

� these topologies introduce feedback into the recall dynamics and are called recurrent back-

propagation arti�cial neural networks.
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Scaling, Generalization and Fault-Tolerance

� BP does not appear to scale well { large nets may have to be partitioned into separate modules
that can be trained independently.

� fault-tolerance: the ability to withstand damage to connections and nodes and still process
properly.

Higher Order Correlations and Alternate Threshold Functions

� Rumelhart, Hinton and Williams (1986) have proposed the use of higher order correlations

{ the PEs using higher order correlations are called sigma-pi units.

� other threshold functions

{ sine and cosine functions applied to the input layer PEs and used to augment the input
layer.

{ clipped cosine function { BP was able to construct a Fourier series approximation to a
given function as its output.

A Note About Symmetry

� if all the weights start out with equal values and the solution requires unequal weights to be
developed, the system can never learn.

{ because error is proportional to the value of the weights.

{ the system is starting out at a local maximum (of the error function) which keeps the
weights equal but once escaped it will never return there.

� solution: start the system with small random weights.

Examples

Once Again : : : the XOR Problem

� one solution to the XOR problem developed by back-propagation:

From To Weight

InputUnit1 ! HiddenUnit -6.4
InputUnit2 ! HiddenUnit -6.4
InputUnit1 ! OutputUnit -4.2
InputUnit2 ! OutputUnit -4.2
HiddenUnit ! OutputUnit -9.4

� this solution was reached after 558 sweeps through the four stimulus pairs with a learning
rate � = 0:5.

� another possible architecture: 2 hidden units and no direct connections from input to output.
This topology can encounter local minima and thus not be able to solve the problem.
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From To Weight

InputUnit1 ! HiddenUnit1 -2.0
InputUnit1 ! HiddenUnit2 4.3
InputUnit2 ! HiddenUnit1 9.2
InputUnit2 ! HiddenUnit2 8.8
HiddenUnit1 ! OutputUnit -4.5
HiddenUnit2 ! OutputUnit 5.3

with the thresholds being: HiddenUnit1 = 2:0, HiddenUnit2 = �0:1 and OutputUnit =
�0:8.

� this con�guration was reached after 6,587 presentations of each pattern with � = 0:25.

� with this con�guration, two of the inputs (00 and 10) produced correct responses but 01! 0:5
and 11! 0:5.

Parity

� the output required is 1 if the input pattern contains an odd number of 1s and 0 otherwise.

� di�cult problem because the most similar patterns require di�erent answers.

� basic BP topology { at least N hidden units are required to solve parity with patterns of
length N .

� \solution": N input units fully connected to N hidden units by connections with the weight of
+1. The hidden units are connected to a single output unit { the weights on these connections
alternate between +1 and �1. The thresholds on the hidden units (in order from the left-most
unit): �0:5;�1:5;�2:5; : : : ; 0:5� n where n is the number of the hidden unit. The threshold
on the output unit is �0:5.

� the hidden units \count" the number of inputs.

� the �rst m hidden units come on whenever m bits are on in the input pattern.

� the hidden units connect with alternately positive and negative weights to the output unit,
therefore, the net output is zero for even numbers and +1 for odd numbers.

� for the problem of 4-bit parity:

{ topology: 4 inputs, 4 hidden units.

{ presentations: 2,825 of each of the 16 patterns.

{ learning rate: 0.5.

� the internal representation: the number of hidden units that come on is equal to the number
of zeros in the input and is not dependent on which input units are on.
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Symmetry

� classifying input strings as to whether or not they are symmetric about their centre.

