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The Discrete Autocorrelator (DA)

Introduction

� a discrete autocorrelator (DA) is a single-layer, symmetric, non-linear, autoassociative,
nearest-neighbour pattern encoder that stores binary/bipolar spatial patterns

Ak = (ak1; : : : ; a
k
n); k = 1; 2; : : : ; m

using Hebbian learning.

� the DA learns o�ine, asynchronously updates its PEs, operates in discrete time.

� also called the Hop�eld Associative Memory or Hop�eld Net.

Encoding

First-Order Encoding

� the encoding equation is:

W =
mX
k=1

AT
kAk

where W is the n-by-n matrix of FA PE interconnections, or

wij =
mX
k=1

aki a
k
j

for all i and j = 1; 2; : : : ; n, where wij is the strength of the symmetric connection strength
(wij = wji) from the ith to the jth FA PE.

� in Hop�eld's net, there is the further restriction that the diagonal terms of W must be zero.

Higher-Order Encoding

� �rst-order connections correlate one PE's activation with another's.

{ can develop only linearly separable mappings.
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� second-order connections correlate a pair of PE activations with another's.

{ can capture nonlinear mappings.

{ second-order correlations are stored in an n-by-n-by-n matrix V using:

vhij =
mX
k=1

akha
k
i a

k
j

for all h; i and j = 1; 2; : : : ; n, where vhij is the strength of the symmetric connection
strength from the hth and ith FA PEs to the jth FA PE.

Recall

� the recall equation for the �rst-order DA is

ai(t+ 1) = f(
nX
j=1

wijaj(t))

where aj(t) is the activation of the jth PEs at time t and f() is the binary/bipolar step
threshold function

f(x) =

(
1 if x > 0
0 otherwise

� recall is a feedback operation that requires repeated application of the recall equation until all
FA PEs cease to change { i.e. the system is stable.

� the recall equation for the second-order DA is

aj(t+ 1) = f(
nX

h=1

nX
i=1

vhijah(t)ai(t))

Stability and Capacity

� it has been shown that the probability of perfect recall of all stored patterns is 1, provided the
memory capacity does not exceed a logarithmic function that decreases for increasing n.

limn!1Pn(m) = 1

provided the capacity does not exceed

m =
n

2 log n + log log n
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The Statistical Mechanics Approach

� some neural network models have a direct analogy with spin glass models of theoretical solid
state physics.

� this analogy allows study of the properties of neural networks:

1. storage capacity

{ calculation of the optimal storage capacity in the space of connection strengths

2. quality of retrieval

3. e�ects of noise

Spin Glasses

� magnetic materials which have a random orientational ordering (glass) of magnetic moments
(spins).

� the spin sites are randomly interconnected by positive and negative competing interactions.

� spin glass dynamics are governed by a phase space with a large number of attractors.

Neural Nets and Statistical Mechanics

� for symmetrical interactions, it can be shown that the system evolves towards the minimum
of an energy function.

� in the Hop�eld model, the free energy of the system can be expressed as a function of the
overlaps { the overlaps determine the closeness between the con�guration of the network and
the stored patterns during retrieval.

� the overlaps satisfy a set of self-consistency equations, from which statistical properties of the
network are easily derived.

The Hop�eld Net

� content addressable memory.

� aim: to recognize a partial or distorted input pattern, or code state vector, as being one of
its previously memorized state vectors and to output the perfect and complete memorized
version.

� a `one-shot' weight setting scheme rather like the outer product or Hebbian learning rule.

� has been shown that the synchronous deterministic net behaves similarly to the original asyn-
chronous stochastic network.
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� consists of a network of N nodes with each node connected to the other nodes through a
(synaptic) connection strength matrix Tij .

� the nodes are simple processing elements with two possible outputs 1 and 0.

� represent the gth pattern to be stored as a vector g
(s)
i of length N with components 1 and 0.

� let Vi 2 f0; 1g denote the state of the neuron i.

� typical dynamical rules in neural networks belong to a general class of rule of the form:

Vi(t+ 1) = sgn(
NX
j=1

TijVj(t))

where sgn(x) = 1 if x > 0 and sgn(x) = 0 if x < 0.

� the quantity:

�i =
NX
j=1

TijVj

corresponds to the biological membrane potential { the e�ect of the dynamical rule is to cause
alignment between this potential vector and the next state vector (i.e. Vi(t+ 1)�i(t) � 0).

� stable persisting states act as attractors { a stable long-term persisting pattern would satisfy:

Vi(t =1) = sgn(
NX
j=1

TijVj(t =1))

� if the nodes update asynchronously and the connection strengths are symmetric then only
�xed point attractors occur (in the absence of noise).

� the change in weight is given by

�Tij =

(
ViVj i 6= j

0 otherwise

� Hop�eld's procedure operates by installing the memory structures as minima of the energy
function:

E = �
1

2

X
i6=j

X
i6=j

TijViVj

� one installed, each memory can be accessed from partial information by an iterative retrieval
scheme which is a form of gradient descent in the energy function.

� an interesting property is that the contribution of a change in a unit, from 0 to 1 or vice-versa,
to the total energy can be computed locally for each unit.

� the units are updated randomly and asynchronously by computing a potential change in energy
(�E due to �Vi):

�E = ��Vi
X
j 6=i

TijVj
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Storage Capacity

� the Hop�eld model, with the Hebbian rule, is relatively ine�cient in terms of its storage
capacity.

� it will only store a maximum of about p = 0:145N uncorrelated patterns on an N -node
network.

� it has been shown that the optimal storage capacity for an N -node network is 2N for uncor-
related patterns and more if the patterns are correlated.

� the storage capacity is limited by the noise generated by random overlaps between patterns.

Neurobiological Shortcomings

1. all the nodes are fully connected

� in the cortex, a typical neuron is only connected to about O(104) of the O(1010) neurons
present.

2. the Hebbian rule leads to symmetric Tij connection strengthmatrices, so that node i inuences
node j in exactly the same way that j inuences i

� biological neurons are asymmetric pathways.

3. the learning rules are inadequate models of synaptic processes, since the matrix Tij is un-
bounded and can have arbitrarily large values

� only a restricted number of vesicles of neurotransmittermolecules are discharged at synap-
tic junctions, indicating that the synaptic e�cacy cannot have a broad spectrum of values.

Problems

1. the larger the number of FA PEs, the worse the storage capacity.

2. they only work e�ectively in conditions where the storage patterns are orthogonal to one
another

� Hop�eld's solution: use vectors of high dimension, but this gives the network a very
limited storage capacity of approximately 0:15 bits per weight.

3. if too many patterns are installed, there will be spurious minima in which the system can
get stuck { since the system can only descend in energy, it will never be able to get out of
unwanted minima.

� set the initial state of the system a shorter Hamming distance away from the desired
minimum than from any other minima. However, a means to ensure the correct starting
state was not provided.

4. the restriction to only binary patterns.
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Strengths

1. the ability to reconstruct entire patterns from partial or incomplete input { making it useful
in noisy environments

� well suited for applications that require the capability to remove noise from large binary
patterns.

2. stability under asynchronous updating { making it appealing for integrated circuit implemen-
tations.

3. fault-tolerance.

4. applications include pattern matching and classi�cation.

Circuit Realizations

� a research group at AT&T have developed a circuit modeled on the learning functions of the
Limax garden slug.

{ slugs have very large neurons that can be easily studied.

{ they have only 20; 000 neurons - few enough to be catalogued.

� a model has been built that incorporates some of the lessons learned from studying Limax,
both in the natural state and in computer simulations.

� the simpli�ed model uses four neurons to represent the slug's taste buds that are connected
to an autoassociative memory similar to the Hop�eld net.

� the memory grid make associations by coasting to an energy minimum { a stable state the
represents a solution to the problem that the slug faces.

� once a minimum has been reached, the circuit sends signals to the motor neurons { to ee or
to eat (that is the question).

Hop�eld's Chips

� the �rst standard problem tackled by Hop�eld and Tank at Bell Labs was an analog-to-
digital signal converter { demonstrated that a general method for emulating neurons can yield
solutions to a variety of standard problems.

