Development of the BP Training Algorithm

Error

The activation value of a hidden unit is given by
bi = f(O_ vnian)
h

where b; is the activation value of a hidden layer unit.
The activation value (calculated) for an output unit is

cj = F(O_wijb) = FO_wi fO vnian))
: : I

where ¢; is the activation (calculated) value of an output layer unit.
The error or discrepancy between the calculated and desired value of an output layer unit can

be defined as:

Flw] = Y leh— e

- % YL = FO_wii (Y vnian)))?
J 7 h

This is a continuous, differentiable function and, therefore, we can perform gradient descent.

From Hidden to Output

First, let us look at the weight changes on the connections from the Fg, or hidden, layer to the Fi,
or output, layer.
SF
n&wij
p

= 0 [e] = /' wijbbi

p

= nzdjbi

Aw;; =

where
di = ' wibi)le] - ¢l (1)
In summary, the weight change can be written as
Aw;; = ad;b;

If the threshold function is the sigmoid f(z) = H-%
expressed in terms of itself as d; = ¢;(1 — ¢;)(c¥ — ¢;) and so the change in connection weight can

then the derivative of this function can be

be expresses as

Aw;; = afc;(1 - Cj)(0§ —¢;)]bi

From Input to Hidden

Now we will look at the weight changes on the connections from the F4, or input layer, to the Fp,
or hidden, layer. To do this we must differentiate F[w] with respect to vp;. Using the chain rule:

Avki = _7751};”' - _HZE(SUM
P
= 0> _[F =1 O wibi)wii /(O vhiar)an
: T
P
= 0> dwi; f'(O_ vhian)an
)

P
= 0y day,

where
di = [vhian) > wijd; (2)
h 7
Thus, the weight change is Avy; = Bapd; Once again, using the logistic threshold function:
d; = b;(1—b;) Zwijdj

and

Avy; = Bap[bi(1 — b;) sz’jcj(l —) (cf = ¢))]

In General...

The general form of a weight change is

Aw,g =1 Z dourpuT X VINPUT

patterns
where doyrpyr depends on the layer

e last layer uses Equation (1)

e all other layers use Equation (2)

and Vinypur represents the appropriate input-end activation

The Threshold Function
Now let us examine the threshold function in detail. The general form of the logistic function is

1

fo(a) = [T

where (3 is a steepness parameter (often % or 1). The derivative of this function is

fola)=28f(1 - f)

Now if the steepness parameter is § then f'(z) = f(1 — f) = ¢;(1 — ¢;)
The general form of the hyperbolic tangent function is

fa(z) = tanhpz

The derivative of this function is
fo(x) =B - f?)
If 3 =1then f'(z) = (1 - ¢%)

Local Minima
e have not been much of a problem in most cases (empirical evidence)
e often the bottoms of very shallow steep-sided valleys

e to avoid, choose patterns in a random order which generates “useful” noise

Alternative Cost Functions

e can replace the [cf —¢;]* term in the quadratic cost function by another differentiable function
F(cé?7 ¢;) that is minimized when its arguments are equal

e derive a corresponding update rule
— only d; in the output layer changes

— all other equations remain unchanged

Newton’s Method

o the Hessian matrix

§?F

H,;, =
I dxidx;

where the vector z represents the weight space and specifying a corresponds to specifying all
the weights.

Adaptive Parameters
e hard to choose appropriate learning/momentum rates
e best values at beginning may not be good later on

— adjust the parameters automatically as learning progresses

Standard Approach
e check if a weight update actually decreases the cost function

— if it did not (overshot) then reduce 7,

— if several consecutive steps decreases the cost then increase 7

e increase 7 by a constant

o decrease n geometrically to allow rapid decay

+oa if AF < 0 consistently
An=< —fn if AE >0

0 otherwise
where consistently can be

— based on the last K steps

— weighted moving average of observed AFE’s

Other Adaptive Schemes

e several learning rates

— parameters n?, one for each pattern p

« J.P. Cater (1987) Successfully Using Peak Learning Rates of 10 (and greater)
in Back-Propagation Networks with the Heuristic Learning Algorithm, in

IEEE First International Conference on Neural Networks (San Diego), Volume II,
pp- 645-651.

— an 17, for each connection pg

* R.A. Jacobs (1988) Increased Rates of Convergence Through Learning Rate
Adaptation, Neural Networks 1, pp. 295-307.

o different learning rates for different architectures

1
fan-in of site i)

- x
Tlpq (

« D. Plaut, S. Nowlan, G. Hinton (1986) Experiments on Learning by Back Prop-
agation, Technical Report CMU-CS-86-126.

Genetic Algorithm Strategy

e use of a GA to search the weight space without use of any gradient information
— a complete set of weights is coded in a binary string (chromosome) which has an asso-
ciated fitness that depends on its effectiveness

— starting with a random population of strings, successive generations are constructed
using genetic operators such as mutation and crossover

— “fitter” strings are more likely to survive and mate
— the encoding methods and the genetic operators are crucial to the effectiveness of this
technique

e GAs perform a global search and thus are not easily fooled by local minima

— fitness function does not have to be differentiable
— but, high computational penalty

* initial genetic search followed by gradient methods

* gradient descent step used as one of the genetic operators

Initial Weights

e size of initial random weights is important

— if too large, then sigmoids saturate quickly and the system becomes stuck in a local
minimum (flat plateau) near the starting point

e one strategy is to choose the random weights so that the magnitude of the typical net input
to a PE is less than (but not too much less than) unity

— weights w;; will be of the order \/lk_z where k; is the number of j’s which feed forward to

unit ¢ (the fan-in of unit ¢)