� the problem can always be solved with only two hidden units, for example:

From To Weight

InputUnit1 ! HiddenUnit1 -3.18
InputUnit1 ! HiddenUnit2 3.16
InputUnit2 ! HiddenUnit1 6.32
InputUnit2 ! HiddenUnit2 -6.34
InputUnit3 ! HiddenUnit1 -12.56
InputUnit3 ! HiddenUnit2 12.52
InputUnit4 ! HiddenUnit1 12.56
InputUnit4 ! HiddenUnit2 -12.51
InputUnit5 ! HiddenUnit1 -6.33
InputUnit5 ! HiddenUnit2 6.31
InputUnit6 ! HiddenUnit1 3.17
InputUnit6 ! HiddenUnit2 -3.17
HiddenUnit1 ! OutputUnit -9.44
HiddenUnit2 ! OutputUnit -9.44

with the thresholds on the hidden units being �1:0 and on the output unit it is 6:89.

� the solution for length size was arrived at after 1,208 presentations of each 6-bit pattern with
� = 0:1.

� for a given hidden unit, weights that are symmetric about the middle are equal in magnitude
and opposite in sign.

� if a symmetric pattern is on, both hidden units will receive a net input of zero from the input
units and therefore both will be o� and the output unit will be on.

� the weights on each side of the midpoint are in the ratio 1:2:4.

� this ensures that each of the 8 patterns that can occur on each side of the midpoint sends a
unique activation sum to the hidden unit { assures that there is no pattern on the left that
will balance a non-mirror-image pattern on the right.

� the two hidden units have identical patterns of weights from the input units except for sign.

� this ensures that for every nonsymmetric pattern, at least one of the two hidden units will
come on and turn o� the output unit.

� in summary, the net is arranged so that both hidden units will receive exactly zero activation
from the input units when the pattern is symmetric and at least one of them will receive
positive input for every nonsymmetric pattern.
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More Examples

� BP is capable of learning many di�erent kinds of interesting representations in the hidden
units.

1. learning optimal codes for squeezing information through narrow bandwidth channels.

2. learning sets of optimal �lters for discriminating between very noisy signals.

3. learning distributed representations of concepts (G. Hinton, 1986).

{ learn the semantic constraints that underlie a set of facts.

{ a 5-layer network was trained to generalize in a set of 100 triples such as (Victoria
has father John) derived from 2 family trees.

{ input vector represented the �rst 2 terms and the required output represented the
third term.

{ after extensive training the net could generalize appropriately to triples on which it
had not been trained like (Victoria has mother ??).

{ by recording the sets of triples for which each of the hidden units become active, it
is possible to show that these units had learned to represent properties that were
never mentioned in the input or output.

� BP does gradient descent in the space of possible representations { hidden fea-
tures and their interactions encode the underlying regularities of the domain.

NETtalk: A Parallel Network that Learns to Read Aloud

� T.J. Sejnowski and C.R. Rosenberg, 1986.

� English text is converted to speech by training by exposure to examples as opposed to entering
phonological rules and handling exceptions with a look-up table.

{ a BP net is trained to transform an input vector that encodes a sequence of letters into
an output vector that encodes the phonemic features of the sequence and which can be
used to drive a speech synthesizer.

� NETtalk is a two-layer feedforward sigmoid network with 80 Adalines in the �rst layer and
26 Adalines in the second.

� pronunciation of most words follows general rules based upon spelling and word context, but
there are many exceptionsand special cases.

� NETtalk learns to pronounce words in stages suggestive of the learning process in children.

{ the system makes babbling noises during the early stages of the training.

{ as the net learns, it next conquers the general rules and tends to make a lot of errors by
using the rules even when not appropriate.

{ as training continues, the net abstracts the exceptions and special cases and produces
intelligible speech with few errors.

� NETtalk operation

{ input is a vector of seven characters (including spaces) from a transcript of text.
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{ output is phonetic information corresponding to the pronunciation of the centre (fourth)
character in the seven-character input �eld { the other six characters provide context.

{ to read text, the 7-character window is scanned across a document and the net generates
a sequence of phonetic symbols that can be used to control a speech synthesizer.