� only inherent limit for this design method is the power dissipation cost exacted by the resistive
interconnections.
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The Discrete Autocorrelator Supplement

Key Contributions of Hop�eld's Work

� conceptualized the network in terms of energy.

� showed that this is isomorphic to an Ising model (spin glasses).

� showed that an energy function exists for this network.

� processing elements with bi-stable outputs are guaranteed to converge to a stable local energy
minimum

{ may consist of a stable oscillating series providing that each state has the same \energy"
as the previous one.

Global Stability

� equilibria and motions that are only slightly perturbed by negligible deviations are called
stable.

� globally stable ANSs are nonlinear dynamical systems that rapidly map all inputs to �xed
points where information can be deliberately stored

{ all inputs are guaranteed to map to a �xed point although this might not be the desired
�xed point.

Asynchronous Updating during Recall

� asynchronous updating is more \natural" than synchronous

{ no need for a clock.

� there are two di�erent ways to approach this type of updating:

1. at each time step, select at random a unit i to be updated, and apply the rule.

2. let each unit independently choose to update itself with some constant probability per
unit time.

� the �rst is appropriate for simulation and the second for autonomous hardware units.
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Length of the Recall Cycle

� must specify how long the network will be allowed to cycle before recovering the stored pattern.

� we can demand that the network settle into a stable con�guration.

� if a stable con�guration is not reached after a prespeci�ed length of time or number of intera-
tions, then the recall cycle can be terminated and the pattern recovered.

The Energy Function

� an important concept is to conceptualize the recall phase as an energy function

E = �
1

2

X
ij

wijaiaj

� if we think of the space of all possible states of the network as the con�guraion space

(represented by a \region" then the stored patterns can be thought of as attractors.

{ we can then imagine an energy landscape \above" this con�guration space.

� the central property of an energy function is that it is always decreasing (or remaining con-
stant) as the system evolves according to its dynamical rule.

� thus the attractors (memorized patterns) are at local minima of the energy surface.

� the term energy function comes from a physical analogy to magnetic systems.

� for neural networks, an energy function exists if the connection strengths are symmetric

wij = wji.

� Hebb's rule automatically yields symmetric wij's.

� Hop�eld's use of symmetric connections has been called a \clever step backwards from biolog-
ical realism."

� many �elds have a state function that is always decreasing during dynamical evolution or that
must be minimized to �nd a stable or optimum state

{ theory of dynamical systems: Lyapunov function

{ statistical mechanics: Hamiltonian function

{ optimization theory: cost or objective function

{ evolutionary biology: �tness function
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The Self-Organizing Map

Introduction

Brain Maps

� a detailed topological organization of the brain (cerebral cortex) can be deduced from func-
tional de�cits and behavioural impairments induced by various kinds of lesions, hemorrhages,
tumours or malfunctions.

� di�erent regions of the brain seem to be dedicated to speci�c tasks (localization of brain
function).

� the various cortices in the cell mass seem to contain many kinds of \maps", such that a
particular location of the neural response in the map often directly corresponds to a speci�c
modality and quality of sensory signal.

� examples of brain maps

1. primary visual cortex

(a) �eld of vision \quasiconformal" map

(b) line orientation map

(c) colour map

2. auditory cortex

(a) tonotopic maps

3. other sensory maps

(a) somatotopic map of the skin's surface

4. motor map

(a) almost topologically identical to the somatotopic map

5. higher level maps

{ usually unordered or kind of ultrametric topological order that is not easily inter-
preted.

{ also single cells that respond to rather complex patterns.

{ abstract qualities of sensory and other experiences
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� word processing { maps of categories and semantic values of words.

� possible conclusion: the internal representations of information in the brain are generally
organized spatially.

The Self-Organization Model

� Example Problem

{ learning to approximate a mapping for robotic control strategy based only on randomly
sampled inputs from a two-dimensional space.

� Example Scenerio

{ a robotic arm moving randomly in a 2-D plane.

{ arm is a line segment that can change its angle and length.

{ as the arm moves, its end e�ector is located to a random position in the x-y plane.

� The NN Model

{ a randomly selected coordinate pair form the arm's location sensor is fed as input to
the net { the connection that becomes the most active is considered the image of the
particular location.

{ this connection to a particular neuron de�nes the topological neighbourhood.

{ once the neighbourhood is de�ned, all the enclosed neurons change their connection
strengths by an amount proportional to their distance from the input.

{ after the robot arm has sampled a su�cient number of uniformly distributed coordinate
pairs, the net's connections become ordered according to their mutual similarity.

{ a particular neuron becomes sensitive to a particular connection that in turn becomes
more active in response to a particular randomly sampled coordinate, forming an image
of the 2-D space.

{ as more points are sampled, the lattice of lines begins to show the emergence of the
topology-conserving property of the connections.

{ it is possible now to plot coordinate pairs that are totally di�erent from any of the pairs
that were used in forming the map { they are generalized as a nearest-neighbour match.

{ self-organization lets systems adapt to unpredictable changes in their environment { the
net learns directly from its environment so that no extra constraints are required { allows
functionality independent of any knowledge of the physical parameters of a particular
system.

� Neural-Based Robotic Control

{ self-organization can enable control with inaccurately known mechanical structures or
even if the mechanical structure has changed from mechanical deformation from bending,
sliding or recoil.
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{ enables systems to make up for inaccuracies in mechanical structures and inaccurate
sensor readings as they naturally degrade.

{ if a neuron's excitation represents the rate of contraction of particular \muscle groups,"
then given the coordinates of a previously unseen position, the neurons' excitations de-
termine where in space the arm will end up { numerical stability is guaranteed.

{ in combination with optimization could be useful for robotic-control path minimization
and collision avoidance.

The Self-Organizing Map as a Neural Network Model

� a sheet-like arti�cial neural network, the cells become speci�cally tuned to various input signal
patterns or classes of patterns through an unsupervised learning process.

� the locations of the responses tend to become ordered as if some meaningful coordinate system
for di�erent input features was being created over the net.

� each cell or local cell group acts like a separate decoder for the same input.

� the spatial segmentation of di�erent responses and their organization into topologically related
subsets results in a high degree of e�ciency.

� appears to be a scalable NN paradigm although it also seems that practical applications favour
hierarchical systems made up of many smaller maps.

Competitive Learning

� assume a sequence of statistical samples of a vector x = x(t) 2 Rn, where t is time, and a set
of variable reference vectors fmi(t) :mi 2 Rn; i = 1; 2; : : : ; kg.

� assume that the mi(0) have been initialized.

� if x(t) can be simultaneously compared with eachmi(t) at each successive instant of time then
the best-matchingmi(t) is to be updated to match even more closely the current x(t).

{ using distance measure d(x;mi), altering mi must be such that d(x;mc) is decreased,
where mc is the best-matching reference vector, and all other mi are left intact.

Vector Quantization (VQ)

� produces an approximation to a continuous probability density function p(x) of the vectorial
input x using a �nite number of \codebook" vectors,mi.

� once the codebook is chosen, the approximation of x involves �nding the reference vector mc

closest to x.
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� one optimal placement of mi minimizes E, the expected r
th power of the reconstruction error:

E =
Z
jjx�mcjj

rp(x)dx

where the index c is a function of the input x

jjx�mcjj =MINifjjx�mijjg

� there is no closed-form solution { iterative approximation schemes must be used.

� the steepest-descent gradient-step optimization of E in the mc space yields the sequence:

mc(t+ 1) =mc(t) + �(t)[x(t)�mc(t)]

mi(t+ 1) =mi(t) for i 6= c

where �(t) is a suitable, monotonically decreasing sequence of scalar valued gain coe�cients,
0 � �(t) < 1.

� the mi(t) develop into a set of feature-sensitive detectors.

The Self-Organizing Map Algorithm

� there are two essential e�ects leading to spatially organized maps:

1. spatial concentration of the net activity on the cell (or its neighbourhood) that is best
tuned to the present input.

2. further sensitization or tuning of the best-matching cell and its topological neighbours to
the present input.

� Selection of the Best-Matching Cell

{ let x = [x1; x2; : : : ; xn]
T
2 Rn be the input vector that is connected in parallel to all the

neurons i in the net.

