
Development of the BP Training Algorithm

Error

The activation value of a hidden unit is given by

bi = f(
X
h

vhiah)

where bi is the activation value of a hidden layer unit.

The activation value (calculated) for an output unit is
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where cj is the activation (calculated) value of an output layer unit.

The error or discrepancy between the calculated and desired value of an output layer unit can

be de�ned as:
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This is a continuous, di�erentiable function and, therefore, we can perform gradient descent.

From Hidden to Output

First, let us look at the weight changes on the connections from the FB , or hidden, layer to the FC ,

or output, layer.

�wij = ��
�E

�wij

= �

pX
[ckj � cj ]f

0(
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where

dj = f 0(
X
i

wijbi)[c
k
j � cj ] (1)

In summary, the weight change can be written as

�wij = �djbi

If the threshold function is the sigmoid f(x) = 1

1+e�x
then the derivative of this function can be

expressed in terms of itself as dj = cj(1� cj)(c
k
j � cj) and so the change in connection weight can

be expresses as

�wij = �[cj(1� cj)(c
k
j � cj)]bi
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From Input to Hidden

Now we will look at the weight changes on the connections from the FA, or input layer, to the FB ,

or hidden, layer. To do this we must di�erentiate E[w] with respect to vhi. Using the chain rule:
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�bi
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where

di = f 0(
X
h

vhiah)
X
i

wijdj (2)

Thus, the weight change is �vhi = �ahdi Once again, using the logistic threshold function:

di = bi(1� bi)
X
i

wijdj

and

�vhi = �ah[bi(1� bi)
X
i

wijcj(1� cj)(c
k
j � cj)]

In General...

The general form of a weight change is

�wpq = �
X

patterns

dOUTPUT � VINPUT

where dOUTPUT depends on the layer

� last layer uses Equation (1)

� all other layers use Equation (2)

and VINPUT represents the appropriate input-end activation
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The Threshold Function

Now let us examine the threshold function in detail. The general form of the logistic function is

f�(x) =
1

1 + e�2�x

where � is a steepness parameter (often 1

2
or 1). The derivative of this function is

f 0�(x) = 2�f(1� f)

Now if the steepness parameter is 1

2
then f 0(x) = f(1� f) = cj(1� cj)

The general form of the hyperbolic tangent function is

f�(x) = tanh�x

The derivative of this function is

f 0�(x) = �(1� f2)

If � = 1 then f 0(x) = (1� c2j)

Local Minima

� have not been much of a problem in most cases (empirical evidence)

� often the bottoms of very shallow steep-sided valleys

� to avoid, choose patterns in a random order which generates \useful" noise

Alternative Cost Functions

� can replace the [ckj �cj ]
2 term in the quadratic cost function by another di�erentiable function

F (ckj ; cj) that is minimized when its arguments are equal

� derive a corresponding update rule

{ only dj in the output layer changes

{ all other equations remain unchanged

Newton's Method

� the Hessian matrix

Hij =
�2E

�xi�xj

where the vector x represents the weight space and specifying x corresponds to specifying all

the weights.
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Adaptive Parameters

� hard to choose appropriate learning/momentum rates

� best values at beginning may not be good later on

{ adjust the parameters automatically as learning progresses

Standard Approach

� check if a weight update actually decreases the cost function

{ if it did not (overshot) then reduce �

{ if several consecutive steps decreases the cost then increase �

� increase � by a constant

� decrease � geometrically to allow rapid decay

�� =

8><
>:

+� if �E < 0 consistently

��� if �E > 0

0 otherwise

where consistently can be

{ based on the last K steps

{ weighted moving average of observed �E's

Other Adaptive Schemes

� several learning rates

{ parameters �p, one for each pattern p

� J.P. Cater (1987)Successfully Using Peak Learning Rates of 10 (and greater)

in Back-Propagation Networks with the Heuristic Learning Algorithm, in

IEEE First International Conference on Neural Networks (San Diego), Volume II,

pp. 645-651.

{ an �pq for each connection pq

� R.A. Jacobs (1988) Increased Rates of Convergence Through Learning Rate

Adaptation, Neural Networks 1, pp. 295-307.

� di�erent learning rates for di�erent architectures

{ �pq /
1

(fan-in of site i)

� D. Plaut, S. Nowlan, G. Hinton (1986)Experiments on Learning by Back Prop-

agation, Technical Report CMU-CS-86-126.

4



Genetic Algorithm Strategy

� use of a GA to search the weight space without use of any gradient information

{ a complete set of weights is coded in a binary string (chromosome) which has an asso-

ciated �tness that depends on its e�ectiveness

{ starting with a random population of strings, successive generations are constructed

using genetic operators such as mutation and crossover

{ \�tter" strings are more likely to survive and mate

{ the encoding methods and the genetic operators are crucial to the e�ectiveness of this

technique

� GAs perform a global search and thus are not easily fooled by local minima

{ �tness function does not have to be di�erentiable

{ but, high computational penalty

� initial genetic search followed by gradient methods

� gradient descent step used as one of the genetic operators

Initial Weights

� size of initial random weights is important

{ if too large, then sigmoids saturate quickly and the system becomes stuck in a local

minimum (
at plateau) near the starting point

� one strategy is to choose the random weights so that the magnitude of the typical net input

to a PE is less than (but not too much less than) unity

{ weights wij will be of the order
1p
ki

where ki is the number of j's which feed forward to

unit i (the fan-in of unit i)
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