{ each of the 7 characters at the net's input is a 29-component binary vector, with each
component representing a di�erent alphabetic character or punctuation mark (a 1 is
placed in the appropriate component and all others are set to 0).

{ the system's 26 outputs correspond to 23 articulatory features and 3 additional features
which encode stress and syllable boundaries.

{ when training, the desired response vector has zeros in all components except those
which correspond to the phonetic features associated with the centre character in the
input �eld.

� NETtalk scanned a 1024-word transcript of phonetically transcribed continuous speech.

� with presentation of each window, the system's weights were trained by back-propagation.

� after roughly 50 presentations of the entire training set, the net was able to produce accurate
speech from data the network had not been exposed to during training.
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Back-Propagation Supplement

The Role of Hidden Layers

� remap the inputs and results of previous layers to achieve a more separable or classi�able
representation of the data.

� may allow attachment of semantics to certain combinations of layer inputs.

Training Considerations

� training by pattern or epoch

� use of momentum

� sequential versus random ordering of the training vectors

� determining the occurrence of local minima

� choosing `suitable' unit biases

� designing appropriate initial conditions on biases, weights, etc.

Bias

� it may be advantageous to modify the feedforward NN to include a bias.

� for the sigmoidal activation function

f(netj) =
1

1 + e�netj

we observe that
0 � f(netj) � 1

and with no activation
neti = 0

f(0) =
1

2

� we may wish to bias this unit such that f(0) has another value.

� a simple model for the unit with bias is to modify netj such that

netj =
X
i

wijai + biasj
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Training by Epoch

� if we correct the network weights for each training pair for all connections then we are training
by sample.

� in training by epoch, we would calculate the weight change by

� �wij =
X
p

�p
wij

� this represents an overall or accumulated correction to the weight set after each training
epoch.

Hints for Using Back Propagation

� try di�erent threshold functions

{ convergence is usually faster with sigmoid fucntions that range between �1 and +1
(hyperbolic tangent) instead of 0 to 1 (logistic).

� use target values within the sigmoid range instead of the asymptotes

{ use �0:7 and +0:7 instead of �1 and +1

{ the asymptotes tend to take a long time to train, worsen generalization and drive the
weights to very large values.

� use reasonable initial weights

{ to keep the weighted sums within the range of the sigmoid,

� for PEs with many input connections: small weights

� for PEs with few input connections: larger weights.

{ if the initial weights are too small then the gradient will be small and training will begin
slowly.

{ if the initial weights are too large then PEs may get saturated and again the gradients
will be very small.

Some Guidelines for Hidden Units

� E.B. Baum and D. Haussler

{ \What size net gives valid generalization?", in Neural Computation, 1:151-160, 1989.

� Feedforward neural networks tend to generalize if

1. The fraction of errors committed against the training set is < �
2
where � is the allowed

fraction of errors on the test set (assuming that � < 1

8
)

2. m > O(W
�
logN

�
) where

{ N is the number of hidden units (one layer)

{ m is the number of patterns in the training set

{ W is the number of weights
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Baum and Haussler on Hidden Units

� in practice, m patterns of training data are need for generalization where m >
W
�
and

{ m is the number of patterns in the training set

{ W is the number of weights

{ � is the allowed fraction of errors on the test set (assuming that � < 1

8
)

Appropriate Uses for Back Propagation

� applications with high-dimensional input vectors

� relatively sparse data

� noisy data with high within-class variability

� applications where training speed is not important

Non-Appropriate Uses for Back Propagation

� for very dense data in a low dimensional space (statistical methods are better)

� many classes with low variability (pattern matching is better)

� applications that need \explanations" with the answers

Detection of Explosives in Checked Airline Baggage

The System

� a system by Science Applications International Corporation (SAIC) has been developed for
the FAA to detect explosives hidden in checked airline baggage (1985-1987).

� an arti�cial neural system has been applied to the problem of discriminating between suitcases
with and without explosives.