{ the weight vector of cell i is denoted by mi = [mi1; : : : ; min]
T
2 Rn.

{ measures for the match:

� inner product xTmi.

� Euclidean distances between x and mi.

{ Note: the de�nition of x is only possible if the interrelation between the signals is simple,

� e.g. in image analysis { preprocessing is needed to extract a set of invariant features
for the components of x.

� Adaptation of the Weight Vectors

{ important that the cells doing the learning are not a�ected independently of each other
but as topologically related subsets.
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{ weight vectors tend to attain values that are ordered along the axes of the network.

{ to enforce lateral interaction, a neighbourhood set Nc is de�ned around cell c { at each
learning step, all cells in Nc are updated; cells outside Nc are left intact.

{ the radius of Nc can be time-variable

� advantageous to let Nc be wide at the start and shrink monotonically with time.

� may even end with Nc = fcg or simple competitive learning.

{ the updating process

mi(t+ 1) =

(
mi(t) + �(t)[x(t)�mi(t)] if i 2 Nc(t)
mi(t) if i 3 Nc(t)

where �(t) is a scalar-valued adaptation gain, 0 < �(t) < 1. � should decrease with time.

General Comments on Map Algorithm

� in practical applications, the input and output weight vectors are usually of a high-dimension,
e.g. in speech recognition it may be 15 to 100.

� input x is usually a random variable with a density function p(x) from which successive values
x(t) are drawn, e.g. successive samples of input observables in their natural order of occurrence
in speech recognition.

� the process starts with arbitrary or random initial values for the mi(0) { restricted to being
di�erent.

General Conditions on Map Algorithm

1. since learning is a stochastic process, the �nal statistical accuracy of the mapping depends on
the number of steps, which must be reasonably large.

� at least 500 times the number of net units.

� the number of components in x has no e�ect { high dimensionality of input is allowed.

2. for approximately 1000 steps, �(t) should start with a value that is close to unity, thereafter
decreasing monotonically { the ordering of mi occurs during this initial period { remaining
steps are only needed for re�nement of the map.

� after ordering, �(t) should retain small values over a long period.

3. the choice of Nc is critical { if the neighbourhood is too small to start with, the map will not
be ordered globally { avoidable by starting with a fairly wide Nc = Nc(0) and letting it shrink
with time.
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Learning Vector Quantization

� if the self-organizing map is to be used as a pattern classi�er { problem becomes a decision
process.

� the original map, like any VQ method is mainly intended to approximate input signal values
or their probability density function by quantizing codebook vectors that are localized in the
input space to minimize a quantization error functional.

� if the signal sets are to be classi�ed into a �nite number of categories then several codebook
vectors are usually made to represent each class and their identity within the classes is no
longer important { only decisions made at boundaries count.

� it is possible to de�ne e�ective values for the codebook vectors such that they directly de-
�ne non-optimal decision borders between the classes, even in the sense of classical Bayesian
decision theory.

� recall closely coincides with that of the Bayes classi�er.

General Comments on LVQ

� introduced by Kohonen in 1981.

� autoassociative, nearest-neighbour classi�er.

� classi�es arbitrary analog spatial patterns Ak = (ak1; : : : ; a
k
n) where k = 1; 2; : : : ; m, into one

of p-many classes using an error-correction encoding procedure.

� learns o�ine and in discrete time.

� has a two-layer topology where n FA PEs correspond to Ak's components and p FB PEs each
represent a pattern class.

� because each FB PE represents a class, these PEs are often referred to as \grandmother" cells.

� the learning is unsupervised and the recall is feedforward.

� classi�es patterns by �nding the optimal set of reference vectors (a set of connection that abut
a FB PE) for a given training set.

� the reference vectors are stored in the weight matrix W .

� during operation, the FB PEs employ an invisible on-centre/o�-surround competition that is
used to choose the proper class for the presented input.

{ this includes lateral interactions.

{ self-exciting/neighbour-inhibiting connections.

� Topology
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{ fully-connected between FA and FB layers.

{ negative lateral connections for each FB PE to every other FB PE.

{ a positive recurrent connection from every FB PE to itself.

Encoding

Single Winner Unsupervised Learning

� automatically determines the p-best reference vectors needed to represent the space spanned
by a given set of data vectors.

� only allows one FB PE to be active during the encoding phase { only the connections that
abut the active FB PE are adjusted.

� Procedure

1. Initialize all the FA to FB connection strengths to some random value in the range [0; 1].

2. The connections that emanate from FA and abut the jth FB PE form the weight vector
Wj . For each pattern Ak do

(a) �nd the Wj closest to Ak

jjAk �Wgjj =MIN
p
j=1jjAk �Wj jj

where Wg is the Wj closest to Ak and the Euclidean distance between any two real-
valued n-dimensional vectors X and Y is de�ned as

jjX � Y jj = [
nX
i=1

(xi � yi)
2]

1

2

This is a competition amongst the FB PEs with the largest activation (closest refer-
ence vector to the data vector) remaining the winner.

(b) move Wg closer to Ak using

�wig = �(t)[aki � wig]

for all i = 1; 2; : : : ; n where �wig is the connection strength from the ith FA PE to
the gth FB PE and �(t) is the learning rate at time t de�ned as

�(t) = t�1

or

�(t) = :2[1�
t

10000
]

3. Repeat step 2 for t = 1; 2; : : : ; z where 500 � z � 10; 000.
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Multiple Winner Unsupervised Learning

� an extension allows more than one FB PE to be active during encoding, thus allowing connec-
tions to each active FB PE to be adjusted during training.

� introduce a set of FB PEs, Nc, of a predetermined size in the physical neighbourhood of the
winning FB PE, Wg.

� adjust Wg and all the connections that abut the PEs in the neighbourhood of bg.

� e.g. a set of three around winner Wg would be Ng = fWg�1;Wg;Wg+1g.

� often the FB PEs are arranged in a 2-D topology and the neighbourhood is a circle of prede-
termined radius around bg.

� replace �wig in the original procedure with

�wij =

(
�(t)[aki � wij ] if j 2 Ng

0 otherwise

Supervised Learning

� possible extension when the proper class for each Ak is known a priori.

� accelerates the learning and develops more accurate pattern classi�cations.

� supervision is by means of rewarding corrections for proper classi�cation and punishing cor-
rections for improper classi�cations.

� replace the �wig equation with

�wig =

(
+�(t)[aki � wig] if bg is the proper class
��(t)[aki � wig] if bg is not the proper class

where bg is the FB PE class chosen for Ak.

Recall

� determines the class, bg, that the input pattern A is most closely associated with.

� Wg is determined by �nding the closest Wj (Euclidean distance) to A.

� the FB PEs all compete and the largest FB PE activation prevails.

� at the end of the competition, the FB PE representing the proper class will have a value of 1,
all others will be 0.

bj =

(
1 if jjA�Wgjj =MIN

p
j=1jjA�Wj jj

0 otherwise
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Convergence

� determined by the learning parameter �(t) where �(t)! 0 as t!1.

� analysis of the self-organizing process { after encoding is complete, each Wj represents the
centroid of a decision region created in the n-dimensional space of data patterns.

Strengths

� ability to performnon-parametric pattern classi�cation and provide real-time nearest-neighbour
responses.

� ability to allocate reference vectors to the centroids of decision regions without any a priori
information concerning data distributions.

� well suited to applications that require data quantization, e.g. statistical analysis, codebook
communication, data compression, combinatorial optimization problems.

� one of the primary ANS paradigms because of its relative simplicity and its unsupervised
learning.

Limitations

� extensive o�ine encoding time.

� inability to add new classes without complete retraining.

Extensions and Studies

� Desieno (1988) allows a \conscience" mechanism in each FB PE that limits the number of
times that it can win { provides much better pattern classi�cation performance.

� Abutaleh (1988) has shown that the LVQ algorithm is a special case of an adaptive time-varying
�lter.

� Lutterell's (1988) extension allows the growth of the FB layer to properly perform cluster
decomposition problems.

� Kohonen (1988) has extended LVQ to develop more precise decision boundaries during self-
organization.

Semantic Map Example

� the deepest semantic elements of any language should be physiologically represented in the
neural realms.