� the performance of the ANS exceeded the performance of a standard statistical technique
(discriminant analysis) over a substantial range.

� the input to the ANS was data gathered during �eld tests of a prototype explosive detection
system.

� the detection system uses thermal neutron activation (TNA) to detect the presence of explo-
sives.

� a suitcase on a conveyor belt moves past a source and an array of detectors.

� neutrons from the source penetrate the luggage and are absorbed by all of the materials
present.

� di�erent elements will emit di�erent gamma radiation after absorbing these neutrons.
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� the gamma rays have su�cient energy to penetrate the baggage and are then caught in the
detector array which records the number of gamma rays observed at each energy level.

� in theory, the amount of each element and its location can be determined from the array of
signals.

System Constraints

� must process 10 bags per minute continuously

� must not damage �lm or magnetic recording media

� must be reliable

� should be built from commercially available components wherever possible (delivery speed
and cost)

� the output of the system (whether the baggage is a threat) must be signaled by the time the
bag exits the system.

The Data

� commercial and military explosives have several characteristics which distinquish them from
most objects in luggage, e.g. high density of nitrogen.

� the goal was to set the detection rate at a high value (90%) and then achieve the lowest false
alarm rate practical.

� test data:

{ 3 tests of large numbers of passenger bags

{ simulated explosives (same instrument responses) were added to random bags.

Key System Performance Parameters

1. Probability of Detection (PD) for the minumum amount of explosives in a threat.

� determined by the number of bags with threats that cause an alarm divided by the total
number of bags with threats (modi�ed slightly by a weighting factor for frequency of
explosive type).

2. Probability of False Alarms (PFA) on bags without threats.

� measured by the number of bags without threats which cause the system to alarm divided
by the total number of bags without threats.
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The Analysis by Neural Network

� a \feature" is any combination of signals from the detectors in the array.

� the object of feature analysis is to develop a set of features with di�erent amounts of noise
resistance which still does a suitable job of detecting regions of high nitrogen density.

� back propagation technology was used to analyse the data.

� the pattern recognition module is implemented by a three-layer, fully connected, feedforward
BP neural network.

� the �rst layer receives a set of precomputed feature vectors from the detection system which
are normalized to grey scale values between �0:5 and +0:5

� the hidden layer learns to encode features that are not explicitly present in the input patterns.

� the output layer produces a grey scale value which can be thresholded to obtain a decision

{ +0:5 if the baggage contains a threat

{ �0:5 if it does not contain a threat.

� the number of connection weights is about the same as the number of parameters in standard
decision analysis.

� the data set was presented to the network about 2,000 times during training and relatively
low learning rates were used.

� to measure performance, the PD and PFA rates were measured on a test set.

� the ANS outperformed the discrimant analysis for false alarms rates greater than 1.75%.

� at 95% detection { the ANS can reduce the false alarm rate by 1.5% to 2% { substantially
fewer bags need to be scanned by secondary techniques.

� another advantage of the ANS is that it needs very little human supervision

{ the calibration of the discriminant analysis took several days of statistical analysis.

� the results took about 2 full days of unsupervised computer time on an IBM AT.

� a problem with the ANS model is that its peformance at low false alarm rates (less than
1.75%) is substantially lower than for the discriminant analysis

{ could be caused by the activiation (threshold) function used { the sigmoid function is
steep in the middle and therefore clustering occurs around the extremes (�0:5 and +0:5)

{ a smoother function may solve some of these problems.

� another problem is that the output does not contain a \sureness" for the decision { due to
the encoding of the threat values during training (no a priori information on how threatening
a bag should be).

� other results:

27



{ testing was done on raw detector data instead of precomputed features. This expanded
the net to 200 input PEs from 20 and took much longer to train. It also appeared that
two hidden layers were more appropriate for this data.

{ Counter Propagation was also tested { it is faster in reaching its saturation point (no
further improvement in performance) but this performance was not as good as for the
BP net.
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