� a NN for linguistic representations { di�cult to �nd a metric distance between symbolic items.
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{ the symbol during the learning process is presented in context.

{ similarity between items could be reected through similarity of the contexts.

� let vector xs represent the symbolic expression of an item.

� let vector xc represent its context.

� input vector x is a concatenation of xs and xc { the norm of the context part predominates over
that of the symbol part during the self-organizing process { the topological mapping mainly
reects the metric relationship of the sets of associated encodings.

� the symbols become encoded into a spatial order reecting their logical (or semantic) similar-
ities.

� use a simple language

{ vocabulary { nouns, verbs, adverbs.

{ a sequence of randomly generated meaningful 3-word sentences as input ! concatenated
into a single continuous string, S.

{ context { the word before and after { words from other sentences are uncorrelated and
act as random noise.

� code vectors of the predecessor/successor pair forming the context are concatenated into a
single 14-D code vector Xc.

� �rst consider each word in its average context { de�ned as the average over 10,000 sentences
of all code vectors of predecessor/successor pairs surrounding a particular word.

� results in 30 14-D \average word contexts" { assuming role of context �elds Xc which is
combined with Xs { the symbol.

� used rectangular lattice of 10 by 15 cells.

� after 2000 input presentations, the responses of the neurons to presentation of the symbol
parts alone were tested.

� symbolic label is written to the site which gave the maximum response.

� the contexts \channel" the word items to memory positions whose arrangement reects both
grammatical and semantic relationships.

Practical Applications of the Map

� statistical pattern recognition, especially recognition of speech.

� control of robot arms and other problems in robotics.

� control of industrial processes.
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� automatic synthesis of digital systems.

� adaptive devices for various telecommunications tasks.

� image compression.

� radar classi�cation of sea-ice.

� optimization problems.

� sentence understanding.

� application of expertise in conceptual domains.

� classi�cation of insect courtship songs.

The Di�erence between the Self-Organizing Map and other Neural

Network Paradigms

� most ANSs strongly emphasize distributed representations and only consider spatial organiza-
tion of the PEs as a secondary aspect.

� the intrinsic potential of the self-organizing map process for creating a localized, structured
arrangement of representations in the basic net module is emphasized.

� the massive interconnects that underlie all neural processes are certainly distributed but their
e�ects may be focused on local sites.

� any complex processing task requires organization of information into separate parts.
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The Self-Organizing Map Supplement

Self-Organizing Maps

� developed by Teuvo Kohonen between 1979 and 1982.

� creates a 2 dimensional feature map of the input data so that order is preserved.

� primary use is to visualize topologies and hierarchical structures of higher dimensional input
spaces

� can be used in hybrid networks as a front-end to a supervised network.

� thought to act similarly to biological system

{ preserves order

{ compacts the representation of sparse data

{ spreads out dense data throughout a 2-D region

� in human brain:

{ \the map of acoustic frequencies on the auditory cortex is perfectly ordered and almost
logarithmic with respect to frequency"

Algorithm to Produce a Self-Organizing Feature Map

Step 1. Initialize weights

� initialize weights from N inputs to the M output nodes to small random values

� set the initial radius of the neighbourhood

Step 2. Present new data

Step 3. Compute distances to all nodes

dj =
N�1X
i=0

(xi(t)� wij(t))
2
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Step 4. Select output node with minimum distance

� select node j� with minimum dj

Step 5. Update weights to node j� and neighbours

wij(t+ 1) = wij(t) + �(t)(xi(t)� wij(t))

for j 2 Nj�(t) 0 � i � N � 1 0 � �(t) � 1 where � decreases with time

Step 6. Repeat by going to Step 2 until �(t) = 0

The Plotting of Weight Vectors

� the following comments refer to the diagram of six subplots

� the weights for 100 output nodes are plotted in 6 subplots

{ 2 random independent inputs uniformly distributed over the region enclosed by the boxed
area

� line intersections specify weights for one output node

{ weights from input x0 are speci�ed by the position along the horizontal axis and weights
from input x1 are speci�ed by the position along the vertical axis

{ lines connect weight values for nodes that are topological nearest neighbours

{ weights start at time zero clustered at the centre of the plot

{ weights then gradually expand in an orderly fashion until their point density approximates
the uniform distribution of the input samples

� an orderly grid indicates that topologically close nodes code inputs that are physically
similar

A Conscience Mechanism

� one problem of a competitive algorithm is that one node can end up representing too much of
the input data { it \wins" too often

{ to solve this problem, a conscience mechanism was introduced by DeSieno in 1988

� a record is kept of how often each node wins and this is used during training to \bias"
the distance measure

� if a node has won more than 1
N
times where N is the number of output or \Kohonen"

nodes than its distance is adjusted upwards to decrease its chance of winning {
proportional to how much the average node has won
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� nodes that have won less than 1
N

times then have their distances decreased to make
winning more likely

{ the conscience mechanism helps nodes represent approximately equal information about
the input data

� sparse data is compacted

� high density input is spread out to allow �ne discrimination

� thought to mimic the knowledge representation of biological systems

Concluding Remarks

� SOMs are viable sequential vector quantizers when the number of clusters desired can be
speci�ed before use and the amount of training data is relatively large compared to the number
of clusters desired

{ similar to K-means clustering

{ results may depend on the presentation order of the input data for small amounts of
training data

And Now for a Little Statistics and Probability...

Abduction

� Abduction is the generation of explanations for what we see around us.

� It could be thought of as having the following form:

(if a b)
b

a

� Example:

(if (drunk ?person)(not (walk-straight ?person)))
(not (walk-straight Jack))

(drunk Jack)

� Abduction is only plausible inference.

Abduction and Causation

� Not all inferences of the form \(if a b) and b, therefore a" can be thought of as generating an
explanation.

� Example:
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(if (in ?patient ward5)(have ?patient cancer))
(have Eliza cancer)

(in Eliza ward5)

� Most notions of explanation have a lot to do with causality.

� Causality and logical implication are not the same notions.

� General Form:

(cause ?x ?y) ; ?x causes ?y

?y ; and ?y is true

?x ; so hypothesize ?x as explanation

Abduction and Evidence

� Abduction requires that we �nd pertinent facts and apply them to infer a new fact.

� We can get more than one answer in abductive reasoning.

� There is no foolproof way to decide between alternatives.

� The best we can do is to �nd one hypothesis more likely, or probable.

� We must know

1. how strongly a fact weighs for or against a conclusion, and

2. how to combine pieces of evidence into a �nal conclusion.

� Statistics and probability theory o�er well-understood ways of doing this.

Basic De�nitions

� Consider a problem of medical diagnosis - a typical abduction problem.

� One approach - of all the people in the world who have, or had, the exact same symptoms as
this patient, what did they su�er from?

� Consider a case about which one fact is known: the patient's skin is too yellow.

� Conditional probability: what is the likelihood of the patient su�ering from a particular
disease given this symptom.

� It is written:
P (disease j symptom)

� and read as:
the probability of disease given symptom
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� Example: if 19% of all people who have overly yellow skin have damage to the liver from
overconsumption of alcohol:

P (pickled� liver j yellow� skin) = 0:19

� Unconditional probability is the probability of the disease before any symptoms have been
seen.

� It is written:
P (disease)

� Unconditional probabilities are also called prior probabilities because they are the proba-
bility of something prior to any evidence.

Back to Conditional Probability

P (pickled liver) =
j Pickled� Liver j

j People j

P (p0ed liver j yellow skin) =
j Pickled� Liver \ Y ellow� Skin j

j Y ellow� Skin j

P (yellow skin j p0ed liver) =
j Y ellow� Skin\ Pickled� Liver j

j Pickled� Liver j

In general, the patient has n symptoms, so for each disease di we want to know:

P (di j s1&s2& : : :&sn) =
j d \ s1 \ s2 : : :\ sn j

j s1 \ s2 : : :\ sn j

Probabilities

� some information will be of the negative sort, e.g. the patient does not have yellow skin.

P (not s) = 1� P (s)

P (not s j d) = 1� P (s j d)

� we can represent conditional probabilities as facts about causal relations, e.g.

(cause (condition-of (liver-of ?patient) pickled)
(colour-of (skin-of ?patient) yellow))

� we could then add extra arguments indicating the statistical relations between the two:

(cause (condition-of (liver-of ?patient) pickled) disease

(colour-of (skin-of ?patient) yellow) symptom

.50 P (s j d)

.01) P (d j s)

25



Baye's Theorem

� we cannot directly use the de�nition for the conditional probability of pickled liver given yellow
skin because we never know

\...of the i people with yellow skin, j had pickled liver"

� but we do know

\...how many patients with a given disease show a particular symptom"

� example:

P (puffy eyelids j pickled liver) � 1%

P (yellow skin j pickled liver) � 90%

� Baye's theorem is a way to calculate conditional probabilities.

P (d j s) =
P (d)P (s j d)

P (s)

jd \ sj

jsj
=

jdj

jPEOPLEj
�

js\dj
jdj

jsj
jPEOPLEj

� the numbers on the RHS are easily available (compared to those on the LHS).

Single Disease / Single Symptom

� for the simple case of the conditional probabilities for a single disease given a single symptom

{ if we have m diseases and n symptoms then we need n�m numbers:

(mn conditional probabilities) + (m disease probabilities)+

(n symptom probabilities) = mn+m+ n � mn

� not necessary to �nd all numbers - some diseases and symptoms are not related and therefore
their conditional probabilities are close to zero.

Multiple Symptoms

� Baye's theorem for two symptoms:

P (d j si&sj) =
P (d)P (si&sj j d)

P (si&sj)

� for every pair of symptoms we need P (si&sj j d) and P (si&sj)

� the number of such pairs is n� (n� 1) � n2
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The Assumption of Statistical Independence

� the statistical independence of two symptoms means that the probability of seeing one given
the other is exactly the same as the general probability of seeing the �rst,

P (si j sj) = P (si)

� given the statistical independence of two symptoms, one of the numbers can be computed
using

P (si&sj) = P (si)P (sj)

� saying that a disease is \unrelated" to a symptom is really an informal way of saying that the
disease is statistically independent of the symptom

P (dm j sj) = P (dm)

that is, the probability of seeing the disease after seeing the symptom is exactly the same as
before we saw it - the prior probability of the disease.

Another Assumption

� two symptoms are not only independent among people at large but also in the subset of people
su�ering from disease d

P (si j sj&d) = P (si j d)

! P (si&sj j d) = P (si j d)P (sj j d)

� by using the two independence assumptions in Baye's theorem:

P (d j si&sj) =
P (d)P (si j d)P (sj j d)

P (si)P (sj)

� the numbers that this requires are exactly the same as in the case of only one symptom

� based on strong assumptions that our symptoms are really measuring di�erent things, we
eliminate the need for large amounts of statistical information

P (d j si&sj)
= P (d)

h
P (sijd)
P (si)

i h
P (sjjd)

P (sj)

i
= P (d)I(d j si)I(d j sj)

where I(d j s) =
P (s j d)

P (s)
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Discrete Bidirectional Associative

Memory

� BAMs represent the logical extension of autocorrelators to heterocorrelators.

� with heterocorrelators, feedback between layers stabilizes and at the point of stability is a
stored pattern.

� this idea was introduced in 1986 (So�er, Marom, Owechko, and Dunning) for use in an optical
resonating associative memory.

� in 1988, Kosko re�ned �rst-order heterocorrelators and called them bidirectional associative
memories (BAMs).

� the BAM is a two-layer, heteroassociative, nearest-neighbour pattern matcher.

� it encodes arbitrary binary/bipolar spatial pattern pairs (Ak; Bk) using Hebbian learning,
where the kth pattern pair is represented by the vectorsAk = (ak1; : : : ; a

k
n) andBk = (bk1; : : : ; b

k
p).

� the BAM has the ability to learn online and operates in discrete time.

� BAM is similar to the ART1 system.

Encoding

� encoding is performed by summing together the outer products of the m pattern pairs using
the equation

W =
mX
k=1

AT
kBk

or

wij =
mX
k=1

aki b
k
j

where wij is the connection strength from the ith FA to the jth FB PE.
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Recall

� BAM recall employs inter-layer feedback between FA and FB PEs.

� given an initial pattern or two incomplete pattern pairs, the BAM immediately reaches a
resonant state where the �nal pattern pairs are found.

� when BAM updates are synchronous then all the PEs from one layer are activated simultane-
ously.

� when BAM updates are asynchronous then less than all the PEs in one layer are activated at
any given time.

The Recall Operation

1. Present a pattern to FA or FB or partials to both.

2. Feed the FA activations asynchronously (or synchronously) through W to FB .

3. Calculate the FB activations.

4. Feed back the FB activations asynchronously (or synchronously) through WT to FA.

5. Calculate the FA activations.

6. Repeat steps 3 to 6 until all FA and FB activations cease to change. This is the state of
equilibrium called resonation.

� the FB activations are calculated by

bj(t+ 1) =

8><
>:

1 if yj > 0
bj(t) if yj = 0
�1 if yj < 0

where bj(t + 1) is the activation of the jth FB PE at time t + 1 and yj is the jth FB PE's
pre-activation value found by

yj =
nX
i=1

ai(t)wij

where ai(t) is the activation of the i
th FA PE at time t.

� the FA activations are calculated by

ai(t+ 1) =

8><
>:

1 if xi > 0
ai(t) if xi = 0
�1 if xi < 0
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where xi is the i
th FA PE's pre-activation value found by

xi =
pX

j=1

bj(t)wji

where wji is the connection strength from the jth FB to the ith FA PE.

Stability

� Kosko proved BAM stability using a discrete-time Lyapunov energy function similar to the
Hop�eld net's.

�

L(A;B) = �

nX
i=1

pX
j=1

aibjwij

�LA(A;B) = �

nX
i=1

�ai

pX
j=1

bjwij

�LB(A;B) = �

pX
j=1

�bj

nX
i=1

aiwij

� since all possible non-zero PE activation changes lead to a decrease in energy and all zero PE
activation changes result in equilibrium, the BAM is globally stable.

� since the weight matrix, W , has no e�ect on the stability analysis, all W are bidirectionally
stable.

In Conclusion

BAM Strengths

� unconditional stability.

� instructive simplicity.

� ability to add new pattern pairs quickly.

BAM Limitations

� inability to encode a large number of pattern pairs

{ the BAM's capacity is

m =
q

4 log q

where q =min(n; p).

� restriction to binary/bipolar valued pattern pairs.
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Applications

� the BAM is best applied in situations that require nearest-neighbour pattern matching of only
a few patterns.

� like the Hop�eld Net, the BAM is extremely amenable to optical implementations because of
its simple dynamics.

31



Bidirectional Associative Memory

Supplement

Feedback Networks

� suppose n neurons in �eld FX connect to p neurons in �eld FY

� a connection matrix M summarizes the synapses between the FX and FY neurons

{ a n� by � p matrix of real numbers, mij

{ describes the forward projections from FX to FY

� the p� by � n matrix N describes the backward projections from FY to FX

� if M = NT and N = MT , this de�nes the minimal two-layer feedback network or bidirec-
tional network

� when the activation dynamics of FX and FY lead to overall stable behaviour! bidirectional

associative memory or BAM

� the simplest type of BAM network:

{ additive

{ two-valued

{ nonadaptive

� a good example of a feedback nonlinear neural network

De�nition

xk+1i =
pX
j

Sj(y
k
j )mij + Ii

yk+1j =
nX
i

Si(x
k
i )mij + Jj
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� where M is an arbitrary but constant synaptic connection matrix using discrete time steps k
and signal functions Si and Sj which represent binary or bipolar threshold functions

Threshold Functions

Si(x
k
i =

8><
>:

1 if xki > Ui

Si(x
k�1
i ) if xki = Ui

0 if xki < Ui

Sj(y
k
j ) =

8><
>:

1 if ykj > Vj

Sj(y
k�1
j ) if ykj = Vj

0 if ykj < Vj

� for arbitrary real valued thresholds U = (U1; : : : ; Un) for FX neurons and V = (V1; : : : ; Vp) for
FY

� the stay-the-same value occurs infrequently in large nets

� the bivalent signal functions allow the modelling of complex asynchronous state-change pat-
terns

� each neuron may randomly decide whether to check the threshold conditions

� this randomness may be described with slowly varying means and variances of state-change
frequency

{ the network behaves as a vector stochastic process

{ each neuron behaves as a scalar stochastic process

� state changes may be made synchronously { an entire �eld at a time

� the other extreme is simple asynchrony { only one neuron makes a state change decision at
a time

� in general, subset asynchronous state changes are used

An Example

� the BAM model can be illustrated with any real valued matrix

� the BAM network converges to �xed points for everymatrix with arbitrary subset asynchronous
state-change policies

� example:

{ start with a BAM with 4 neurons in FX and 3 neurons in FY
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{ assume that information is already encoded in the matrix M

M =

0
BBB@
�3 0 2
1 �2 0
0 3 2

�2 1 �1

1
CCCA

MT =

0
B@ �3 1 0 2

0 �2 3 1
2 0 2 �1

1
CA

� at time k, all FY neurons are ON; S(Yk) = (1 1 1)

� suppose Xk at FX is (5 � 2 3 1)

� for simplicity, all thresholds are zero; Ui = Vj = 0 for all i; j

� using synchronous state-changes! at k+1, FX neurons produce a binary signal state vector
S(Xk) which results in S(Xk) = (1 0 1 1)

� at k+1, these FX signals pass \forward" throughM to a�ect the activations of the FY neurons

� the 3 FY neurons compute 3 dot products or correlations! S(Xk)M = (�5 4 3) = Yk+1

� computing the new signal state vector gives S(Yk+1) = (0 1 1)

� observations:

{ the �rst FY neuron has changed states from ON to OFF

{ an asynchronous state-change policy may not produce this state change

� the signal state vector S(Yk+1) now passes \backwards" through the synaptic �lter MT at
time k + 2 to yield S(Yk+1)MT = (2 � 2 5 0) = Xk+2

� thresholding FX at k+2 reveals a BAM �xed point equilibrium S(Xk+2) = (1 0 1 1) = S(Xk)

� since S(Xk+2) = S(Xk), passing S(Xk+2) through M will produce S(Yk+1) at FY at time
k + 3

� passing S(Yk+3) = S(Yk+1) backwards through MT will produce S(Xk+2) again at FX {
bidirectional equilibrium

� asynchronous state changes may lead to di�erent bidirectional equilibria

� the system is guaranteed to reach an equilibrium

� all BAM state changes lead to �xed point stability

{ synchronous

{ asynchronous
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Lyapunov Minimia

� BAM dynamical networks perform O(1) search for stored patterns ! depends on how infor-
mation is encoded in M

� correlation encoding techniques tend to store information at local \energy" or Lyapunov min-
imia

� the time it takes to descend into an attractor basin does not depend on the number of
basins/stored patterns

� this dimension-independent property holds for all globally stable neural networks

� familiar patterns produce \deep" attractor basins

� classi�cation accuracy may change with time { overcrowding may degrade classi�cation accu-
racy { similar learned patterns may have overlapping basins and spurious basins may occur

� order-one search provides a central advantage of dynamical systems computation relative to
digital computation

{ with computers, search time increases as the number of memory items increases

BAM Connection Matrices

� any method of learning can produce M and MT

� the most popular method is the bipolar Hebbian or outer-product learning method

{ sum of weighted correlation matrices

� can use binary or bipolar vectors and the Boolean sum can replace the arithmetic sum

� take m pairs of binary vectors (Ai; Bi) or bipolar vectors (Xi; Yi)

� the bipolar outer-product law sums the individual n�by�p bipolar correlation matricesXT
k Yk

M =
mX
k

XT
k Yk

� we could also assign real valued weights wk to the association (Ak; Bk) and then use the
weighted outer-product law

M =
mX
k

wkX
T
k Yk

� we could also arrange the weights to produce a recency or fading-memory e�ect { give more
weight to more recent associations
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{ simple recency e�ect: w1 < w2 < : : : < wm

{ exponential fading memory: wk = cm�k where 0 < c < 1

� an appropriately weighted fading memory network yields a \moving window" nonlinear �lter
for an arbitrary sequence of training pairs

� on average, bipolar signal state vectors produce more accurate recall than binary signal state
vectors when bipolar outer-product encoding is used

� example: FX has 6 neurons and FY has 4 neurons

� training pairs or associations

{ X1 = (1 � 1 1 � 1 1 � 1) Y1 = (1 1 � 1 � 1)

{ X2 = (1 1 1 � 1 � 1 � 1) Y2 = (1 � 1 1 � 1)

� BAM memory matrix M is constructed by adding the bipolar correlation matrices XT
1 Y1 and

XT
2 Y2

XT
1 Y1 =

0
BBBBBBB@

1
�1
1

�1
1

�1

1
CCCCCCCA
�
1 1 �1 1

�
=

0
BBBBBBB@

1 1 �1 �1
�1 �1 1 1
1 1 �1 �1

�1 �1 1 1
1 1 �1 �1

�1 �1 1 1

1
CCCCCCCA

XT
2 Y2 =

0
BBBBBBB@

1
1
1

�1
�1
�1

1
CCCCCCCA
�
1 �1 1 �1

�
=

0
BBBBBBB@

1 �1 1 �1
1 �1 1 �1
1 �1 1 �1

�1 1 �1 1
�1 1 �1 1
�1 1 �1 1

1
CCCCCCCA

M = XT
1 Y1 +XT

2 Y2 =

0
BBBBBBB@

2 0 0 2
0 �2 2 0
2 0 0 �2

�2 0 0 2
0 2 �2 0

�2 0 0 2

1
CCCCCCCA

� assume all thresholds and inputs are zero and all update policies are synchronous
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� present X1 as input to the system { the current signal state vector at FX

X1M = (8 4 � 4 � 8)! (1 1 � 1 � 1) = Y1

Y1M
T = (4 � 4 4 � 4 4 � 4)! (1 � 1 1 � 1 1 � 1) = X1

� so (X1; Y1) is a �xed point of the BAM dynamical system

� similarly
X2M = (8 � 4 4 � 8)! (1 � 1 1 � 1) = Y2

Y2M
T = (4 4 4 � 4 � 4 � 4)! (1 1 1 � 1 � 1 � 1) = X2

� for a 1-bit \noisy" input X = (�1 1 1 � 1 � 1 � 1)

XM = (4 � 4 4 � 4)! (1 � 1 1 � 1) = Y2

Y2M
T = (4 4 4 � 4 � 4 � 4)! (1 1 1 � 1 � 1 � 1) = X2

� for a still \noisier" input X = (�1 � 1 � 1 1 1 � 1)

XM = (�4 4 � 4 4)! (�1 1 � 1 1) = �Y2 = Y c
2

Y c
2M

T = (�4 � 4 � 4 4 4 4)! (�1 � 1 � 1 1 1 1) = Xc
2

� this establishes the complement pair (Xc
2; Y

c
2 ) as another �xed point { a spurious attractor

{ for simple Hebbian correlation encoding, spurious attractors tend to increase in frequency
as the network dimensionality increases

� BAMs work because the system dynamics guide the local behaviour to a global reconstruction
(recollection) of a stored pattern

� the equilibrating system self-organizes its internal parameters in response to sampled stimuli

Capacity

� as we sum correlation matrices in a binary Boolean outer-product matrix, mij = 1 becomes
more frequent until adding more associations does not signi�cantly change the matrix { some
patterns are \forgotten"

� the network tends to exceed its memory capacity (the number of distinct patterns that can
be learned and recalled) as the number m of patterns approaches the number min(n; p) of
neurons in the network

� dimensionality limits capacity

� Grossberg's Sparse Coding Theorem (1976)
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{ for deterministic encoding, pattern dimensionality must exceed pattern number to prevent
learning some patterns at the expense of others

� for Boolean encoding of binary associations, memory capacity can greatly exceed min(n; p) of
the thresholds Ui and Vj are chosen carefully ! new upper bound is min(2n; 2p)

{ heuristics and exhaustive search have been used to determine high capacity sets of thresh-
olds
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The Boltzmann Machine

Introduction

� the Boltzmann Machine is an example of a supervised learning network.

� it is one of the few algorithms which have extended the single layer perceptron learning algo-
rithm to multiple layers.

� it is a simple extension of the Hop�eld model.

� BM is a heteroassociative, nearest-neighbour pattern matcher that stores arbitrary binary
spatial patterns using a combination of Hebbian encoding and simulated annealing.

� type of parallel constraint network that is capable of learning the underlying constraints that
characterize a domain simply by being shown examples from the domain.

� the network modi�es the strength of its connections so as to construct an internal generative
model that produces examples with the same probability distribution as the examples it is
shown.

� shown any particular example, the network can interpret it by �nding values of variables in
the internal model that would generate the example.

� when shown a partial example, the network can complete it by �nding internal variable values
that generate the partial example and using them to generate the remainder.

� BM is a parallel computational organization that is well suited to constraint satisfaction tasks
involving large numbers of \weak" constraints.

� \strong" constraintsmust be satis�ed by any solution { \weak" constraints incur a cost when
violated { the quality of a solution is then determined by the total cost of all the constraints
that it violates.

� the BM is composed of

1. primitive computing elements called units,

2. bidirectional links connecting the units.
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� a unit is alwaysON or OFF based on a probabilistic function of the states of its neighbouring
units and the weights on its links to them.

� a unit being ON means that the system currently accepts some elemental hypothesis about
the domain.

� the weight on the link represents a weak pairwise constraint between two hypotheses. A
positive weight indicates that the two hypotheses tend to support one another.

� link weights are symmetric.

� each global state of the network can be assigned a single number called the energy of that
state.

� the individual units can be made to act so as to minimize the global energy.

� if some of the units are externally forced or clamped into particular states to represent input,
the systemwill then �nd the minimum energy con�guration that is compatible with that input.

{ i.e. the energy of a con�guration can be interpreted as the extent to which the combination
of hypotheses violates the constraints implicit in the problem domain, so in minimizing
energy the system increasingly satis�es the constraints.

� the energy of a global con�guration is de�ned as

E = �
X
i<j

wijsisj +
X
i

�isi

where wij is the connection weight between i and j, si is 1 if unit i is on, and �i is a threshold.

� a simple algorithm for �nding a combination of truth values that is a local minimum is to
switch each hypothesis into whichever of its two states yields the lower total energy given the
current state of the other hypotheses.

� if the units act asynchronously and if transmission times are negligible, then the system
always settles into a local energy minimum.

� because the connections are symmetric, the di�erence in global energy with the kth unit ON
and the energy with it OFF can be determined locally by the kth unit and this energy \gap"
is

�Ek =
X
i

wkisi � �k

Escaping Local Minima

� a weakness of gradient descent methods { it gets stuck in local minima that are not globally
optimal.

� this is not a problem in Hop�eld nets { the local energy minima are used to store \items".
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� but for constraint satisfaction tasks, the system must try to escape from local minima in order
to �nd the con�guration that is the global minimum given the current input.

� a simple way to escape is to occasionally allow jumps to con�gurations of higher energy.

� an algorithm with this property is the Metropolis algorithm.

� the decision rule is the same as that for a particle which has two energy states.

� the system will reach thermal equilibrium and the relative probability of two global states
will obey the Boltzmann distribution.

� this resembles the input-output function for a cortical neuron.

The Metropolis Algorithm

� Given that the energy of a global con�guration is

E = �
X
i>j

wijsisj +
X
i

�isi

� If the energy gap is
�Ek =

X
i

wkisi � �k

� Then regardless of the previous state, set sk = 1 with probability

pk =
1

(1 + e��Ek=T )

where T is a parameter that acts like temperature.

� a network of units obeying this decision rule will eventually reach \thermal equilibrium" and
the relative probability of two global states will follow the Boltzmann distribution:

P�

P�
= e�(E��E�)=T

where P� is the probability of being in the �th global state and E� is the energy of that state

� at low temperatures there is a strong bias in favour of states with low energy, but the time to
reach equilibrium may be long.

� at higher temperatures the bias is not so favourable but equilibrium is reached faster.
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What's so special about Boltzmann distributions?

1. they work well for doing constraint satisfaction searches.

2. they can be implemented very naturally in a parallel network.

3. they allow powerful general purpose learning rules (e.g. maximum likelihood estimation).

4. they are exactly what is required for \direct" Bayesianmodels in complex networks (i.e. models
in which units stand for hypotheses and the probability of �nding the unit on is the probability
that the hypothesis is correct).

Simulated Annealing

� a good way to beat this trade-o� is to start at a high temperature and gradually reduce it.

� this corresponds to annealing a physical system.

� this technique has proven useful when trying to satisfy multiple weak constraints.

� it will fail in cases where the best solution corresponds to a minimum that is deep, narrow and
isolated.

The Learning Algorithm

� the Boltzmann Machine formulation leads to a domain-independent learning algorithm that
modi�es the connection strengths between units in such a way that the whole network develops
an internal model which captures the underlying structure of the environment.

� the algorithm used for changing a weight depends on collecting statistics about the behaviour
of the two units that the weight connects.

� to be capable of interesting computations, a network must contain non-linear elements that
are not directly constrained by the input, and when such a network does the wrong thing it
appears to be impossible to decide which of the many connection strengths is at fault { this is
known as the credit-assignment problem.

� this problem can be solved within the BM formulation.

� by using the right stochastic decision rule and by running the net until \thermal equilibrium"
at some �nite temperature, a mathematically simple relationship between the probability of a
global state and its energy is achieved.

� if the environment directly speci�es the required probabilities P� for each global state �, there
is a straightforward way of converging on a set of weights that achieve those probabilities,
provided such a set exists.

� this is not too interesting since it requires the probabilities of complete global states { the
internal representation has already been decided by the environment.
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� the interesting problem is to model the underlying structure of an environment.

Modelling the Environment

� units are divided into two functional groups

1. a non-empty set of visible units,

2. a possibly empty set of hidden units.

� visible units are the interface between the network and the environment (i.e. can be clamped).

� hidden units can never be clamped. They can be used to explain underlying constraints which
cannot be represented by pairwise constraints.

� the structure of an environment can then be speci�ed by giving the probability distribution
over all 2v states of the v visible units.

� it will be impossible to achieve a perfect model even if the network is totally connected.

� however, if the network uses the hidden units to capture regularities in the environment, it
may achieve a good match to environmental probabilities.

� an information-theoretic measure of the discrepancy between the network's internal model and
the environment is

G =
X
�

P (V�)ln
P (V�)

P 0(V�)

where P (V�) is the probability of the �th state of the visible units as determined by the
environment and P 0(V�) is the corresponding probability when the network is running freely
with no input.

� the G metric is called the information gain and is zero if and only if the distributions are
identical, otherwise it is positive.

� to minimize G, it is therefore su�cient to observe pij and p
0
ij when the network is at thermal

equilibrium and to change the weight by an amount proportional to the di�erence between
these two probabilities:

�wij = �(pijp
0
ij)

where � scales the size of each weight change.

� this rule uses only locally available information.

� once G has been miminized the network will have captured the regularities in the environment,
and these regularities will be enforced when performing completion.
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Controlling the Learning

� there are a number of free parameters and possible variations in the learning algorithm:

1. the size of � which determines the size of each step taken for gradient descent

2. the lengths of time over which pij and p0ij are estimated

which have a signi�cant impact on the learning process.

The BM Learning Procedure

� Phase+

{ For the entire set of I/O pairs:

1. clamp both the input vector and the output vector.

2. let the hidden units reach thermal equilibrium (at T = 1).

3. once the system is close to equilibrium, keep it running for a few more cycles, during
which a record is kept of how often two connected units are on at the same time (for
all connections).

4. p+ is the fraction of time during the positive phase in which the two connected units
are on at the same time at thermal equilibrium.

� Phase�

{ For the entire set of I/O pairs:

1. clamp the input units, but leave the hidden and output units free.

2. let the network reach thermal equilibrium.

3. once the system is close to equilibrium, keep it running for a few more cycles, during
which a record is kept of how often two connected units are on at the same time (for
all connections).

4. p� is the fraction of time during the negative phase in which the two connected units
are on at the same time at thermal equilibrium.

� if the network produces a distribution in phase� that matches the distribution of output
vectors clamped on it in phase+, then the network is producing all the right answers.

� if p+ and p� di�er for a given connection, the two probability distributions can be made to
match better by changing that connection's weight.

� steepest descent is performed in this di�erence measure by changing the weight by an amount
proportional to p+ � p�.

44



A Problem

� if the environment speci�es only a small subset of possible patterns, then the only way to
guarantee that certain con�gurations never occur is to give them in�nitely high energy (i.e.
in�nitely high weights).

� the solution is to occasionally provide noisy input vectors.

� if the noise is small, the correct vectors will dominate the statistics, but every vector will have
some chance of occurring and so in�nite energies will not be needed.

Another Problem

� there is nothing in the learning algorithm to prevent it from creating an energy landscape that
contains large energy barriers which prevent the network from reaching equilibrium.

� if this happens, the network may perform badly and the statistics that are collected will not
be equilibrium statistics so there is no guarantee that the changes in the weights will improve
G.

� to keep all the weights small, rede�ne the quantity to be minimized as:

G+ h
X
ij

(wij)
2

where h is a coe�cient that determines the relative importance of minimizing G and keeping
the weights small.

� the e�ect of the extra term is to make all the weights decay towards zero by an amount pro-
portional to their current magnitude { this ensures that large weights which are not important
for achieving a low value of G tend to shrink.

The Speed of Learning

� even in a truly parallel machine, the learning would be slow because the gradient descent
requires a great many annealings with di�erent input vectors.

� this raises several issues:

1. how does the learning time scale with the size of the problem?

2. can the learning algorithm be generalized to exhibit \one-shot" learning?

3. how much faster is the learning when the network is approximately correct for the task?

4. do good solutions generally have a particular statistical structure?
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How the Learning Time Scales

� the problem of scale is very complex because many factors have to be scaled at the same time
and it is not obvious how they should be scaled.

� factors include:

1. the ratio of hidden to visible units.

2. the number of connections per unit.

3. the number of constraints in which each visible unit is involved.

4. the order of the underlying constraints.

5. the compatibility of the constraints.

The XOR Example

� suppose an environment consisted of the following equiprobable vectors:

f< 0; 0; 0>;< 0; 1; 1>;< 1; 0; 1>;< 1; 1; 0>g

� rules that characterize the set:

1. the third element is the exclusive-OR of the �rst two.

2. the second element is the exclusive-OR of the �rst and third.

3. the set of all triples of bits with even parity.

� the state of any one element, by itself, provides no information about whether another element
should be one or zero.

� a single-level decision unit is unable to capture the distinquishing feature of all character-
izations of this solution set: the state of two of the units, taken together, determines the
third.

� Perceptrons are unable to compute the exclusive-OR function.

� a BM with only three interconnected units is unable to represent this solution set.

� but, decompose the solution set into:

S1 = f< 0; 0; 0>;< 0; 1; 1>;< 1; 0; 1>g S2 = f< 1; 1; 0>g

� S1 can be represented by linking the �rst and second units to the third with positive weights
and providing the third unit with a negative bias so that in the absence of input from either
of the other units, the third unit will tend to be o�.

� the network will now correctly �nd the elements of S1 but fails on S2, preferring < 1; 1; 1 >
over the correct state.
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� by adding a hidden unit, this preference can be overridden.

� the hidden unit is given positive weights to the �rst two units, a negative weight to the third
unit and a bias low enough that both of the �rst two units must be on for the hidden unit to
be likely to come on.

� the magnitudes of the weights are chosen so that the negative weight between the hidden unit
and the third unit overrides the positive weights between the third unit and the �rst two.

� the XOR example is a very simple illustration of a very hard general problem that a learning
system must face: the task of discovering and representing the higher-order regularities of the
solution set.

� hidden units are not directly constrained by the instances in a solution set and thus are
available for reducing these higher-order constraints.

Distributed Representations

� an entity is represented by a pattern of activity distributed over many computing elements
and each computing element is involved in representing many di�erent entities.

� the knowledge is di�use { this is good for fault tolerance, but it appears to make the design
of modules to perform speci�c functions much harder.

� in a Boltzmann Machine, it corresponds to an energy minimum { the problem of creating a
good collection of distributed representations is equivalent to the problem of creating a good
\energy landscape".

� the Boltzmann Machine is unable to produce sequential behaviour - it can only respond to
environmental changes (due to symmetry).

� a system could be composed of a number of internally symmetric modules that are asymmet-
rically connected to one another.

� each module could perform constraint-satisfaction searches, with the asymmetric inputs acting
as boundary conditions that determine the particular problem it has to solve at any moment.

� it might be appropriate to use very di�erent kinds of description at di�erent time-scales.

� in the short term, the modules would perform parallel iterative constraint-satisfaction searches.

� in the longer term, the result of each search could be viewed as a single step in a strictly serial
process, with each search setting up the boundary conditions for the next.

� this corresponds to the idea of a production system architecture in which all the heavy com-
putational work is done by a parallel recognition process that decides which rule best �ts
the current state of working memory.
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The Boltzmann Machine as a Neural Model

� one of the main reasons for studying Boltzmann Machines is that they bear some resemblances
to the human brain.

� neurons are complex biochemical entities and binary units are not meant to be literal models
but changing state asynchronously and using a probabilistic decision rule is not that bad a
model of neural activity.

� the energy gap for a binary unit has a role similar to the membrane potential of a neuron.

� in Boltzmann Machines all connections are symmetrical - unlikely to be strictly true of neurons,
but random asymmetry many act like Gaussian noise - so the model may still be valid.

� many problems in vision, speech recognition, associative recall and motor control can be for-
mulated as searches.

� similiarity between di�erent areas of cerebral cortex suggests that the same kind of massively
parallel searches may be performed in many di�erent cortical areas.

Boltzmann Machines and Bayesian Inference

� Bayes rule for updating the odds on hypothesis h given evidence e can be written:

p(hje)

p(�hje)
=
p(h)

p(�h)
�
p(ejh)

p(ej�h)

where p(h)

p(�h)
is the \prior odds" on h and p(ejh)

p(ej�h)
is the \evidence" supporting h.

� this can be rewritten to resemble the update rule for a Boltzmann unit:

p(hje) =
1

1 + e�[log(priorodds)+log(evidence)]

Representing Probabilities

� instead of using a real number for p(h), Boltzmann machines use a binary variable that adopts
the \true" value with probability p(h).

� this is a \direct" representation of probability.

Standard Problems with Bayesian Inference

1. it is hard to assign a priori probabilities to every possible state of a�airs. Probabilities must
be consistent and easily expressed.

� represent the probability distributions implicitly by potential functions.

P� = ke�E�

48



2. it is hard to compute posterior probabilities given the prior distribution and the evidence.

� use simulated annealing to get a good approximation. To save time, be content with
probability matching.

� approach equilibrium at a �nite temperature, so that good solutions are much more likely
than poor ones { much easier than �nding the best solution.

Coping with non-independent sources of evidence

� each unit adds up the evidence coming in along each input line { so it assumes independence.

� if there is a set of hidden units, they can be used to make the independence assumption be a
good approximation.

� �rst decide on the rule for combining evidence, then discover representations that make this
rule work.

The Bell-core Boltzmann Chip

� Annealing

{ use analog circuitry with real noise which can be varied by a gain control to implement
a very fast approximation to annealing. Have many \neurons" on a single VLSI chip.

{ each weight is a set of �eld e�ect transistors of size 1,2,4,8,16. Each transistor can be
activated by a digital charge on the gate. The digital charges are stored in RAM cells.

{ the learning procedure uses digital counters to decide whether to increment or decrement
a weight. But the \annealing" is analog so it's very fast.

How to Implement Weights on Chips

� Set of FETs

{ easy but takes a large area.

� Floating gates

{ the charge on a oating gate can last for years. It is a very compact method.

{ UV light is used to allow electrons to get onto the gate. Carver Mead has a very simple
version of this working.

� Resistors

{ very compact for �xed weights, but no good for learning.
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